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Abstract

The estimation of non-stationary dynamic discrete choice models typically requires making

assumptions far beyond the length of the data. We extend the class of dynamic discrete choice

models that require only a few-period-ahead conditional choice probabilities, and develop algo-

rithms to calculate the finite dependence paths. We do this both in single agent and games

settings, resulting in expressions for the value functions that allow for much weaker assumptions

regarding the time horizon and the transitions of the state variables beyond the sample period.

1 Introduction

Estimation of dynamic discrete choice models is complicated by the calculation of expected future

payoffs. These complications are particularly pronounced in games where the equilibrium actions

and future states of the other players must be margined out to derive a player’s best response.

Originating with Hotz and Miller (1993), two-step methods provide a computationally cheap way of
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Sciences Po, Toulouse, and Toronto for helpful comments. We acknowledge support from National Science Foundation

Grant Awards SES0721059 and SES0721098.
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estimating structural payoff parameters in both single-agent and multi-agent settings. These two-

step estimators first estimate conditional choice probabilities (CCP’s) and then characterize future

payoffs as a function of the CCP’s when estimating the structural payoff parameters.1

CCP estimators fall into two classes: those that exploit finite dependence, and those that do

not.2 The former entails expressing the future value term or its difference across two alternatives as

a function of just a few-period ahead conditional choice probabilities and flow payoffs.3 Intuitively, ρ

period finite dependence holds when there exist two sequences of choices that lead off from different

initial choices but generate the same distribution of state variables ρ+1 periods later. The sequences

of choices need not be optimal and may involve mixing across choices within a period.

When a finite dependence representation exists, it is possible to relax some of the assumptions

about time that are commonly made when estimating dynamic discrete choice models. Nonstation-

ary infinite horizon models can be estimated when finite dependence holds. In finite horizon models,

assumptions about the length of the time horizon and the evolution of the state variables beyond

the sample period, can be relaxed. For example, a dynamic model of schooling requires making as-

sumptions regarding the age of retirement, and also the functional form of utilities of older workers,

although the data available to researchers might only track individuals into their twenties or thirties.

Furthermore, estimation is fast because conditional choice probabilities need only be computed for

a few periods ahead of the current choices.

Many papers have used the finite dependence property in estimation, often employing either a

terminal or renewal action.4 More general forms of finite dependence, whether a feature of the data

1See Arcidiacono and Ellickson (2011) for a review.
2CCP estimators that do not rely on finite dependence include those of Hotz, Miller, Sanders, and Smith (1994),

Aguirregabiria and Mira (2002, 2007), Bajari, Benkard, and Levin (2007), and Pesendorfer and Schmidt-Dengler

(2008).
3See Hotz and Miller (1993), Altug and Miller (1998), Arcidiacono and Miller (2011), Aguirregabiria and Magesan

(2013, 2017), and Gayle (2018).
4See, for example Hotz and Miller (1993), Joensen (2009), Scott (2013), Arcidiacono, Bayer, Blevins, and Ellickson
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or imposed by the authors, have been applied in models of fertility and female labor supply (Altug

and Miller 1998, Gayle and Golan 2012, Gayle, Hincapie, and Miller 2018), migration (Bishop, 2012,

Coate 2016, Ma forthcoming, Ransom 2018), participation in the stock market (Khorunzhina 2013),

agricultural land use (Scott, 2013), smoking (Matsumoto 2014), education (Arcidiacono, Aucejo,

Maurel, and Ransom 2016), occupational choice (James 2014), and housing choices (Khorunzhina

and Miller 2016). These papers demonstrate the advantage of exploiting finite dependence in esti-

mation: it is not necessary to solve the value function within a nested fixed point algorithm, nor

invert matrices the size of the state space.5

The current method for determining whether finite dependence holds or not is to guess and

verify. The main contribution of this paper is to provide a systematic way of determining whether

finite dependence holds when there are a (large but) finite number of states. To accomplish this, we

slightly generalize the definition of finite dependence given in Arcidiacono and Miller (2011). Key

to the generalization is recognizing that the ex-ante value function can be expressed as a weighted

average of the conditional value functions of all the alternatives plus a function of the conditional

choice probabilities, where all the weights sum to one but some may be negative or greater than

one. As one of our examples shows, this slight generalization enlarges the class of models that can

be cheaply estimated by exploiting this more inclusive definition of the finite dependence property.

Determining whether finite dependence holds for a pair of initial choices is a nonlinear problem,

yet the algorithm we propose for dynamic optimization problems only has a finite number of steps.

We partition candidate paths for demonstrating finite dependence in say ρ periods; paths that reach

(2016), Declerq and Verboven (2018), Mazur (2017), and Beauchamp (2015). The last three exploit one period finite

dependence to estimate dynamic games.
5The finite dependence property has also been directly imposed on the decision making process in models to

economize on the state space. See for example Bishop (2012) and Ma (forthcoming). Assuming players do not use

all the information at their disposal reduces the state space players use to solve their optimization problems. This

approach provides a parsimonious way of modeling bounded rationality when the state space is high dimensional.
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the same set of states reached with a nonzero weight are collected together. Partitioning by whether

a weight is zero or not, rather than the value of the weight, reduces an uncountable infinity of paths

to a finite set. Each element in the partition maps into a linear system of equations, and we check

the rank of the system, also a finite number of operations. The size of the linear system is based

on the number of states attainable in ρ − 1 periods from the initial state, not the total number of

states in the model. The algorithm proceeds iteratively, by checking the determinants of selected

elements in the partition. If one (or more) of the elements has a nonzero determinant, then the

pair of choices exhibits ρ period finite dependence; otherwise it does not. Once finite dependence is

established, another linear operation (on a finite number of equations) yields a set of weights that

can be used in any CCP estimator that exploits finite dependence.

In game settings, finite dependence is applicable to each player individually. Here finite depen-

dence relates to transition matrices for the state variables when a designated player places arbitrary

weight on each of her possible future decisions (so long as the weights sum to one within a period)

and the other players follow their equilibrium strategies. Consequently, finite dependence in games

cannot be ascertained from the transition primitives alone (as in the individual optimization case).

Indeed, whether or not finite dependence holds might also hinge on which equilibrium is played,

not a paradoxical result, because different equilibria for the same game sometimes reveal different

information about the primitives, so naturally require different estimation approaches.

Up until now research on finite dependence in games has been restricted to models with a terminal

action (that ends the process governing the state variables for individual players). Otherwise one-

period finite dependence typically fails to hold, because the equilibrium actions of the other players

depend on what the designated agent has already done. Hence the distribution of the state variables,

which the other players partly determine, depends on the actions of the designated player two periods

earlier. These stochastic connections, a vital feature of many strategic interactions, has limited
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empirical research in estimating games with nonstationarities. We develop an algorithm to solve

for finite dependence in a broader class of games than those characterized by terminal and renewal

actions. In the general case a bilinear system of equations must be solved, where the number of

equations is dictated by the possible states that can be reached a few periods ahead, but in some

specializations, including but not limited to terminal and renewal actions, our algorithm reduces to

solving a linear system of equations.

The rest of the paper proceeds as follows. Section 2 lays out our framework for analyzing

finite dependence in discrete choice dynamic optimization problems and noncooperative equilibrium

games. In Section 3 we define finite dependence, and show how this property can be used in

estimation, generalizing existing estimators that exploit finite dependence to order to accommodate

the many new applications our algorithm on finite dependence reveals. The fourth section provides

a new representation of this property, and uses the representation to demonstrate how to recover

finite dependence paths in single agent optimization problems. Section 5 extends the approach to

multi-agent equilibrium settings. New examples with finite dependence, derived using the algorithm,

are provided in Section 6, while Section 7 concludes.

2 Framework

This section first lays out a general class of dynamic discrete choice models. Drawing upon our

previous work (Arcidiacono and Miller, 2011), we extend our representation of the conditional

value functions which plays an overarching role in our analysis, and then modify our framework to

accommodate games with private information.
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2.1 Dynamic optimization discrete choice

In each period t ∈ {1, . . . , T} until T ≤ ∞, an individual chooses among J mutually exclusive

actions. Let djt equal one if action j ∈ {1, . . . , J} is taken at time t and zero otherwise. The current

period payoff for action j at time t depends on the state xt ∈ X , a finite set.6 If action j is taken

at time t, the probability of xt+1 occurring in period t+ 1 is denoted by fjt(xt+1|xt).

The individual’s current period payoff from choosing j at time t is also affected by a choice-

specific shock, εjt, which is revealed to the individual at the beginning of the period t. We assume

the vector εt ≡ (ε1t, . . . , εJt) has continuous support, is drawn from a probability distribution that

is independently and identically distributed over time with density function g (εt), and satisfies

E [max {ε1t, . . . , εJt}] ≤ ε < ∞. The individual’s current period payoff for action j at time t is

modeled as ujt(xt) + εjt.

The individual takes into account both the current period payoff as well as how his decision

today will affect the future. Denoting the discount factor by β ∈ (0, 1), the individual chooses the

vector dt ≡ (d1t, . . . , dJt) to sequentially maximize the discounted sum of payoffs:

E


T∑
t=1

J∑
j=1

βt−1djt [ujt(xt) + εjt]

 (2.1)

where at each period t the expectation is taken over the future values of xt+1, . . . , xT and εt+1, . . . , εT .

Expression (2.1) is maximized by a Markov decision rule which gives the optimal action conditional

on t, xt, and εt. We denote the optimal decision rule at t as dot (xt, εt), with j
th element dojt(xt, εt).

The probability of choosing j at time t conditional on xt, pjt(xt), is found by taking dojt(xt, εt) and

integrating over εt:

pjt(xt) ≡
∫
dojt (xt, εt) g (εt) dεt (2.2)

6Our analysis is based on the assumption that xt belongs to a finite set, an assumption that is often made in this

literature. See Aguirregabiria and Mira (2002) for example. However it is worth mentioning that finite dependence

can be applied without making that assumption. See Altug and Miller (1998) for example.
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We then define pt(xt) ≡ (p1t(xt), . . . , pJt(xt)) as the vector of conditional choice probabilities (CCPs).

Denote Vt(xt), the ex-ante value function in period t, as the discounted sum of expected future

payoffs just before εt is revealed and conditional on behaving according to the optimal decision rule:

Vt(xt) ≡ E


T∑
τ=t

J∑
j=1

βτ−tdojτ (xτ , ετ ) (ujτ (xτ ) + εjτ )


Given state variables xt and choice j in period t, the expected value function in period t+1, dis-

counted one period into the future, is β
∑X

xt+1=1
Vt+1(xt+1)fjt (xt+1|xt). Under standard conditions,

Bellman’s principle applies and Vt(xt) can be recursively expressed as:

Vt(xt) =
J∑
j=1

∫
dojt (xt, εt)

ujt(xt) + εjt + β
X∑

xt+1=1

Vt+1(xt+1)fjt (xt+1|xt)

 g (εt) dεt

We then define the choice-specific conditional value function, vjt(xt), as the flow payoff of action j

without εjt plus the expected future utility conditional on following the optimal decision rule from

period t+ 1 on:7

vjt(xt) = ujt(xt) + β
X∑

xt+1=1

Vt+1(xt+1)fjt (xt+1|xt) (2.3)

Our analysis is based on a representation of vjt(xt) that slightly generalizes Theorem 1 of Ar-

cidiacono and Miller (2011). Both results are based on their Lemma 1, that for every t ∈ {1, . . . , T}

and p ∈ ∆J , the J dimensional simplex, there exists a real-valued function ψj (p) such that:

ψj [pt(x)] ≡ Vt(x)− vjt(x) (2.4)

To interpret (2.4), note that the value of committing to action j at period t before seeing εt and

behaving optimally thereafter is vjt(xt)+E [εjt] . Therefore the expected loss from pre-committing to

j versus waiting until εt is observed and only then making an optimal choice, Vt(xt), is the constant

ψj [pt(xt)] minus E [εjt] , a composite function that only depends on xt through the conditional choice

probabilities. This result leads to the following theorem, proved using an induction.

