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Abstract

This supplemental appendix contains a discussion of applying PIES to a bivariate
ordered response model and a two-sector Roy model.
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S.1 Extension to an Bivariate Ordered Response Model

In this section, I briefly extend the discussion in Section 4 to demonstrate the key

derivations for applying Theorem 1 to a bivariate ordered response model. The model

is given by

Y1 =

J∑
j=1

y1j1[g1(j−1)(Y2, X) < U1 ≤ g1j(Y2, X)] (S-1)

and Y2 =
K∑
k=1

y2k1[g2(k−1)(X) < U2 ≤ g2k(X)], (S-2)

where Y = (Y1, Y2) are random variables with supports Y1 ≡ {y11, . . . , y1J} and Y2 ≡
{y21, . . . , y2K} ordered to be increasing,

g ≡ (g1, g2) ≡ (g10, g11, . . . , g1J , g20, g21, . . . , g2K)

is an unknown vector of functions, X is a random vector with support X , and U ≡
(U1, U2) is a bivariate latent variable. As before, let F denote the set of all proper

bivariate conditional distribution functions F : R
2 ×X → [0, 1], and let F† denote the

admissible subset of F . The parameter θ is the function g, with admissible set G†, and

any g ∈ G† satisfying g10 = g20 = −∞ and g1J = g2K = +∞. The model reduces to the

bivariate binary response model in Section 4 of the main text by letting J = K = 2,

y11 = y21 = 0, and y12 = y22 = 1.

The observational equivalence function ωy|x defined in (11) of the main text is given

by

ω(y1j ,y2k)|x(g, F ) ≡ PS [Y1 ≤ y1j , Y2 ≤ y2k|X = x]

=

k∑
k′=1

PF [U1 ≤ g1j(y2k′ , x), Y2 = y2k′ |X = x]

=
k∑

k′=1

PF

[
U1 ≤ g1j(y2k′ , x), U2 ∈ (g2(k′−1)(x), g2k′(x)]|X = x

]
=

k∑
k′=1

F (g1j(y2k′ , x), g2k′(x)|x)− F
(
g1j(y2k′ , x), g2(k′−1)(x)|x

)
(S-3)

for all j = 1, . . . , J , k = 1, . . . ,K and x ∈ X . From (S-3), one can see that to satisfy
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(U2.ω) in Theorem 1, Ux(g) must be chosen so that it contains the set{
{g1j(y2k′ , x)}Kk′=1

}J

j=0
× {g2k′(x)}Kk′=0 (S-4)

for any fixed g ∈ G†. Single equation ordered response models are nested by taking

K = 1, since in this case the equation for Y2 becomes trivially satisfied given that every

g ∈ G† satisfies g20(x) = −∞ and g2K(x) = +∞ for all x. In this case, (S-3) reduces to

ω(y1j ,y2k)|x(g, F ) = F (g1j(y2k′ , x),+∞|x) ,

which just depends on the marginal distribution of U1, as one would expect.

S.2 A Two-Sector Roy Model

Consider the binary treatment potential outcomes model

W = 1[T = 1]W1 + 1[T = 2]W2, (S-5)

where T ∈ {0, 1} is a binary treatment and (W1,W2) are latent potential outcomes

corresponding to different states of this treatment. The researcher observes (W,T,X)

where X is a vector of covariates with respect to which certain exclusion and/or inde-

pendence conditions might be maintained. To make the relationship between X and

(W1,W2) explicit, consider the latent variable formulation

Wt = gt(X,Ut) for t = 1, 2, (S-6)

where Ut, t = 1, 2 are latent random variables and gt, t = 1, 2 are unknown functions.

The functions gt can be parameterized, or a completely agnostic approach can be taken

by setting gt(X,Ut) = Ut, in which case Ut is simply a relabelling of the potential

outcome Wt. In addition to (S-6), analysis of this problem frequently maintains a

weakly separable selection equation

T = 1 + 1[U3 ≤ g3(X)], (S-7)

where U3 is a latent variable and g3 is an unknown function (Vytlacil, 2002; Heckman

and Vytlacil, 2005).
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In the framework of the Section 3.3, (S-5)–(S-7) comprise a two-equation model

W = 1[T = 1]g1(X,U1) + 1[T = 2]g2(X,U2)

T = 1 + 1[U3 ≤ g3(X)],

with a two-dimensional random vector Y ≡ (W,T ), the usual vector of covariates,

X, and an L = 3-dimensional vector of unobservables (U1, U2, U3). Let F denote the

set of all proper trivariate conditional distribution functions F : R
3 → [0, 1], with F†

the admissible subset of F . The parameter θ in this context is the triple of functions

g = (g1, g2, g3) with admissible set G.

Suppose that G only contains triples g such that g1 and g2 are weakly increasing

and left-continuous in their latent components. Denote the generalized inverse of any

such g1 and g2 in these components by g−11 (x, ·) and g−12 (x, ·).1 Then the mapping ωy|x

defined in (11) in the main text is given by

ω(w,d)|x(g, F ) ≡ PS [W ≤ w, T ≤ t|X = x]

=



F
(
g−11 (x,w),+∞, g3(x)|x

)
, if t = 1,

F
(
g−11 (x,w),+∞, g3(x)|x

)
+F

(
+∞, g−12 (x,w),+∞|x

)
−F

(
+∞, g−12 (x,w), g3(x)|x

)
, if t = 2.

Denote the support of W by W, and let W be a subset of W that is chosen by the

researcher. In order to satisfy (U2.ω) in Theorem 1, Ux(g) must be chosen to contain

the set

{
g−11 (x,w),±∞

}
w∈W ×

{
g−12 (x,w),±∞

}
w∈W × {g3(x)} .

If W is a strict subset of W, then the characterization provided by Theorem 1 will not

be sharp, but can be made arbitrarily sharp by making W arbitrarily large.

A commonly maintained identifying assumption in the two-sector Roy model is

that X is independent of the latent variables U ≡ (U1, U2, U3), see e.g. Assumption

1 in Eisenhauer et al. (2015). This can be imposed via condition A1 of Assumption

A. Using Assumption A2, one could refine this strategy by requiring X to only be

independent of certain components of U . In both cases, these assumptions could be

imposed in such a way that all or only part of the components of X are used in these

1That is, g−1
t (x,w) ≡ sup{u : gt(x, u) ≤ w} for t = 1, 2.
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conditional independence statements. Much additional flexibility is possible, including

weakening independence to location restrictions of the sort discussed in Sections 2 and

4.

For the selection equation, (S-7), it is common to maintain a nonparametric view

of the function g3, in which case the marginal distribution of U3 can be normalized,

with a typical choice being the uniform distribution on the [0, 1] interval. This type

of normalization can be accommodated in PIES through Assumption A3; see Example

1. If W is continuously distributed, a common restriction to impose on g1 and g2

is additive separability in their respective latent variables. If W is a binary or more

generally ordered discrete outcome, one might adopt a specification for g1 and g2 that

is similar to those in Sections 4 and S.1.

Mourifié et al. (2015) derived analytic expressions for sharp identified sets of certain

parameters in nonparametric two-sector Roy models. The PIES approach provides a

general method to compute these sets that is also applicable to the types of semipara-

metric Roy models commonly used in empirical work. However, the PIES procedure

is computational, and does not provide analytic expressions for identified sets.
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