7For ease of exposition we refer to vjt(xt) as the conditional value function in the remainder of the paper.
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Theorem 1 For each choice j ∈ {1, . . . , J} and τ ∈ {t+ 1, . . . , T} , let any ωτ (xτ , j) denote any

mapping from the state space {1, . . . , X} to RJ satisfying the constraints that |ωkτ (xτ , j)| <∞ and∑J
k=1 ωkτ (xτ , j) = 1. Recursively define κτ+1(xτ+1|xt, j) as:

κτ+1(xτ+1|xt, j) ≡


fjt(xt+1|xt) for τ = t∑X

xτ=1

∑J
k=1 ωkτ (xτ , j) fkτ (xτ+1|xτ )κτ (xτ |xt, j) for τ = t+ 1, . . . , T

(2.5)

Then for T < T :

vjt(xt) = ujt(xt) +
T∑

τ=t+1

J∑
k=1

X∑
xτ=1

βτ−t [ukτ (xτ ) + ψk[pτ (xτ )]]ωkτ (xτ , j)κτ (xτ |xt, j) (2.6)

+

X∑
xT+1

βT +1−tVT +1(xT +1)κT +1(xT +1|xt, j)

and for T = T :

vjt(xt) = ujt(xt) +
T∑

τ=t+1

J∑
k=1

X∑
xτ=1

βτ−t [ukτ (xτ ) + ψk[pτ (xτ )]]ωkτ (xτ , j)κτ (xτ |xt, j) (2.7)

For the purposes of this work it is convenient to interpret T as the final period in the sample;

typically T < T. Arcidiacono and Miller (2011) prove the theorem when T = T and ωkτ (xτ , j) ≥ 0

for all k and τ . In that case, κτ+1(xτ+1|xt, j) is the probability of reaching xτ+1 by following

the sequence defined by ωτ (xτ , j) and the value function representation extending over the whole

decision-making horizon.8

2.2 Extension to dynamic games

This framework extends naturally to dynamic games. In the games setting, we assume that there

are N players making choices in periods t ∈ {1, . . . , T}. The systematic part of payoffs to the

nth player not only depends on his own choice in period t, denoted by d(n)t ≡
(
d
(n)
1t , . . . , d

(n)
Jt

)
,

and the state variables xt, but also the choices of the other players, which we now denote by

8The extension to negative weights is also noted in Gayle (2013).
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d
(∼n)
t ≡

(
d
(1)
t , . . . , d

(n−1)
t , d

(n+1)
t , . . . , d

(N)
t

)
. Denote by U (n)jt

(
xt, d

(∼n)
t

)
+ ε

(n)
jt the flow utility of

player n in period t, where ε(n)jt is an identically and independently distributed random variable that

is private information to player n. Although the players all face the same observed state variables,

these state variables typically affect players in different ways. For example, adding to the nth player’s

capital may increase his payoffs and reduce the payoffs to the others. For this reason the payoff

function is superscripted by n.

The players make simultaneous choices in each period. We denote by Pt
(
d
(∼n)
t |xt

)
the joint

conditional choice probability that the players aside from n collectively choose d(∼n)t at time t given

the state variables xt. Since ε
(n)
t is independently distributed across all the players, Pt

(
d
(∼n)
t |xt

)
has the product representation:

Pt

(
d
(∼n)
t |xt

)
=

N∏
n′=1
n′ 6=n

 J∑
j=1

d
(n′)
jt p

(n′)
jt (xt)

 (2.8)

We assume each player acts like a Bayesian when forming his beliefs about the choices of the other

players and that a Markov-perfect equilibrium is played. Hence, the beliefs of the players match

the probabilities given in equation (2.8). Taking the expectation of U (n)jt

(
xt, d

(∼n)
t

)
over d(∼n)t , we

define the systematic component of the current utility of player n as a function of the state variables

as:

u
(n)
jt (xt) =

∑
d
(∼n)
t ∈JN−1

Pt

(
d
(∼n)
t |xt

)
U
(n)
jt

(
xt, d

(∼n)
t

)
(2.9)

For future reference we call u(n)jt (xt) the reduced form payoff to player n from taking action j in

period t when the state is xt.

The values of the state variables at period t + 1 are determined by the period t choices by all

the players as well as the values of the period t state variables. We consider a model in which the

state variables can be partitioned into those that are affected by only one of the players, and those

that are exogenous. For example, to explain the number and size of firms in an industry, the state
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variables for the model might be indicators of whether each potential firm is active or not, and

a scalar to measure firm capital or capacity; each firm controls their own state variables, through

their entry and exit choices, as well as their investment decisions.9 The partition can be expressed

as xt ≡
(
x
(0)
t , x

(1)
t , . . . , x

(N)
t

)
, where x(0)t denotes the states that are exogenously determined by

transition probability f0t
(
x
(0)
t+1

∣∣∣x(0)t )
, and x(n)t ∈ X (n) ≡

{
1, . . . , X(n)

}
is the component of the state

controlled or influenced by player n. Let f (n)jt

(
x
(n)
t+1

∣∣∣x(n)t

)
denote the probability that x(n)t+1 occurs at

time t+1 when player n chooses j at time t given x(n)t .Many models in industrial organization exploit

this specialized structure because it provides a flexible way for players to interact while keeping the

model simple enough to be empirically tractable.10 Since the transitions of the exogenous variables

do not substantively effect our analysis, we ignore them for the rest of the paper to conserve on

notation.

Denote the state variables associated with all the players aside from n as:

x
(∼n)
t ≡

(
x
(1)
t , . . . , x

(n−1)
t , x

(n+1)
t . . . , x

(N)
t

)
∈ X (∼n) ≡ X (1) × . . .×X (n−1) ×X (n+1) × . . .×X (N)

Under this specification the reduced form transition generated by their equilibrium choice probabil-

ities is defined as:

f
(∼n)
t

(
x
(∼n)
t+1 |xt

)
≡

N∏
n′=1
n′ 6=n

[
J∑
k=1

p
(n′)
kt (xt) f

(n′)
kt

(
x
(n′)
t+1

∣∣∣x(n′)t

)]

As in Subsection 2.1, consider for all τ ∈ {t, . . . , T} any sequence of decision weights:

ω(n)τ (xτ , j) ≡
(
ω
(n)
1τ (xτ , j), . . . , ω

(n)
Jτ (xτ , j)

)
9The second example in Arcidiacono and Miller (2011) also belongs to this class of models.
10All the empirical applications of structural modeling of which we are aware have this property, including those

based on Ericson and Pakes (1995). For example, firms affect their own product quality through their own investment

decisions, but do not directly affect the product quality of other players. Thus each firm’s decisions affect the product

quality of other players only through the effect on the decisions of the other players.
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subject to the constraints
∑J

k=1 ω
(n)
kτ (xτ , j) = 1 and starting value ω(n)jt (xt, j) = 1. Given the

equilibrium actions of the other players impounded in f
(∼n)
t

(
x
(∼n)
t+1 |xt

)
, we recursively define

κ
(n)
τ+1(xτ+1|xt, j) for the sequence of decision weights ω

(n)
kτ (xτ , j) over periods τ ∈ {t+ 1, . . . , T}

in a similar manner to (2.5) as:

κ
(n)
τ+1(xτ+1|xt, j) ≡ f0τ

(
x
(0)
τ+1

∣∣∣x(0)τ ) X∑
xτ=1

J∑
k=1

f (∼n)τ

(
x
(∼n)
τ+1 |xτ

)
ω
(n)
kτ (xτ , j) f

(n)
kτ

(
x
(n)
τ+1

∣∣∣x(n)τ

)
κ(n)τ (xτ |xt, j)

(2.10)

with initializing function:

κ
(n)
t+1(xt+1|xt, j) ≡ f

(n)
jt

(
x
(n)
t+1

∣∣∣x(n)t

)
ft

(
x
(∼n)
t+1 |xt

)
f0t

(
x
(0)
t+1

∣∣∣x(0)t )
(2.11)

Letting:

fjt (xt+1 |xt ) = f0t

(
x
(0)
t+1

∣∣∣x(0)t )
f
(∼n)
t

(
x
(∼n)
t+1 |xt

)
f
(n)
jt

(
x
(n)
t+1

∣∣∣x(n)t

)
(2.12)

and adding n superscripts to all the other terms in (2.7) , it now follows that Theorem 1 applies to

this multi-agent setting in exactly the same way as in a single agent setting.

3 The finite dependence property

Theorem 1 shows that the future value term can be expressed relative to any weighted choice

sequence as long as the sum of the weights add up to one in each period. Given that many paths

can be chosen, it may be possible to line up the distribution of states given two different initial choices

at some point in the future, say ρ periods later. If this is the case, then expressing the future value

terms relative to these sequences results in the future value terms after ρ periods cancel out once

differences in the conditional value function are taken across the two choices. Hence any information

that would result in differences between the two choices in the future is already embedded in the

conditional choice probabilities. In this section, we formalize the concept of finite dependence. We

then show how it can be used in estimation.
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3.1 Defining finite dependence

Turning first to individual optimization problems, consider two sequences of decision weights that

begin at date t in state xt, one with choice i and the other with choice j. We say that the pair of

choices {i, j} exhibits ρ-period dependence if there exist sequences of decision weights from i and j

for xt such that :

κt+ρ+1(xt+ρ+1|xt, i) = κt+ρ+1(xt+ρ+1|xt, j) (3.1)

for all xt+ρ+1 ∈ {1, . . . , X}. That is, the weights associated with each state are the same across the

two paths after ρ periods.11

Several comments on this definition are in order. First, finite dependence trivially holds in all

finite horizon problems. However the property of ρ-period dependence only merits attention when

ρ < T −t. To avoid repeatedly referencing the trivial case of ρ = T −t, we will henceforth write finite

dependence holds only when (3.1) applies for ρ < T − t. Second, finite dependence is defined with

respect to a pair of choices conditional on the value of the state variable, not the whole model. The

main reason for this narrow definition is that finite dependence might hold for some choice pairs but

not others, and for certain states but not others. Even in this case, we can reduce the computational

burden of estimating the model by exploiting finite dependence on the pairs of choices where it holds.

Finally, a more general definition of finite dependence would encompass mixed choices to start the

sequence, not just pure strategies; our analysis easily extends to the more general case.

Under finite dependence, differences in current utility ujt(xt)− uit(xt) can be expressed as:

ujt(xt)− uit(xt) = ψi[pt(xt)]− ψj [pt(xt)] (3.2)

+

t+ρ∑
τ=t+1

J∑
k=1

X∑
xτ=1

βτ−t {ukτ (xτ ) + ψk[pτ (xτ )]}

 ωkτ (xτ , i)κτ (xτ |xt, i)

−ωkτ (xτ , j)κτ (xτ |xt, j)


11Aguirregabiria and Magesan (2013, 2017) and Gayle (2018) restrict their analyses to cases where there is one

period finite dependence, thus ruling out labor supply applications such as Altug and Miller (1998), as well as games.
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This equation follows directly from Equations (2.4) and (2.7) , in Theorem 1.12

Extending the definition of finite dependence to dynamic games is straightforward. It is applied

to a given equilibrium at date t in state xt, one with choice i and the other with choice j taken by

a given player n. The two sequences of decision weights apply to the future choices of n when the

other players follow their equilibrium strategies. Equation (2.12) defines the transition probabilities,

while (2.11) and (2.10) determine the transitions of κ(n)τ+1(xτ+1|xt, j). Thus in this multi-agent setting

ρ-period dependence exists if there is a pair of sequences that give, for all xt+ρ+1 ∈ {1, . . . , X}:

κ
(n)
t+ρ+1(xt+ρ+1|xt, i) = κ

(n)
t+ρ+1(xt+ρ+1|xt, j) (3.3)

3.2 Exploiting finite dependence in estimation

When finite dependence holds, estimation may be much computationally less demanding. The

empirical applications we cited in the introduction illustrate estimators based on finite dependence

have appealing computational advantages. Equation (3.2) provides a basis for estimation without

resorting to the inverting high dimensional matrices or simulating future paths. In addition, finite

dependence has empirical content; it is straightforward to test whether (3.1) is rejected by the data.

To illustrate how to exploit finite dependence in estimation, suppose the data comprise N ob-

servations of the state variables and decisions denoted by {dntn , xntn , xn,tn+1}Nn=1 sampled within a

time frame of t ∈ {1, . . . , T }. Say there are M separate instances of finite dependence as defined in

(3.1) within that time frame where, for the sake of exposition, each pair of choices includes choice 1.

Label the M paths by (jm, xm, tm, ρm) for m ∈ {1, . . . ,M}.13 Assume that for each t ∈ {1, . . . , T }

the probability of the sample selection mechanism drawing x ∈ {1, . . . , X} is strictly positive.14

12Appealing to (2.4) , replace vjt(x) with Vt(x) − ψj [pt(x)] in (2.7) and perform a similar substitution for vit(x).

Upon differencing the two equations, the Vt(x) terms drop out.
13For example in models with a renewal action or a terminal choice, every other choice at every state exhibits one

period dependence so in these cases H = X (J − 1) T .
14This assumption is made for expositional simplicity: the state space could be redefined to be time specific, including
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We then make the standard assumptions in the literature. First, assume the subjective discount

factor β, and g (εt), the joint probability density function for the unobserved idiosyncratic taste

shock εt, are known.15 Second, assume ujt(x) can be parameterized by a finite dimensional vector

θ ≡ (θ1, . . . , θK) ∈ Θ, a closed convex set in RK , and normalize the first choice to zero, by writing

ujt(x) = ũjt(x, θ), where ũjt(x, θ) is a known function with ũ0t(x, θ) = 0 for all (t, x).16 Finally,

assume that the M instances of finite dependence are suffi cient to identify θ.17

We propose the following minimum distance CCP estimator for θ, new to the literature:

1. For all t ∈ {1, . . . , T } and x ∈ {1, . . . , X}, define the cell estimators of pjt(x) as:

p̂jt(x) ≡
∑N

n=1 1
{
dnt(n)j = 1

}
1 {tn = t} 1

{
xnt(n) = x

}∑N
n=1 1 {tn = t} 1

{
xnt(n) = x

}
and estimate the XJT CCP vector p ≡ (p11(1), . . . , pJT (X))′ with p̂ formed from p̂jt(x). Also,

if the state transitions are unknown, estimate fjt(x) with f̂jt(x) in this first stage, for example

with a cell estimator (similar to the CCP estimator).

2. Let y (p, f) ≡ (y1 (p, f) , . . . , yH (p, f))′ and Z(p, f, θ) ≡ (Z1(p, f, θ), . . . , ZM (p, f, θ))′ where:

ym (p, f) ≡ ψ1[pt(m)(xm)]−ψj(m)[pt(m)(xm)]+

tm+ρm∑
τ=tm+1

J∑
k=1

X∑
xτ=1

βτ−t(m)ψk[pτ (xτ )]

 ωkτ (xτ , 1)κτ (xτ |xm, 1)−

ωkτ (xτ , jm)κτ (xτ |xm, jm)



Zm(p, f, θ) ≡ ũj(m),t(m)(xm, θ)−
tm+ρm∑
τ=tm+1

J∑
k=1

X∑
xτ=1

β
τ−t(m)
kτ ũkτ (xτ , θ)

 ωkτ (xτ , 1)κτ (xτ |xm, 1)−

ωkτ (xτ , jh)κτ (xτ |xm, jm)



only those states that are reached with strictly positive probability in each period t ∈ {1, . . . , T }.
15Both assumptions can be relaxed without losing identification depending on how restrictive are the assumptions

on the functional form of ujt(x).
16Note that ujt(x) can be represented as a (J − 1)XT dimensional vector, so this parameterization amounts to im-

posing at most (J − 1)XT −K restrictions on that vector. For more details on identifying such models in nonstationary

settings see Arcidiacono and Miller (2017).
17A necessary condition for identification is then M > K.
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3. Let W denote an M dimensional positive definite matrix and choose θ to minimize:

[
y
(
p̂, f̂
)
− Z

(
p̂, f̂ , θ

)]′
W
[
y (p̂)− Z

(
p̂, f̂ , θ

)]
(3.4)

It is straightforward to show that θ̂, the solution to (3.4), is
√
N consistent and asymptotically

normal, because (3.1) implies yt (x, p, f) = Zt(x, p, f, θ) at the true parameter values.18 For example,

denoting a consistent estimate of the inverse of the asymptotic covariance matrix of
(
p̂′, f̂ ′

)′
by Ŵ ,

and settingW = Ŵ , the asymptotic covariance matrix of θ̂ is
[
Z
(
p̂, f̂ , θ

)
/∂θ ′ ŴZ

(
p̂, f̂ , θ

)
/∂θ

]−1
.

When W is diagonal matrix, (3.4) reduces to nonlinear least squares in this case. A second special-

ization is to assume ũjt(x, θ) is linear in θ. In this case the solution to (3.4) has a closed form and

when W = Ŵ :

θ̂ =

{[
∂Z
(
p̂, f̂ , θ

)
/∂θ

]′
Ŵ
[
∂Z
(
p̂, f̂ , θ

)
/∂θ

]}−1 [
∂Z
(
p̂, f̂ , θ

)
/∂θ

]′
Ŵy

(
p̂, f̂
)

Finally, the estimator carries over to the games case with minimal notational changes.

4 Finite dependence in individual optimization problems

We now turn to determining when finite dependence holds. As foreshadowed in the Introduction, the

algorithm for determining ρ-period dependence for ρ > 1 iterates between two procedures: checking

the rank of a matrix, and listing the elements of the matrix. The procedure is simpler to establish

one-period dependence as there are no intermediate decisions between the initial choice and the

choice of weights that generate finite dependence. Hence, checking the rank of a particular matrix

is suffi cient for determining one-period dependence.

There is a second reason for investigating one-period dependence before analyzing the more

general case. Because the guess and verify method is essentially the only method researchers have
18Note that a full solution approach, based on solving the underlying dynamic programming problem for each value

of θ ∈ Θ does not exist when T < T unless the econometrician makes strong assumptions about the functional form

utility takes in all periods τ ∈ {T + 1, . . . , T} beyond the end of the data.
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to determine finite dependence, almost all empirical applications of finite dependence have exploited

two special cases of one-period dependence, models with two choices where one of them is either a

terminal or a renewal choice. Terminal choices end the optimization problem or game by preventing

any future decisions; irreversible sterilization against future fertility (Hotz and Miller, 1993), and

firm exit from an industry (Aguirregabiria and Mira, 2007; Pakes, Ostrovsky, and Berry, 2007) are

examples. The defining feature of a renewal choice is that it resets the states that were influenced

by past actions. Turnover and job matching (Miller, 1984), or replacing a bus engine (Rust, 1987),

are illustrative of renewal actions. In such models, following any choice with a terminal or renewal

choice yields the same value of the state variable after two periods. Therefore the key difference

between terminal and renewal actions is that the former end the dynamic sequence, turning the

optimization problem into a stopping problem. Designate the first choice as the terminal or renewal

choice. Following any choice j ∈ {1, . . . , J} with a terminal or renewal choice leads to same value

of state variables after two periods, because for all xt+2:

X∑
xt+1=1

f1,t+1(xt+2|xt+1)fjt(xt+1|xt) =
X∑

xt+1=1

f1,t+1(xt+2|xt+1)f1t(xt+1|xt) (4.1)

Therefore Equation (3.1) is satisfied at t + 2 for all j ∈ {1, . . . , J} and x ∈ X by setting weights

ωk,t+1(xt+1, j) = 1 if k = 1 and zero otherwise.

4.1 One-period dependence in optimization problems with two choices

We begin a systematic search for finite dependence by analyzing the special case of one-period

dependence where there are two choices. Formally, the definition of κt+1(x′|xt, j) given by Equation

(2.5) implies that one-period dependence holds in this specialization at xt if and only if there exists

a weighting rule such that κt+2(x′|xt, 1) = κt+2(x
′|xt, 2) for all x′ ∈ X . Since J = 2 and the weights

sum to one, we can economize on subscripts by setting ωt+1(xt+1, j) ≡ ω2,t+1(xt+1, j), the weight
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on the second action. Thus ωt+1(xt+1, j) must solve:

X∑
xt+1=1


[f2,t+1(x

′|xt+1)− f1,t+1(x′|xt+1)]

× [ωt+1(xt+1, 2)f2t(xt+1|xt)− ωt+1(xt+1, 1)f1t(xt+1|xt)]


=

X∑
xt+1=1

f1,t+1(x
′|xt+1) [f1t(xt+1|xt)− f2t(xt+1|xt)] (4.2)

for all x′ ∈ X . Nominally this is a linear system of X−1 equations in ωt+1(xt+1, 1) and ωt+1(xt+1, 2);

if the X − 1 equations are satisfied for all but one of the state variables, the equation associated

with the remaining state will automatically be satisfied since summing κt+2(x′|xt, j) over x′ equals

one.

The dimension of ωt+1(xt+1, j) is X for each j ∈ {1, 2} . Therefore there are fewer equations

than unknowns. However, if a state is not reached at t+ 1, then changing the weight placed on an

action at that state cannot help in obtaining finite dependence. Therefore we need only consider

states at t+ 1 that can be reached with positive probability from at least one of the initial choices.

The fact that some of the states may not be reached at t + 1 regardless of the initial choice

effectively reduces the number of relevant unknowns in the system. Another feature of the system

reduces the relevant number of equations. The equations associated with states at t+ 2 that cannot

be reached given either initial choice are automatically satisfied: given either initial choice, the

weight on these states at t+ 2 is zero.

We can incorporate these two features into the system of equations given by (4.2) as follows.

Suppose Aj,t+1 states can be reached with positive probability in period t + 1 from state xt with

choice j at time t, and denote their set by Aj,t+1 ⊆ X . Thus x ∈ Aj,t+1 if and only if fjt(x|xt) > 0.

Let At+2 ⊆ X denote the states that can be reached with positive probability in period t+ 2 from

any element in the union A1,t+1
⋃
A2,t+1 with either action at t+ 1. Thus x′ ∈ At+2 if and only if

fk,t+1(x
′|x) > 0 for some x ∈ A1,t+1

⋃
A2,t+1 and k ∈ {1, 2} . Finally, denote by At+2 the number of

states in At+2(xt). It now follows that the matrix-equivalent of Equation (4.2) reduces to a linear
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system of At+2 − 1 equations with A1,t+1 +A2,t+1 unknowns.19

Denote by Kj,t+1(Aj,t+1) the Aj,t+1 dimensional vector of nonzero probabilities in the string:

fjt(1|xt), . . . , fjt(X|xt). It gives the one period transition probabilities to Aj,t+1 from xt when choice

j is made. Let Fk,t+1(Aj,t+1) denote the first At+2−1 columns of the Aj,t+1×At+2 transition matrix

from Aj,t+1 to At+2 when choice k is made in period t+ 1.20 A typical element of Fk,t+1(Aj,t+1) is

fk,t+1(x
′|x) where x ∈ Aj,t+1 and x′ ∈ At+2. Note that some elements of Fk,t+1(Aj,t+1) may be zero.

Finally, let Ωt+1(Aj,t+1, j) denote an Aj,t+1 dimensional vector of weights on each of the attainable

states at t+ 1 for taking the second choice at that time given initial choice j, comprising elements

ωt+1(x, j) for each x ∈ Aj,t+1.

To see how these matrices relate to (4.2), momentarily consider what would happen if all the

states were attainable at both t + 2 and t + 1 given an initial state xt and initial choice j. In this

case:

A1,t+1 = A2,t+1 = At+2 = X , Ωt+1(Aj,t+1, j) = Ωt+1(X , j), Kj,t+1(Aj,t+1) = Kj,t+1(X )

so we can write:

Ωt+1(X , j) ◦ Kj,t+1(X ) =

[
ωt+1(1, j)fjt(1|xt) . . . ωt+1(X, j)fjt(X|xt)

]′
where ◦ refers to element-by-element multiplication. Also Fk,t+1(Aj,t+1) becomes the t+1 transition

matrix given choice k, less one column, say:

Fk,t+1(Aj,t+1) = Fk,t+1(X ) =


fk,t+1(1|1) . . . fk,t+1(X − 1|1)

...
. . . . . .

fk,t+1(1|X) . . . fk,t+1(X − 1|X)


19We can remove one equation from the At+2 system because if the weights associated with each state match for

At+2 − 1 states, they must also match for the remaining state
20We focus on the first At+2 − 1 columns because the last column must be given by one minus the sum of the

previous columns.
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Stacking the equations in (4.2) for all x′ ∈ {1, . . . , X − 1} , the left hand side of the stack is a linear

combination of four expressions, each taking the form:
∑X

xt+1=1
fk,t+1(1|xt+1)ωt+1(xt+1, j)fjt(xt+1|xt)

...∑X
xt+1=1

fk,t+1(X − 1|xt+1)ωt+1(xt+1, j)fjt(xt+1|xt)

 = [Fk,t+1(X )]′ [Ωt+1(X , j) ◦ Kj,t+1(X )]

(4.3)

Note that when k = 2, Equation (4.3) is the weight for each element of X when the initial choice j

is followed by the second choice.

Typically not all states in X are attainable at period t+1 given initial choice j. For all x̃ /∈ Aj,t+1,

that is when fjt(x̃|xt) = 0, we remove the element ωt+1(x̃, j)fjt(x̃|xt) from Ωt+1(X , j) ◦ Kjt(X ) and

the x̃th row in Fk,t+1(X ). This reduces the dimension of Ωt+1(X , j) ◦ Kj,t+1(X ) to Aj,t+1 and the

dimension of Fk,t+1(X ) from X × (X − 1) to Aj,t+1 × (X − 1). Similarly, if x̂ /∈ At+2, in words if x̂

is unattainable given either initial choice regardless of the weighting rules at t+ 1, then we remove

the x̂th column of Fk,t+1(X ), which is a vector of zeros. The transition matrix Fk,t+1(Aj,t+1) is then

a Aj,t+1 × (At+2 − 1) matrix.

Substituting these transformations into (4.2) we now express the system of At+2 − 1 equations

with A1,t+1 + A2,t+1 unknowns in matrix form. Define the At+2 − 1 dimensional vector Kt+1, and

the (At+2 − 1)× (A1,t+1 +A2,t+1) matrix Ht+1, respectively as:

Kt+1 ≡

 F1,t+1(A1,t+1)

−F1,t+1(A2,t+1)


′  K1,t+1(A1,t+1)

K2,t+1(A2,t+1)

 , Ht+1 ≡

 F2,t+1(A2,t+1)− F1,t+1(A2,t+1)

F1,t+1(A1,t+1)− F2,t+1(A1,t+1)


Then one period dependence holds if and only if there exists an (A1,t+1 +A2,t+1) vector of unknowns

denoted by Dt+1 solving:

Kt+1 = Ht+1

 Ωt+1(A2,t+1, 2) ◦ K2,t+1(A2,t+1)

Ωt+1(A1,t+1, 1) ◦ K1,t+1(A1,t+1)

 ≡ Ht+1Dt+1 (4.4)
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Note that if the weights placed on all the states in Aj,t+1 but one are the same across the two paths

then the weights placed on the remaining state must be the same as well. A solution to (4.4) for Dt+1

exists if and only if the rank of Ht+1 equals the rank of the augmented matrix H∗t+1 ≡
[
Kt+1

...Ht+1

]
formed by augmenting Ht+1 with the extra column Kt+1.

Denote the rank of Ht+1 by Rt+1 and the rank of of H∗t+1by R
∗
t+1. Clearly Rt+1 ≤ R∗t+1 ≤ Rt+1+1

and Rt+1 ≤ min {At+2 − 1, A1,t+1 +A2,t+1}. There are two cases to consider:

1. Suppose Rt+1 = A1,t+1 + A2,t+1. If in addition Rt+1 = At+2 − 1, implying Ht+1 is square,

we solve for the weights by inverting Ht+1 and then element-by-element dividing both sides of

(4.4) by the matching K vectors, yielding: Ωt+1(A2,t+1, 2)

Ωt+1(A1,t+1, 1)

 = H−1t+1Kt+1 ◦
/ K2,t+1(A2,t+1)

K1,t+1(A1,t+1)

 (4.5)

where ◦/ refers to element-by-element division. If Rt+1 > At+2 − 1, we successively eliminate

A1,t+1+A2,t+1−At+2+ 1 linearly dependent columns of Ht+1 to form a square matrix of rank

At+2 − 1. We now remove the corresponding elements in Dt+1 in (4.4) so that the reduced

At+2 − 1 dimensional vector conforms with the square matrix, by deleting the elements that

would have been multiplied by the columns removed from Ht+1, effectively giving zero weight

to the second action for the removed elements. Finally an analogous equation to (4.5) is solved

for the weights characterizing finite dependence.21

2. Alternatively Rt+1 < A1,t+1 + A2,t+1. First we successively eliminate A1,t+1 + A2,t+1 − Rt+1

linearly dependent columns of Ht+1 to form an (At+2 − 1) × Rt+1 matrix denoted by Ht+1.

This operation corresponds to reducing the vector length of Dt+1 from A1,t+1 + A2,t+1 to

Rt+1 by effectively setting A1,t+1 + A2,t+1 − Rt+1 weights to zero. Denote the Rt+1 × 1

21The set of weights generated by this procedure depends on which linearly dependent columns are removed. There-

fore the weight vectors satisfying finite dependence are not unique.
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vector of weights not eliminated by Dt+1. We now eliminate At+2 − Rt+1 − 1 rows of Ht+1

to form an Rt+1 dimensional square matrix with rank Rt+1 denoted by Ht+1. Strictly for

notational purposes, so without loss of generality, we reorder the equations defining (4.4) so

that the linearly independent equations are the bottom ones. This allows us to partition

H
′
t+1 ≡

[
H
′
t+1

...H′t+1

]
and K′t+1 ≡

[
K′t+1

...K′t+1
]
, where Ht+1 is (At+2 − 1−Rt+1)×Rt+1, while

K′t+1 is (At+2 − 1−Rt+1)×1 and Kt+1 is Rt+1×1. Inverting Ht+1 we obtain Dt+1 = H
−1
t+1Kt+1.

Thus a solution to (4.4) attains in this knife edged case if and only if Dt+1 solves At+2−Rt+1−1

additional equations Kt+1 = Ht+1H
−1
t+1Kt+1.

To illustrate the algorithm in the renewal and terminal state models mentioned above, let X ≡

{1, 2, . . . , X} , and suppose the first choice denotes the terminal or renewal choice which returns the

state variable x to the value one, while the second increases x by one unit for all x < X and returns

X when x = X.22 Because the transitions are deterministic A1,t+1 = A2,t+1 = 1, with A1,t+1 = {1}

and A2,t+1 = {xt + 1} . Also At+2 = 3, with At+2 = {1, 2, xt + 2}. It now follows that in this

example:

F1,t+1(A1,t+1) = F1,t+1(A2,t+1) =

[
1 0

]
, F2,t+1(A1,t+1) =

[
0 1

]
, F2,t+1(A2,t+1) =

[
0 0

]

Ht+1 =

 −1 1

0 −1

 or H−1t+1 =

 −1 −1

0 −1


Substituting these expressions into (4.5), and noting that Ωt+1(Aj,t+1, j) = ωt+1(x, j) because

K1t(A1,t+1) = K2t(A1,t+1) = 1, demonstrates that zero weight is placed on the non-renewal/non-

terminal action to achieve one-period dependence: ωt+1(x, 2)

ωt+1(x, 1)

 =

 −1 −1

0 −1


 1 −1

0 0


 1

1

 ◦
/ 1

1

 =

 0

0


22More formally, f1,t+1(1|xt) = 1, for all t and xt, while for all t, f2,t+1(xt+1|xt) = 1 if xt < X and f2,t+1(X|X) = 1.
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The limitations of the guess and verify approach become evident when such a widely used class

of models in empirical analysis is revealed to have such a simple structure. The class of models

exhibiting even one-period finite dependence is much larger than terminal and renewal models, and

the method developed here provides a systematic way of discovering them.

4.2 Solving nonlinear systems to attain ρ-period dependence

Analyzing the existence of finite dependence for ρ > 1 introduces nonlinearity into the system. For

convenience we relabel the two initial choices i and j in Equation (3.1) as 1 and 2, and the initial

state as xt. Analogous to the one-period finite dependence case, for any τ ∈ {t+ 1, . . . , t+ ρ− 1}

we say xτ ∈ {1, . . . , X} is attainable by a sequence of decision weights from initial choice j ∈ {1, 2}

if the weight on xτ is nonzero.23 Let Ajτ ∈ {1, . . . , X} denote the number of attainable states, and

Ajτ ⊆ X the set of attainable states for the sequence beginning with choice j.24 Define Kjτ (Ajτ ) as

an Ajτ vector containing the weights for transitioning to each of the Ajτ attainable states given the

choice sequence beginning with j and state xt. Similarly let Aτ+1 ∈ {1, . . . , X} denote the number

of states that are attainable by at least one of the sequences beginning either with choice 1 or 2,

and denote by Aτ+1 ⊆ X the corresponding set. Given an initial state and choice, we denote by

Fkτ (Ajτ ) the first Aτ+1 − 1 columns of the Ajτ × Aτ+1 transition matrix from Ajτ to Aτ+1 when

k is chosen at period τ , with F̃kτ (Ajτ ) containing all the columns of the transition matrix. The

matrix comprises elements fkτ (x′|x) for each x ∈ Ajτ and x′ ∈ Aτ+1.

TheAτ+1 system of equations exhibits ρ-period dependence, that is κτ+1(xτ+1|xt, 1) = κτ+1(xτ+1|xt, 2)

with τ = t+ ρ, if and only if there exist vectors Ωkτ (Ajτ , 1) and Ωkτ (Ajτ , k) for each k ∈ {2, . . . , J}
23For example, suppose X ≡ {1, 2, 3} and xt = 3. Also assume f1,t+1 (1 |3) = 3/4, and f1,t+1 (2 |3) = 1/4. Then the

the first two states are attainable in t+ 1 from taking the first choice but the third is not.
24 In our simple example A1,t+1 = 2 and A1,t+1 = {1, 2}.
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solving:

Kτ+1 ≡ F1τ (A1τ )K1τ (A1τ )− F1τ (A2τ )K2τ (A2τ ) = HτDτ (4.6)

where the (Aτ+1 − 1) × (J − 1) [A1τ +A2τ ] matrix Hτ , and the (J − 1) [A1τ +A2τ ] vector Dτ , are

respectively defined by:25

Hτ ≡



F2τ (A2τ )− F1τ (A2τ )

...

FJτ (A2τ )− F1τ (A2τ )

F1τ (A1τ )− F2τ (A1τ )

...

F1τ (A1τ )− FJτ (A1τ )



′

, Dτ ≡



Ω2τ (A2τ , 2) ◦ K2τ (A2τ )

...

ΩJτ (A2τ , 2) ◦ K2τ (A2τ )

Ω2τ (A1τ , 1) ◦ K1τ (A1τ )

...

ΩJτ (A1τ , 1) ◦ K1τ (A1τ )



. (4.7)

Appealing to Hadley (1961, pages 168 -169) yields necessary and suffi cient conditions for the exis-

tence of a solution to this linear system, which we state as a theorem.

Theorem 2 Define the (Aτ+1 − 1) × {(J − 1) [A1τ +A2τ ] + 1} matrix H∗τ ≡
[

Hτ
...Kt+1

]
, obtained

by adding an extra column Kt+1 to Hτ . Finite dependence from xt with respect to choices i and j is

achieved in ρ = τ − t periods if and only if there exist weights from t+ 1 to τ − 1 such that the rank

of Hτ equals the rank of H∗τ .

Theorem 2 shows that establishing one-period dependence when there are more than two choices

is a straightforward extension of the case in which J = 2. However nonlinearity in the weights enter

(4.6) when ρ > 1 because Kjτ (Ajτ ) depends on Ωks(A2s, j), the weight on action k ∈ {2, . . . , J} for

every period s < τ given initial choice j ∈ {1, 2}. Denote K̃jτ (Aτ ) as the Aτ vector containing the

weights for transitioning to each of the Aτ states—that is the attainable states from either path—given

25One of the equations is redundant because if all other states have the same weight assigned to them across the two

paths then the last one must be lined up as well, implying that if the rank of Hτ is Aτ+1 − 1 then finite dependence

holds in ρ periods.
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the initial choice of j. Kjτ (Ajτ ) is then the non-zero entries of K̃jτ (Aτ ). The following recursive

structure is then evident:

K̃jτ (Aτ ) =


F̃2,τ−1(Aj,τ−1)

...

F̃J,τ−1(Aj,τ−1)



′ 
Ω2,τ−1(Aj,τ−1, j) ◦ Kj,τ−1(Aj,τ−1)

...

ΩJ,τ−1(Aj,τ−1, j) ◦ Kj,τ−1(Aj,τ−1)

 (4.8)

Taking the non-zero elements out of K̃jτ (Aτ ) to form Kjτ (Ajτ ) and substituting in for Kjτ (Ajτ )

using (4.8) in (5.8) and (4.6) demonstrates that cross products of elements in Ω2,τ−1(Aj,τ−1, j) and

Ω2τ (A2τ , 2) enter (4.8). Formally, the system is bilinear, not linear.

To see that the system is bilinear, suppose J = 2 and write ωτ (xτ , j) ≡ ω2τ (xτ , j): expanding

(4.6) term by term proves that two-period dependence exists for some given xt if and only if:

X∑
xt+2=1

X∑
xt+1=1

f1,t+2(xt+3|xt+2)f1,t+1(xt+2|xt+1) [f1t(xt+1|xt)− f2t(xt+1|xt)] (4.9)

=

X∑
xt+2=1

X∑
xt+1=1

[f2,t+2(xt+3|xt+2)− f1,t+2(xt+3|xt+2)] [f2,t+1(xt+2|xt+1)− f1,t+1(xt+2|xt+1)]

× [ωt+2 (xt+2, 2)ωt+1 (xt+1, 2) f2t(xt+1|xt)− ωt+2 (xt+2, 1)ωt+1 (xt+1, 1) f1t(xt+1|xt)]

+
X∑

xt+2=1

X∑
xt+1=1

[f2,t+2(xt+3|xt+2)− f1,t+2(xt+3|xt+2)] f1,t+1(xt+2|xt+1)ωt+2 (xt+1, 1) f1t(xt+1|xt)

× [ωt+2 (xt+1, 2) f2t(xt+1|xt)− ωt+2 (xt+1, 1) f1t(xt+1|xt)]

+

X∑
xt+2=1

X∑
xt+1=1

f1,t+2(xt+3|xt+2) [f2,t+1(xt+2|xt+1)− f1,t+1(xt+2|xt+1)]

× [ωt+1 (xt+1, 2) f2t(xt+1|xt)− ωt+1 (xt+1, 1) f1t(xt+1|xt)]

for all xt+3 ∈ X . Since products of weights appear in (4.9), bilinear solution techniques are required

to solve this problem. More generally cross products to the power of ρ enter into the equation

system defining ρ-period dependence.

We exploit the special structure of this nonlinear problem by dividing it into two parts, each

having a finite number of operations. The second part is the linear inversion problem to which

Theorem 2 applies. The first part delineates the subsets of nodes in X that can be reached by
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period t + ρ with nonzero weight by a path from each of the two initial choices being considered.

Having established existence, we can obtain weights satisfying (3.1) as a by-product.

There are an infinite number of weighting schemes, each of which might conceivably establish

finite dependence, a fact that might explain why researchers have opted for guess and verify methods

when designing models exhibiting this computationally convenient property. Our next theorem,

however, proved by construction in the Appendix, shows that an exhaustive search for a set of

weights that establish finite dependence can be achieved in a finite number of steps. The key to the

proof is that although the definition of Hτ does indeed depend on the weights, many sets of weights

produce the same A1τ and A2τ (and hence the same Aτ+1). Since the inversion of Hτ hinges on the

attainable states, and the sets of all possible attainable states is finite, a finite number of operations

is needed to establish whether a finite dependence path exists.

Theorem 3 For each τ ∈ {t+ 1, . . . , t+ ρ} the rank of Hτ and H∗τ can be determined in a finite

number of operations.

Theorem 3 applies to any dynamic discrete choice problem described in Section 2. However

the number of calculations required to determine ρ-period dependence is specific to the number of

choices, J , in periods between t + 1 and t + ρ, the number of states in each of those periods, and

the transition matrices. As ρ increases, so too will the sets of possible attainable states, increasing

computational complexity in finding the finite dependence path. Increasing the number of choices,

J , also will increase the sets of possible attainable states. At the same time, increasing J gives

more control to line up the states. When examining finite dependence for a pair of initial choices,

the minimum ρ must be weakly decreasing as more choices are available as one could always set

the weight on these additional choices to zero. Finally, the complexity of the state space does not

necessarily require more calculations to determine finite dependence for two reasons. First, it is only

the states that can be reached in ρ periods from the current state that are relevant for determining
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finite dependence. Second, as the sets of attainable states increase, the researcher also has more

options for finding paths that exhibit finite dependence.

5 Finite dependence in games

Applications of finite dependence in the empirical literature on games are scarce. One exception are

models with exit decisions, which have the terminal state property. Although finite dependence is

usually not exploited in these models (but see Beauchamp, 2015 and Mazur, 2017), Collard-Wexler

(2013), Dunne et al. (2013), and Ryan (2012) all exhibit the finite dependence property that could

be used to simplify estimation.

In principle, the methods developed above are directly applicable to dynamic games off short

panels, that is, after defining fjt (xt+1 |xt ) with (2.12). Let F
(n)
kτ (Ajτ ) denote the first Aτ−1 columns

of the transition matrix from Ajτ to Aτ+1 given choice k by player n at time τ when everyone else

plays their equilibrium strategy and let F̃
(n)
kτ (Ajτ ) denote the transition matrix containing all the

columns. These are defined analogously to Fkτ (Ajτ ) and F̃kτ (Ajτ ) in the individual optimization

case. Also let Ω
(n)
k,τ (A2τ , j) denote a vector of weights on choice k for each of the Ajτ states in Ajτ .

Finally let K
(n)
jτ (Ajτ ) denote the τ -period transition probabilities to Ajτ when n initially chooses j

and follows the weights when everybody else plays their equilibrium strategies. Analogous to (4.6),

ρ period dependence holds for the first two actions if:
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F
(n)
2τ (A2τ )− F

(n)
1τ (A2τ )

...

F
(n)
Jτ (A2τ )− F

(n)
1τ (A2τ )

F
(n)
1τ (A1τ )− F

(n)
2τ (A1τ )

...

F
(n)
1τ (A1τ )− F

(n)
Jτ (A1τ )



′ 

Ω
(n)
2,τ (A2τ , 2) ◦ K

(n)
2τ (A2τ )

...

Ω
(n)
Jτ (A2τ , 2) ◦ K

(n)
2τ (A2τ )

Ω
(n)
2,τ (A1τ , 1) ◦ K

(n)
1τ (A1τ )

...

Ω
(n)
Jτ (A1τ , 1) ◦ K

(n)
1τ (A1τ )



=

 F
(n)
1τ (A1τ )

−F
(n)
1τ (A2τ )


′  K

(n)
1τ (A1τ )

K
(n)
2τ (A2τ )



(5.1)

In practice, establishing finite dependence is generally more onerous in games than in individual

optimization problems. Finite dependence in a game is player specific; in principle finite dependence

might hold for some players but not for others. Furthermore, the transition of the state variables

for any one player taking a particular action depends on the equilibrium decisions of all the other

players. Thus, finite dependence in games is ultimately a property that derives not just from the

game primitives, but also equilibrium play. Consequently games do not typically exhibit one period

finite dependence: if two different choices of n at time t affect the other players’equilibrium choices

in t+ 1 (or later), it is generally not feasible to line up all the states xt+2 ≡
(
x
(0)
t+2, x

(1)
t+2, . . . , x

(N)
t+2

)
across both paths emanating from the respective initial choices of n within two periods.

A key feature of the incomplete information games settings we consider is that at t, when the

players other than n collectively choose d(∼n)t , they condition on the lagged choice of n (that is,

how d
(n)
t−1 affects x

(n)
t ), but not on d

(n)
t , the current choice of n. Our approach to determining

finite dependence in games exploits this feature in the following way. First we obtain necessary and

suffi cient conditions for player n to take a sequence of weighted actions inducing, say after ρ − 1

periods, the other players to take actions at t+ ρ that match up the weight distributions of x(∼n)t+ρ+1,
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conditional on x(∼n)t , meaning:26

κt+ρ+1(x
(∼n)
t+ρ+1|xt, i) = κt+ρ+1(x

(∼n)
t+ρ+1|xt, j) (5.2)

Clearly (5.2) is a necessary condition for (3.3) to hold. Second, with one last choice of weight pairs

at t+ρ, player n lines up the joint distribution of the states of all the players, setting ω(n)k,t+ρ (xt+ρ, i)

and ω(n)k,t+ρ (xt+ρ, j), and incorporating the restrictions that give (5.2), so that (3.3) simultaneaously

holds.

5.1 Finite dependence for state components controlled by other players

From (3.1), finite dependence at τ requires:

X∑
xτ=1

J∑
k=1

f (∼n)τ

(
x
(∼n)
τ+1 |xτ

)
f
(n)
kτ

(
x
(n)
τ+1

∣∣∣x(n)τ

)
ω
(n)
kτ (xτ , j)κ

(n)
τ (xτ |xt, j) (5.3)

=

X∑
xτ=1

J∑
k=1

f (∼n)τ

(
x
(∼n)
τ+1 |xτ

)
f
(n)
kτ

(
x
(n)
τ+1

∣∣∣x(n)τ

)
ω
(n)
kτ (xτ , i)κ

(n)
τ (xτ |xt, i)

Necessary and suffi cient conditions for (5.3) to hold are found in the same way as finite dependence is

determined for individual optimization problems. They are based on the intuition that from periods

t through τ − 1 player n takes pairs of weighted actions starting with i and j that induce the other

other players to align the probability distributions for x(∼n)τ+1 through their equilibrium choices.

A necessary condition for τ dependence comes from summing (5.3) over the x(n)τ+1 outcomes.

Noting that:

X(n)∑
x
(n)
τ+1=1

X∑
xτ=1

f (∼n)τ

(
x
(∼n)
τ+1 |xτ

)[ J∑
k=1

ω
(n)
kτ (xτ , j) f

(n)
kτ

(
x
(n)
τ+1

∣∣∣x(n)τ

)]
κ(n)τ (xτ |xt, j)

=

X∑
xτ=1

f (∼n)τ

(
x
(∼n)
τ+1 |xτ

)[ J∑
k=1

ω
(n)
kτ (xτ , j)

] X(n)∑
x(n)=1

f
(n)
kτ

(
x
(n)
τ+1

∣∣∣x(n)τ

)κ(n)τ (xτ |xt, j)

=

X∑
xτ=1

f (∼n)τ

(
x
(∼n)
τ+1 |xτ

)
κ(n)τ (xτ |xt, j) (5.4)

26This inducement is based on the other players following their equilibrium strategies.
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we simplify the sum (5.3) over x(n)τ+1 using (5.4) to obtain:

X∑
xτ=1

f (∼n)τ

(
x
(∼n)
τ+1 |xτ

) [
κ(n)τ (xτ |xt, j)− κ(n)τ (xτ |xt, i)

]
= 0 (5.5)

This proves that whether (5.5) holds or not depends on the weights assigned to n in periods t + 1

though τ − 1, but not on the period τ weights.

To derive a rank condition under which (5.5) holds, it is notationally convenient to focus on

the first two choices as before. Suppose (5.5) holds at τ + 1. Then there must be decision weights

at τ − 1 with the following property: the states that result in τ lead the other players to make

(equilibrium) decisions at τ so that each of their own states have the same weight across the two

paths at τ + 1. Formally, let Aj,τ−1 ⊆ X denote the set of attainable states at τ − 1 for the weight

sequence beginning with n choosing j ∈ {1, 2}. Let Aτ ⊆ X denote the set of attainable states at

τ for the weight sequence beginning with n either choosing 1 or 2. Let A(∼n)τ+1 ⊆ X (∼n) denote the

attainable states of the other players at τ + 1 given the two weight sequences. Let A(∼n)τ+1 denote the

number of elements in A(∼n)τ+1 . Let P
(∼n)
τ (Aτ ) denote the transpose of the first A(∼n)τ+1 − 1 columns of

the transition matrix from Aτ to the set of competitor states A(∼n)τ+1 . Finally define H
(∼n)
τ and K(∼n)τ+1

as:

H(∼n)τ ≡ P(∼n)τ (Aτ )



F̃
(n)
2,τ−1 (A2,τ−1)− F̃

(n)
1,τ−1 (A2,τ−1)

...

F̃
(n)
J,τ−1 (A2,τ−1)− F̃

(n)
1τ−1 (A2,τ−1)

F̃
(n)
1,τ−1 (A1,τ−1)− F̃

(n)
2,τ−1 (A1,τ−1)

...

F̃
(n)
1,τ−1 (A1,τ−1)− F̃

(n)
J,τ−1 (A1,τ−1)



′

(5.6)

K(∼n)τ+1 ≡ P(∼n)τ (Aτ )
[
F̃
(∼n)
1,τ−1 (A1,τ−1) K

(n)
1,τ−1 (A1,τ−1)− F̃

(∼n)
1,τ−1 (A2,τ−1) K

(n)
2,τ−1 (A2,τ−1)

]
(5.7)

Finite dependence requires weighting rules from t+ 1 to τ − 1 so that when the other players take

equilibrium actions at τ on the two paths the states of the other players are lined up at τ + 1.
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The effects of these equilibrium actions on the state operate through P
(∼n)
τ (Aτ ) in (5.6). Thus

the similarity of H
(∼n)
τ and Hτ is evident from comparing (5.6) with (5.8); likewise the similarities

between K(∼n)τ+1 and Kτ+1 are obvious from (4.6) and (5.7). Following the same logic as Theorem 2

we obtain the following result.

Theorem 4 Given an initial period and state (t, xt), and initial choices 1 and 2, (5.5) holds for all

x(∼n) ∈ X(∼n) if and only if there exists a pair of weight sequences defining H
(∼n)
τ and K(∼n)τ+1 such

that H
(∼n)
τ and

[
H
(∼n)
τ

...K(∼n)τ+1

]
have the same rank.

5.2 Aligning the joint distributions

For one specialization, checking the conditions of Theorem 4 suffi ces to determine whether (3.3) holds

or not. Suppose that for each x ∈ Aτ , there is an action d(n)(x) yielding some fixed x(n) ∈ X(n)

for sure.27 Then satisfying the conditions of Theorem 4 imply the conditions of Theorem 2 are met

too. In this specialization the joint distribution across the two paths is aligned in τ + 1 because

(i) κ(∼n)τ (x
(∼n)
τ+1 |xt, j), the marginal weight distribution of the other players’states is aligned, and

(ii) the state of player n does not vary across the states of the other players. Thus verifying finite

dependence reduces to finding conditions that satisfy (5.2) in this case. Renewal and terminal

actions provide examples because the renewal or terminal state, x(n) ∈ X (n), can be reached from

any x(n) ∈ X (n) in one period with certainty. Section 6.2 illustrates our step-by-step procedure for

establishing finite dependence in a coordination game.

A second special case occurs when the rank of H
(∼n)
τ is A(∼n)τ+1 −1 and the set of weights is unique.

We first derive the unique set of weights ω(n)kτ (xτ , 1) and ω(n)kτ (x′τ , 2) for τ ∈ in this linear subproblem;

then following the approach in the preceding subsection, we show below, as a special case of a more

general result, that whether a set of weights exists establishing τ - period finite dependence or not,

27More generally, there exists one action d(n)(x), or some weighted mixture of actions, that when applied to either

sequence, yields the same weight distribution over x(n) ∈ X(n) for all x ∈ A(n)τ .
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reduces to solving a second linear problem in ω(n)kτ (xτ , 1) and ω(n)kτ (x′τ , 2) for k ∈ {2, . . . , J} and

xτ ∈ A1,τ+1 and x′τ ∈ A2,τ+1, similar to those analyzed in the single agent problems.

If the set of weights equalizing the marginal distributions for x(∼n)t+ρ+1 ∈ X(∼n) is not unique, then

an uncountable number do, since any convex combination of say two sets of weights also equalize

the marginal distributions. Since the weights determining the solution to the states of the other

players also help determine the conditional distribution for x(n)t+ρ+1, the selection of a solution for the

other players may impact whether the conditional distributions for x(n)t+ρ+1 can be aligned or not.

To treat both cases formally, let Ω
(n)
k,τ−1 (A2,τ−1, j) denote an Aj,τ−1 dimensional row vector of

unknown weights assigning a real number to choice k ∈ {2, . . . , J} for each state in Aj,τ−1 at τ − 1,

given strictly positive weights K
(n)
2,τ−1 (A2,τ−1). Denote 1J−1 as a (J-1) column vector of ones. Define

Ω
(n)
τ−1 and K

(n)
τ−1 as:

Ω
(n)
τ−1 ≡



Ω
(n)
2,τ−1 (A2,τ−1, j)

...

Ω
(n)
J,τ−1 (A2,τ−1, j)

Ω
(n)
2,τ−1 (A1,τ−1, j)

...

Ω
(n)
J,τ−1 (A1,τ−1, j)



′

, K
(n)
τ−1 ≡

 1J−1 ⊗ K
(n)
2,τ−1 (A2,τ−1)

1J−1 ⊗ K
(n)
1,τ−1 (A1,τ−1)

 . (5.8)

where ⊗ is the Kronecker product.

If there exists weights Ω
(n)
τ−1 solving:

K(∼n)τ+1 = H(∼n)τ

(
Ω
(n)
τ−1 ◦ K

(n)
τ−1

)
(5.9)

then a necessary condition for finite dependence embodied in (5.5), relating the weights of all the

players aside from n, is satisfied. In the special case where

(A1,τ−1 +A2,τ−1) (J − 1) = A
(∼n)
τ+1 − 1 and H

(∼n)
τ = H

(∼n)
τ inverts, from (5.9):

Ω
(n)
τ−1 =

[
H(∼n)τ

]−1
K(∼n)τ+1 ◦

/
K
(n)
τ−1 (5.10)
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More generally, let D
(n)
τ−1 denote an A

(∼n)
τ+1 − 1 dimensional vector given by Ω

(n)
τ−1 ◦ K

(n)
τ−1 and D

(n)
τ−1 a

vector of dimension (A1,τ−1 +A2,τ−1) (J − 1) −
(
A
(∼n)
τ+1 − 1

)
given by Ω

(n)
τ−1 ◦ K

(n)
τ−1. Also partition

H
(∼n)
τ at the

(
A
(∼n)
τ+1 − 1

)th
column, writing H

(∼n)
τ =

[
H
(∼n)
τ H

(∼n)
τ

]
, where H

(∼n)
τ conforms to

D
(n)
τ−1, and H

(∼n)
τ to D

(n)
τ−1. Then (5.9) can be expressed as:

K(∼n)τ+1 = H
(∼n)
τ D

(n)
τ−1 + H(∼n)τ D

(n)
τ−1 (5.11)

From (5.11) it is evident that whether a solution to D
(n)
τ−1 exists hinges on H

(∼n)
τ , but not on the

values of D
(n)
τ−1. For example a suffi cient condition for a solution to the first step is that the rank

of H
(∼n)
τ equals A(∼n)τ .28 Moreover from (5.11) when the rank condition for H

(∼n)
τ is satisfied, D

(n)
τ−1

varies with D
(n)
τ−1; specifically:

D
(n)
τ−1 =

[
H
(∼n)
τ

]−1 (
K(∼n)τ+1 − H(∼n)τ D

(n)
τ−1

)
(5.12)

To establish finite dependence at period τ + 1 for the joint system, it suffi ces to show that there

exists some D
(n)
τ−1 and a set of weights on the choices made by n in period τ solving the joint system

when we incorporate the effects of D
(n)
τ−1 operating through K

(n)
j,τ−1. Modify (4.8) by superscripting

with n the F̃
(n)
j,τ−1(Aj,τ−1) transitions, as well as the weight vectors K̃jτ (Aτ ) and Kj,τ−1(Aj,τ−1), to

indicate the player for whom finite dependence is being checked. Also replace the vector formed

from the elements Ωk,τ−1(Aj,τ−1, j) ◦ Kj,τ−1(Aj,τ−1) with D
(n)
τ−1. Then (4.8) becomes:

K̃
(n)
jτ (Ajτ ) =


F̃
(n)
2,τ−1(Aj,τ−1)

...

F̃
(n)
J,τ−1(Aj,τ−1)



′

D
(n)
τ−1 (5.13)

Form the vector D̂
(n)
τ−1 by replacing the elements in D

(n)
τ−1 with the linear mappings defined in (5.12),

and substitute for K
(n)
jτ (Ajτ ) using the non-zero elements of (5.13) into (5.1). These operations

yield a bilinear system of equations to be solved in Ω
(n)
τ and D

(n)
τ−1. We then check for a solution

28Necessary and suffi cient conditions are found in the same way as the single agent optimization case.

32



by minimizing a quadratic norm of the equation system. Finite dependence is achieved when the

quadratic norm attains a value of zero for some Ω
(n)
τ and D

(n)
τ−1. The production quality game

considered in Section 6.3 illustrates this stepwise procedure.

6 Applications

This section provides three illustrations, new to the literature, that apply our finite dependence

representation. The first is a job search model. Establishing finite dependence in a search model

would seem diffi cult given that there is no guarantee one will receive another job offer in the future

if an offer is turned down today and hence lining up, for example, future experience levels would

seem diffi cult. We show that our representation applies directly to this case, and in the process

highlight the practical importance of using negative weights. The second is a coordination game

where we apply the results of Theorem 4 to show that we can achieve two-period finite dependence in

a strategic setting when the conditions for the specialization discussed in the previous section hold.

Third, we analyze a product quality game that does not satisfy the conditions for the specialization

and defies a guess and verify approach.

6.1 A search model

The following simple search model shows why negative weights are useful in establishing finite de-

pendence, and uses the algorithm to exhibit an even less intuitive path to achieve finite dependence.

Each period t ∈ {1, . . . , T} an individual may stay home by setting d1t = 1, or apply for temporary

employment setting d2t = 1. Job applicants are successful with probability λt, and the value of the

position depends on the experience of the individual denoted by x ∈ {1, . . . , X}. If the individual

works his experience increases by one unit, and remains at the current level otherwise. The pref-

erence primitives are given by the current utility from staying home, denoted by u1 (xt) , and the
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utility from working, u2 (xt) . Thus the dynamics of the model arise only from accumulating job

experience, while nonstationarities arise from time subscripted offer arrival weights.

Constructing a finite dependence path The guess and verify approach is useful for verifying

this model satisfies one-period finite dependence: we simply construct two paths that generate the

same probability distribution of xt+2 conditional on xt. Denote ωτ (xt, j) as the weight placed on

action 2 at time τ given initial choice j. Then set:

ωt+1(xt, 2) = ωt+1(xt + 1, 2) = 0, ωt+1(xt, 1) = λt/λt+1

The distribution of xt+2 from following either path is the same: xt+2 = xt with probability

f2t(xt|xt) = 1− λt, and xt+2 = xt + 1 with probability f2t(xt + 1|xt) = λt.

Applying the finite dependence path, the difference in conditional value functions can then be

expressed as:

v2t(xt)− v1t(xt) = λt [u2(xt)− u1(xt) + βu1(xt + 1)− βu2(xt)] (6.1)

+β

[
λtψ1 [pt+1(xt + 1)] + λt

(
1

λt+1
− 1

)
ψ1 [pt+1(xt)]−

λt+1
λt

ψ2 [pt+1(xt)]

]

Note that if λt > λt+1 then ωt+1(xt, 1) > 1, demonstrating that negative weights and weights

exceeding one can be used to establish finite dependence.

Applying Theorem 2 While Section 6.1 provides a constructive example of forming a finite

dependence path, it is also useful to show how the results from Section 3.2 apply. We now use the

results from Section 3.2 to derive another finite dependence path.

To do so, we first define relevant terms in Equation (4.4). A1,t+1 and A2,t+1 are given by {xt} and

{xt, xt + 1}. If the individual stays home the state remains unchanged, and if the individual applies

for temporary employment he may be employed, or not. Thus K1,t+1(A1,t+1) and K2,t+1(A2,t+1) are
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[1] and [ 1− λ λ ]′. The relevant transition matrices are given by:

F1,t+1(A1,t+1) =

[
1 0

]
, F1,t+1(A2,t+1) =

 1 0

0 1



F2,t+1(A1,t+1) =

[
1− λt+1 λt+1

]
, F2,t+1(A2,t+1) =

 1− λt+1 λt+1

0 1− λt+1


The last column, giving the transitions to state xt + 2, is omitted because if the probabilities are

aligned in all but one attainable state, then the remaining probability must match up as well.

The system of equations in (4.4) has two equations (one for the probability of state xt; another

for the probability of state xt+1), plus three choice variables. The three choice variables are the

weights on the probability of choosing work conditional on either (i) work in the first period but

no job (xt+1 = xt), (ii) work in the first period and obtaining a job (xt+1 = xt + 1), and (iii) not

working in the first period (xt+1 = xt). We then have the following expression for the first term on

the left-hand-side of (4.4): F2t+1(A2,t+1)− F1t+1(A2,t+1)

F1t+1(A1,t+1)− F2t+1(A1,t+1)


′

=

 −λt+1 0 λt+1

λt+1 −λt+1 −λt+1

 (6.2)

To reduce the system to two equations and two unknowns, we set the weight on looking for a job

to zero conditional on being in state xt at t + 1 and having chosen not to look for work at t. The

last column of (6.2) can then be eliminated. Noting that: −λt+1 0

λt+1 −λt+1


−1

=

 −1/λt+1 0

−1/λt+1 −1/λt+1


the solution to the system, given ωt+1(xt, 1) = 0, is then: ωt+1(xt, 2)

ωt+1(xt + 1, 2)

 =

 −1/λt+1 0

−1/λt+1 −1/λt+1


 λt

−λt

 ◦
/ 1− λt

λt

 =

 −λt
(1−λt)λt+1

0
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Finite dependence can then be achieved by setting:

ωt+1(xt, 1) = ωt+1(xt + 1, 2) = 0, ωt+1(xt, 2) = −λt [(1− λt)λt+1]−1 .

Here the path that begins with not looking for work involves not looking for work in period 2 either.

By placing negative weight on looking for work conditional on (i) looking for work in period t and

(ii) not finding work at period t, we can cancel out the gains from successful search in period t.

Hence we arrive at the state xt along both choice paths.

6.2 A coordination game

To illustrate why finite dependence holds for a much broader class of games than those with terminal

choices, we first consider the following simple two player coordination game. Each player n ∈ {1, 2}

chooses whether or not to compete in a market at time t, competing by setting d(n)t = 2, not

competing by setting d(n)t = 1. Let the superscript ∼ n refer to the rival player of n; we define the

state space xt ≡
(
x
(n)
t , x

(∼n)
t

)
from the nth player’s perspective, and assume x(n)t = d

(n)
t−1. Therefore

the state variable transition matrix is deterministic and time invariant. Let p(n)2t (xt) denote the

equilibrium probability of n competing at date t when the state variable is xt, and analogously denote

the probability of noncompeting by p(n)1t (xt) = 1− p(n)2t (xt). To prevent this game from degenerating

to a single agent optimization problem we assume p(n)2,t+1(2, 1) 6= p
(n)
2,t+1(2, 2); in equilibrium the rival’s

actions affect the player’s choice through the state variables. Conditional on the lagged participation

of the other player, we also assume an individual’s choices depend on his own lagged participation,

implying p(n)2,t+1(1, 2) 6= p
(n)
2,t+1(2, 2). Both assumptions can be tested with data generated from an

equilibrium for the game. Summarizing, the dynamics of the game arise purely from the effect of

decisions made by both players in the previous period on current payoffs. Nonstationarity arises

from the flow payoffs that may depend on time and hence the corresponding choice probabilities.

We prove two-period dependence by construction. Let ω(n)t+2(x
(n)
t+2, j) denote the weight for action
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2 given x(n)t+2 ∈ {1, 2} and initial action j ∈ {1, 2} taken at time t, and set ω
(n)
t+2(x

(n)
t+2, j) = 1, implying

x
(n)
t+3 = 1 for both initial actions j ∈ {1, 2}. This ensures x(n)t+3 is the same for both paths by setting

the t+ 2 choice weight to be the same across both paths.29 All that remains is to find two weighting

sequences for n, one for each initial choice j ∈ {1, 2} at t, such that when the other player makes

his equilibrium choice at t + 2, the distribution of d(∼n)t+2 , and hence the distribution of x
(∼n)
t+3 , is

the same for both sequences. In this model the rank condition for H
(∼n)
τ is easy to check because

x
(∼n)
t+3 ≡ d

(∼n)
t+2 only takes two values. Theorem 5 establishes two period dependence by specifying a

ω
(n)
t+1(x

(n)
t+1, j), that in conjunction with setting ω

(n)
t+2(x

(n)
t+2, j) = 1, achieves finite dependence.

Theorem 5 The coordination game exhibits two period dependence for all xt.

6.3 A product quality game

We now consider a game where the solution cannot readily be solved by hand. In the process, we

outline an algorithm that, while not covering all cases, makes it easier to find finite dependence

paths in games settings.

Setup The game we consider has two players n ∈ {1, 2}. In each period t ∈ {1, . . . , T} the players

simultaneously decide whether to increase their product quality from x
(n)
t to x(n)t + 1 subject to

a maximal product quality of x. With some probability π nature reduces the product quality of

both players to a minimum denoted by x. The expected profit for player n for maintaining product

quality (choosing j = 1), and increasing product quality (choosing j = 2), net of an independent

shock, are given by:

u
(n)
1 (xt) = ln

[
x
(n)
t

]{
α0 + α1Et

[
γ(∼n)(xt)

]}
u
(n)
2 (xt) = ln

[
min

{
x
(n)
t + 1, x

}]{
α0 + α1Et

[
γ(∼n)(xt)

]}
+ α2

29Recall from our general discussion of finite dependence in games that the choice of n at t+ 2 has no effect on the

other player’s choice at that time because it is not one of his state variables at t+ 2.
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respectively, where:

Et

[
γ(∼n)(xt)

]
= p

(∼n)
1t (xt) ln

[
x
(∼n)
t

]
+ p

(∼n)
2t (xt) ln

[
min

{
x
(∼n)
t + 1, x

}]
is the expected logged product quality of the rival, α0 gives the baseline returns to product quality,

α1 measures how profit is diminished by rivalry, and α2 is the cost of increasing product quality.

We assume that the payoff shock associated with each action is distributed Type 1 extreme value,

and induce nonstationarity into the game by imposing a finite horizon.

In the numerical specification we analyze, the time horizon is set to T = 20, the maximal product

quality to x = 25, the minimal product quality to x = 2, and the probability that both products

become worthless to π = 0.05. Regarding preferences, we set the discount factor to β = 0.9, the

baseline flow return from product quality to α0 = 0.35, the coeffi cient of the rival’s product quality

to α1 = −0.15, and the cost of increasing product quality to α2 = −3.

To solve for a symmetric pure strategy Markov Perfect equilibrium, we first calculate the prob-

abilities of taking each action in the period T states by solving a fixed point problem in probability

space. The period T solution (the equilibrium for the static model) gives us the expected future

utility at period T −1 for each of the possible choices. We then solve a fixed point problem to obtain

the choice probabilities in period T − 1, continuing this procedure until the first period.

Algorithm We now show how the finite dependence properties of this game can be investigated

using the techniques developed in this paper. Specifically we check whether the game satisfies two-

period dependence at
(
t, x

(n)
t , x

(∼n)
t

)
= (1, 4, 5), that is investigating finite dependence in the first

period when the product quality of player n is 4 and the product quality of her rival is 5. Following

the decomposition argument in Section 5.1, we first obtain the weighted choices of n in period 2

that induce finite dependence for x(∼n)3 , aligning the two marginal distributions of the rival’s states

in period 3. We then derive the period 3 weights that line up the two joint distributions for x4, the

38



states for both players in period 4.

Should nature destroy the product quality of both firms, the state is automatically reset inde-

pendently of past actions. Hence to determine whether the game exhibits finite dependence, we only

need to consider paths on which nature has no debilitating consequences. The description of the

algorithm as applied to this example accordingly ignores this aspect of nature. A program solving

this example is provided in an online supplementary appendix.

1. Form the vector K
(n)
j,t+1 (Aj,t+1) with dimension Aj,t+1 and elements given by the probabilities

associated with each states in Aj,t+1. In our example, when player n chooses action 2 at time

t, the state transitions from (4, 5) to either (5, 5) or (5, 6), depending whether her rival takes

action 1 or 2, which implies:

K
(n)
2,t+1 (A2,t+1) =

[
p
(∼n)
1t (4, 5) p

(∼n)
2t (4, 5)

]′

2. Recall At+2 are the attainable states at t+ 2 for the two initial choices at t and any decision

at t + 1. Form F
(n)
k,t+1 (Aj,t+1), the transition matrix from Aj,t+1 to At+2, for all (j, k), given

choice k by n at t+ 1 and equilibrium choices by the rival. Its columns give the probabilities

of transitioning from each of the states associated with K
(n)
j,t+1 (Aj,t+1) to one of the possible

states in At+2; its rows refer to the states in At+2. Our example features nine attainable states

at t+ 2 because each player can make the second choice zero times, once, or twice, and thus:

At+2 = {(4, 5) , (5, 5) , (6, 5) , (4, 6) , (5, 6) , (6, 6) , (4, 7) , (5, 7) , (6, 7)} (6.3)

The rows of F
(n)
k,t+1 (A2,t+1) correspond to the possible states at t+ 1 given action 2 was taken

at t. Hence the dimension of F
(n)
k,t+1 (A2,t+1) is 2 × 9 and, ordering the columns following the

At+2 list of elements above:

F
(n)
2,t+1

(
A(n)2,t+1

)
=

 0 0 p
(∼n)
1,t+1(5, 5) 0 0 p

(∼n)
2,t+1(5, 5) 0 0 0

0 0 0 0 0 p
(∼n)
1,t+1(5, 6) 0 0 p

(∼n)
2,t+1(5, 6)
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The other transition matrices F
(n)
1,t+1 (A1,t+1), F

(n)
1,t+1 (A2,t+1), and F

(n)
2,t+1 (A1,t+1), are formed

in a similar way.

3. Form P
(∼n)
t+2 (At+2), the transpose of the transition matrix from At+2 to A(∼n)t+3 , truncated by a

row (reflecting the linear dependence from summing the probabilities). A row of this matrix

has the probabilities of transitioning to a particular other-player state at t+3 from each of the

attainable states at t+ 2. In our example, A(∼n)t+3 = {5, 6, 7, 8}, and (without loss of generality)

we drop the row associated with x(∼n)t+3 = 8. With reference to (6.3), the 3 × 9 dimensional

matrix P
(∼n)
t+2 (At+2) takes the form:

p
(∼n)
1t+1(4, 5) p

(∼n)
1t+1(5, 5) p

(∼n)
1t+1(6, 5) 0 0 0 0 0 0

p
(∼n)
2t+1(4, 5) p

(∼n)
2t+1(5, 5) p

(∼n)
2t+1(6, 5) p

(∼n)
1t+1(4, 6) p

(∼n)
1t+1(5, 6) p

(∼n)
1t+1(6, 6) 0 0 0

0 0 0 p
(∼n)
2t+1(4, 6) p

(∼n)
2t+1(5, 6) p

(∼n)
2t+1(6, 6) p

(∼n)
1t+1(4, 7) p

(∼n)
1t+1(5, 7) p

(∼n)
1t+1(6, 7)


4. Form K(∼n)t+3 defined by (5.7). In our example, K(∼n)t+3 is the 3×1 vector taking numerical value:

K(∼n)t+3 = P
(∼n)
t+2 (Aτ )

[
F
(n)
1,t+1 (A1,t+1) K

(n)
1,t+1 (A1,t+1)− F

(n)
1,t+1 (A2,t+1) K

(n)
2,t+1 (A2,t+1)

]
(6.4)

=

[
−0.7081 −0.7592 0.0899

]′

5. Form H
(∼n)
t+2 , the

(
A
(∼n)
t+3 − 1

)
× At+2 dimensional matrix defined by (5.6). In our example

P
(∼n)
t+2 (At+2) is a 3 × 9 matrix whereas F

(n)
2,t+1 (A2,t+1) − F

(n)
1,t+1 (A2,t+1) and F

(n)
1,t+1 (A1,t+1) −

F
(n)
2,t+1 (A1,t+1) are both 2 × 9 matrices, so H

(∼n)
t+2 is 3 × 4. Substituting the values of the

equilibrium CCPs computed as the solution to the model into (6.5) yields:

H
(∼n)
t+2 = P

(∼n)
t+2

(
A(n)t+2

) F
(n)
2,t+1

(
A(n)2,t+1

)
− F

(n)
1,t+1

(
A(n)2,t+1

)
F
(n)
1,t+1

(
A(n)1,t+1

)
− F

(n)
2,t+1

(
A(n)1,t+1

)

′

(6.5)

=


0.0892 0 −0.0611 0

−0.0139 0.0890 −0.0802 −0.0776

−0.0753 −0.0441 0.1413 −0.0256
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If the rank of H
(∼n)
t+2 is less than At+3, then two-period dependence does not hold. Using (6.5)

it is straightforward to verify that H
(∼n)
t+2 is rank three in our example.

6. Partition H
(∼n)
t+2 into

[
H
(∼n)
t+2

...H(∼n)t+2

]
where H

(∼n)
t+2 denotes a square matrix with dimension and

rank At+2 and H
(∼n)
t+2 denotes a matrix comprising the remaining columns. In our example,

any one of the four columns could be removed to yield a matrix of rank 3. Accordingly we

omit the first column of H
(∼n)
t+2 corresponding to state (5, 5) to obtain the 3× 3 matrix H

(∼n)
t+2 ,

and the 3× 1 vector H
(∼n)
t+2 =

[
0.0892 −0.0139 −0.0753

]′
.

7. Let D
(n)
t+1 denote an At+1− 1 dimensional real vector with generic component D

(n)
kj,t+1 for k = 2

and j ∈ {1, 2}. Similarly let D
(n)
t+1 denote an At+1 −

(
A
(∼n)
t+3 − 1

)
dimensional weight vector

with generic elements D
(n)
kj,t+1, and solve for D

(n)
t+1 as a linear mapping in D

(n)
t+1 using (5.12). In

our example D
(n)
t+1 is 3 × 1 and D

(n)
t+1 is a real number. Substituting the numerical values for

H
(∼n)
τ , H

(∼n)
t+2 , and K

(∼n)
t+3 , (5.12) simplifies to:

D
(n)
t+1 =


−0.2643

2.7522

1.4614

+


0.2560

0.4073

0.1114

D
(n)
t+1 (6.6)

8. Substitute (5.12) and D
(n)
t+1 into (5.13) to obtain an expression for K

(n)
j,t+2 (Aj,t+2) in terms of

D
(n)
t+1 and K

(∼n)
t+3 . In our example this yields:

K̃
(n)
j,t+2 (Aj,t+2) = F

(n)
2,t+1(Aj,t+1)′D

(n)
t+1 (6.7)

+F
(n)
2,t+1(Aj,t+1)′

[
H
(∼n)
t+2

]−1 (
K(∼n)t+3 − H

(∼n)
t+2 D

(n)
t+1

)

9. Substitute the linear expressions for K
(n)
j,t+1 (Aj,t+1) into (5.1) and check for a solution to the

resulting bilinear equation system. In our example (5.1) specializes to the case where J = 2.

There is two-period dependence if and only if the criterion function (6.8) defined below attains
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a minimal value of zero for some D
(∼n)
t+1 and Ω

(n)
t+2:

[
F
(n)
2,t+2 (A2,t+2)− F

(n)
1,t+2 (A2,t+2)

]′ [
Ω
(n)
2,t+2(A2,t+2, 2) ◦ K

(n)
2,t+2(A2,t+2)

]
+
[
F
(n)
1,t+2(A1,t+2)− F

(n)
2,t+2(A1,t+2)

]′ [
Ω
(n)
2,t+2(A1,t+2, 1) ◦ K

(n)
1,t+2(A1,t+2)

]
+
[
F
(n)
1,t+2 (A2,t+2)

]′ [
K
(n)
2,t+2 (A2,t+2)

]
−
[
F
(n)
1,t+2 (A1,t+2)

]′ [
K
(n)
1,t+2 (A1,t+2)

]



2

(6.8)

In this example we exploit the bilinear property of (6.8) by solving for Ω
(n)
t+2 as a linear system

in the scalar D
(∼n)
t+1 , then substituting the solution for Ω

(n)
t+2 back into (6.8), and finally resolving

the resulting system in the scalar D
(∼n)
t+1 . Weights giving a zero value to (6.8) are displayed in

Table 1. Thus two-period dependence is established by construction.

7 Conclusion

CCP methods provide a computationally cheap way of estimating dynamic discrete choice models

in both single-agent and multi-agent settings. This paper precisely delineates and expands the class

of models that exhibit the finite dependence property used in CCP estimators, whereby only a-few-

period-ahead conditional choice probabilities are used in estimation. Our approach applies to a wide

class of problems lacking stationarity, and is free of assumptions about the structure of the model

and the beliefs of players regarding events that occur after the (short) panel has ended. Thus our

methods provide an approach to estimating nonstationary infinite horizon games even when there

are no terminal actions.

8 Appendix: Proofs

Proof of Theorem 1. With (bounded) negative weights the finite horizon results of Theorem 1

of Arcidiacono and Miller (2011) is easily adapted, since the positivity or negativity of the weights

is not used in that proof.
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Table 1: Weights that Generate Finite Dependence

Probability of d(n)2τ = 1|

Time State d
(n)
1t = 1 d

(n)
2t = 1

t+ 1 (4,5) 4.7859

(4,6) 2.0178

(5,5) 1.3928

(5,6) 1.0139

t+ 2 (4,5) 1

(4,6) 1

(4,7) 1

(5,5) 0 4.7475

(5,6) 0 11.0759

(5,7) 0 45.7515

(6,5) 0

(6,6) 0

(6,7) 0
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Proof of Theorem 3. Denote by A ≡
{
x
(1)
A , . . . , x

(A)
A

}
where x(a)A ∈ X for all a ∈ {1, . . . , A}.

Thus A∈ S, the set containing 2X elements of all subsets of X . Also define the set A attains at τ

by:

B ≡
{
x
(b)
B ∈ X such that fjτ (x

(b)
B |x) 6= 0 for some x ∈ A and some j = 1, . . . , J

}
Thus B =

{
x
(1)
B , . . . , x

(B)
B

}
for some B ≤ X. For each a ∈ {1, . . . , A} define the (J − 1) × 1 weight

vector:

ωτ

(
x
(a)
A

)
=
(
ω1τ

(
x
(a)
A

)
, . . . , ωJ−1,τ

(
x
(a)
A

))′
where

∣∣∣ωjτ (x(a)A )∣∣∣ <∞ and ωJτ
(
x
(a)
A

)
≡ 1−

∑J−1
j=1 ωjτ

(
x
(a)
A

)
. Let KA ≡

(
K(1)A , . . . ,K(A)A

)′
denote

an A× 1 weight vector over the states in A, that is satisfying
∑A

x=1K
(a)
A = 1 with

∣∣∣K(a)A ∣∣∣ <∞ and

K(x)A 6= 0. We also define:

K(b)B ≡
A∑
a=1

J∑
j=1

fjτ (x
(b)
B

∣∣∣x(a)A )ωjτ

(
x
(a)
A

)
K(a)A

and note that:

B∑
b=1

K(b)B =
B∑
b=1

A∑
a=1

J∑
j=1

fjτ (x
(b)
B

∣∣∣x(a)A )ωjτ

(
x
(a)
A

)
K(a)A =

A∑
a=1

J∑
j=1

ωjτ

(
x
(a)
A

)
K(a)A =

A∑
a=1

K(a)A = 1 (8.1)

Depending on KA, and also the choice of ωτA ≡
(
ωτ

(
x
(1)
A

)
, . . . , ωτ

(
x
(A)
A

))′
, some elements of

KB ≡
(
K(1)B , . . . ,K(B)B

)′
may be zero. We say that A reaches A∗ ⊆ A′ at τ for the vector weighting

KA if, for some choice of ωτA, every element in A∗ is attained (has nonzero weight), and every

element in the complement of A∗ is not attained (has zero weight).

Theorem 2, and its proof in the text, shows that only a finite number of operations are required

to determine whether or not finite dependence can be achieved in one period from two given sets

A1,t+ρ and A2,t+ρ. In particular, it is evident from the construction of Hτ , that the operations do

not depend on the ωτ ,A1,t+ρ and ωτ ,A2,t+ρ , the respective weights on elements in A1,t+ρ and A2,t+ρ.

Given j ∈ {1, 2}, and a sequence of weights defined from t + 1 to t + ρ, a unique sequence of sets

is determined: say {Ajτ}ρτ=t+2. Although there are an uncountable number of paths, since Ajτ ∈ S
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and S contains (only) 2X elements, there are at most 2(ρ−1)X sets that any weight sequence can

successively reach, from Aj,t+1 ≡ {x ∈ X : fjt(x|xt) > 0} up to and including Aj,t+ρ. Therefore the

proof is completed by showing that a finite number of operations suffi ce to determine whether or

not a given A ⊆ A′j,τ+1can be reached from any Ajτ ∈ S, for all possible (nonzero) weights KA.

To determine whether A reaches A∗ at τ we extend similar arguments given in the text for

checking whether ρ = 2 in the special case where J = 2. Without loss of generality we focus on

the case where A∗ is might be reached because the first A∗ elements of KA∗ are nonzero and the

remaining B∗ − A∗ are zero. (The other cases are covered by a reordering of the states.) Thus

KB ≡
(
K(1)B , . . . ,K(B)B

)′
is a weighting for A∗ if and only if:

K(b)B =



1−
∑A∗

b=2K
(b)
B for b = 1

any nonzero value for b ∈ {2, . . . , A∗} subject to the constraint
∑A∗

b=2K
(b)
B 6= 1

0 for b ∈ {A∗ + 1, . . . , B}

(8.2)

The existence of a solution to an unconstrained linear system, comprising B − 1 equations in

(J − 1)A unknowns, determines whether A reaches A∗ at τ or not. The unknown variables in the

linear system are the A choice weight vectors ωτ
(
x
(a)
A

)
, each of dimension J−1. The B−1 equations

correspond to the nonzero weights placed on the states
{
x
(2)
B , . . . , x

(A∗)
B

}
and the zero weighting

placed on the last B − A∗ states, which belong to B but not A∗. All choice weights satisfying the

equations corresponding to
{
x
(2)
B , . . . , x

(A∗)
B

}
also satisfy the first state in B by (8.1)and (8.2).

Given K(b)B satisfying (8.2) , a solution to this linear system exists if there exists A choice weight

vectors ωτ
(
x
(a)
A

)
for each b ∈ {2, . . . , B} solving:

K(b)B =
A∑
a=1

fJτ (x
(b)
B

∣∣∣x(a)A )K(a)A +
A∑
a=1

J−1∑
j=1

[
fjτ (x

(b)
B

∣∣∣x(a)A )− fJτ (x
(b)
B

∣∣∣x(a)A )
]
ωjτ

(
x
(a)
A

)
K(a)A (8.3)

Let Fjτ (A) denote the A×(B − 1) transition matrix for A into all but the first states in B for choice

j ∈ {1, 2, . . . , J − 1}. Define [KA ◦ ωτ (A)] as the A (J − 1)× 1 vector formed from the element-by-

element product K(a)A ωjτ

(
x
(a)
A

)
. Denote the (B − 1)×A (J − 1) concatenated matrix of transitions
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by:

Fτ (A)′ ≡
[
F1τ (A)′ · · ·FJ−1,τ (A)′

]

=


f1τ (x

(2)
B |x

(1)
A ) · · · f1τ (x

(2)
B |x

(A)
A )

...
. . .

...

f1τ (x
(B)
B |x

(1)
A ) · · · f1τ (x

(B)
B |x

(A)
A )

· · ·

· · ·

· · ·

fJ−1,τ (x
(2)
B |x

(1)
A ) · · · fJ−1,τ (x

(2)
B |x

(A)
A )

...
. . .

...

fJ−1,τ (x
(B)
B |x

(1)
A ) · · · fJ−1,τ (x

(B)
B |x

(A)
A )


Defining K∗B as a (B − 1)×1 vector formed from all but the first element of KB satisfying (8.2) then

(8.3) may be expressed in matrix notation as:

K∗B = FJτ (A)′KA +
[
Fτ (A)′ − FJτ (A)′

]
[KA ◦ ωτ (A)] (8.4)

Appealing to Hadley (1961, pages 168-169), for a given K∗B, a solution to (8.4) in [KA ◦ ω∗τ (A)]

exists if and only if the rank of
[
Fτ (A)′ − FJτ (A)′

]
equals the rank of the augmented matrix formed

by adding the column
[
K∗B − FJτ (A)′KA

]
to
[
Fτ (A)′ − FJτ (A)′

]
. By construction the augmented

matrix either has the same rank as, or one plus the rank of
[
Fτ (A)′ − FJτ (A)′

]
. Since determining

the rank of a finite dimensional matrix requires only a finite number of operations, and there are

only a finite number of steps, the theorem is proved.

Proof of Theorem 5. The proof is by construction. In this game each player n ∈ {1, 2} controls

two states, namely the choices of the previous period ‘in’or ‘out’, so from (5.9) a suffi cient condition

for two-period dependence is the existence of a solution to:

H
(∼n)
t+2

 Ω
(n)
2,t+1(A2,t+1, 2) ◦ K2,t+1(A2,t+1, 2)

Ω
(n)
2,t+1(A1,t+1, 1) ◦ K1,t+1(A1,t+1, 1)

 = P
(∼n)
t+2

(
A(n)t+2

) F
(n)
1,t+1(A1,t+1)

−F
(n)
1,t+1(A2,t+1)


′  K1,t+1(A1,t+1)

K2,t+1(A2,t+1)


(8.5)

where the definitions of H
(∼2)
τ , given in (5.6), Kj,t+1(A2,t+1) and Ω

(n)
2,t+1(A2,t+1, j), given above (5.1)
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and P
(∼n)
t+2 (At+2), given above (5.6) specialize to:30

H
(∼n)
t+2 ≡ P

(∼n)
t+2 (At+2)

 F
(n)
2,t+1(A2,t+1)− F

(n)
1t+1(A2,t+1)

F
(n)
1,t+1(A1,t+1)− F

(n)
2t+1(A1,t+1)


′

Ω
(n)
2,t+1(A2,t+1, j) =

[
ω
(n)
t+1(j, 2), ω

(n)
t+1(j, 1)

]′
K2,t+1(A2,t+1) = K1,t+1(A2,t+1) =

[
p
(∼n)
2t (xt) p

(∼n)
1t (xt)

]′
P
(∼n)
t+2 (At+2) =

[
p
(∼n)
2,t+2(2, 2) p

(∼n)
2,t+2(2, 1) p

(∼n)
2,t+2(1, 2) p

(∼n)
2,t+2(1, 1)

]
and in this example:

 F
(n)
1,t+1(A1,t+1)

−F
(n)
1,t+1(A2,t+1)


′

=



0 0 0 0

0 0 0 0

p
(∼n)
2,t+1(1, 2) p

(∼n)
2,t+1(1, 1) −p(∼n)2,t+1(2, 2) −p(∼n)2,t+1(1, 2)

p
(∼n)
1,t+1(1, 2) p

(∼n)
1,t+1(1, 1) −p(∼n)1,t+1(2, 2) −p(∼n)1,t+1(2, 1)



 F
(n)
2,t+1 (A2,t+1)− F

(n)
1,t+1 (A2,t+1)

F
(n)
1,t+1 (A1,t+1)− F

(n)
2,t+1 (A1,t+1)


′

=



p
(∼n)
2,t+1(2, 2) p

(∼n)
2,t+1(2, 1) −p(∼n)2,t+1(1, 2) −p(∼n)2,t+1(1, 1)

p
(∼n)
1,t+1(2, 2) p

(∼n)
1,t+1(2, 1) −p(∼n)1,t+1(1, 2) −p(∼n)1,t+1(1, 1)

−p(∼n)2,t+1(2, 2) −p(∼n)2,t+1(2, 1) p
(∼n)
2,t+1(1, 2) p

(∼n)
2,t+1(1, 1)

−p(∼n)1,t+1(2, 2) −p(∼n)1,t+1(2, 1) p
(∼n)
1,t+1(1, 2) p

(∼n)
1,t+1(1, 1)


(8.6)

Noting ω(n)t+1 (xt+1, j) ≡ ω
(n)
t+1

((
j, d

(∼n)
2t

)
, j
)
we now define ω(n)t+1(xt+1) ≡ ω

(n)
t+1(xt+1, j) to elimi-

nate the notational redundancy, and substitute the expressions above into the left hand side of (8.5)

30Since matching the weight on one state automatically matches the weight on the other, we can eliminate the last

row of P(∼n)t+2

(
A(n)t+2

)
.
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to obtain:

p
(∼n)
2,t+2(2, 2)

p
(∼n)
2,t+2(2, 1)

p
(∼n)
2,t+2(1, 2)

p
(∼n)
2,t+2(1, 1)



′ 

p
(∼n)
2,t+1(2, 2) p

(∼n)
2,t+1(2, 1) −p(∼n)2,t+1(1, 2) −p(∼n)2,t+1(1, 1)

p
(∼n)
1,t+1(2, 2) p

(∼n)
1,t+1(2, 1) −p(∼n)1,t+1(1, 2) −p(∼n)1,t+1(1, 1)

−p(∼n)2,t+1(2, 2) −p(∼n)2,t+1(2, 1) p
(∼n)
2,t+1(1, 2) p

(∼n)
2,t+1(1, 1)

−p(∼n)1,t+1(2, 2) −p(∼n)1,t+1(2, 1) p
(∼n)
1,t+1(1, 2) p

(∼n)
1,t+1(1, 1)





ω
(n)
t+1(2, 2)p

(∼n)
2t (xt)

ω
(n)
t+1(2, 1)p

(∼n)
2t (xt)

ω
(n)
t+1(1, 2)p

(∼n)
2t (xt)

ω
(n)
t+1(1, 1)p

(∼n)
2t (xt)


(8.7)

Since p(∼n)2t (xt) > 0 we can establish two period dependence by equating (8.7) with the right hand

side of (8.5) and solving for the unknowns. By inspection (8.7) is 1×1, and (8.5) reduces to a single

equation, with four unknowns that conform to the 1× 4 row vector H
(∼n)
t+2 .

To complete the proof it is useful to define for i ∈ {1, 2} the expression:

Ci ≡ p(∼n)2,t+2(2, 1)− p(∼n)2,t+2(1, 1) + p
(∼n)
2,t+1(2, i)

[
p
(∼n)
2,t+2(2, 2) + p

(∼n)
2,t+2(1, 1)− p(∼n)2,t+2(2, 1)− p(∼n)2,t+2(1, 2)

]
(8.8)

We now prove C2 6= 0 if C1 = 0. Note that:

C2 − C1 =
[
p
(∼n)
2,t+1(2, 2)− p(∼n)2,t+1(2, 1)

] [
p
(∼n)
2,t+2(2, 2) + p

(∼n)
2,t+2(1, 1)− p(∼n)2,t+2(2, 1)− p(∼n)2,t+2(1, 2)

]
(8.9)

If the second bracketed term is zero, then C1 = C2 from (8.9), and hence from (8.8) C1 6= 0 because

by assumption p(∼n)2,t+2(2, 1) 6= p
(∼n)
2,t+2(1, 1). Therefore if C1 = 0 the bracketed term is nonzero. In that

case C2 6= C1 by (8.9) because p(∼n)2,t+1(2, 1) 6= p
(∼n)
2,t+1(2, 2) by assumption.

We consider two possibilities, in which ω(n)t+2(x
(n)
t+2, j) = 1 for j ∈ {1, 2} and ω(n)t+1(1, i) = 0 for

i ∈ {1, 2} for both possibilities. Also set ω(n)t+1(2, 2) = 0 if C1 = 0, and set ω(n)t+1(2, 1) = 0 if C1 6= 0.

Using (8.8) and noting p(∼n)1,t+1(2, 2) = 1− p(∼n)2,t+1(2, 2) simplify (8.7) to Cip
(∼n)
2t (xt)ω

(n)
t+1(2, i). Solving

for the only nonzero weight take the quotient of the scalar (8.7) and Cip
(∼n)
2t (xt) to obtain:

ω
(n)
t+1(2, i) = P

(∼n)
t+2

(
A(n)t+2

) F
(n)
1,t+1(A1,t+1)

−F
(n)
1,t+1(A2,t+1)


′  K

(n)
1,t+1(A1,t+1)

K
(n)
2,t+1(A2,t+1)

 ◦/[p(∼n)2t (xt)Ci

]
. (8.10)
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where the matrices in (8.10) are given above. Thus ω(n)t+1(2, 1) is determined by setting i = 1 in (8.10)

when C1 6= 0 and ω(n)t+1(2, 2) is determined by setting i = 2 in (8.10) when C1 = 0. Two-period

dependence can now be established by direct verification.
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