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Abstract

A divide and conquer algorithm for exploiting policy function monotonicity is proposed and

analyzed. To solve a discrete problem with n states and n choices, the algorithm requires at

most n log2(n)+5n objective function evaluations. In contrast, existing methods for non-concave

problems require n2 evaluations in the worst case. For concave problems, the solution technique

can be combined with a method exploiting concavity to reduce evaluations to 14n + 2 log2(n).

A version of the algorithm exploiting monotonicity in two state variables allows for even more

efficient solutions. The algorithm can also be efficiently employed in a common class of problems

that do not have monotone policies, including problems with many state and choice variables.

In the sovereign default model of Arellano (2008) and in the real business cycle model, the

algorithm reduces run times by an order of magnitude for moderate grid sizes and orders of

magnitude for larger ones. Sufficient conditions for monotonicity and code are provided.

Keywords: Computation, Monotonicity, Grid Search, Discrete Choice, Sovereign Default

JEL Codes: C61, C63, E32, F34

∗Grey Gordon (corresponding author), Indiana University, Department of Economics, greygordon@gmail.com.
Shi Qiu, Indiana University, Department of Economics, shiqiu@indiana.edu. The authors thank Kartik Athreya,
Bob Becker, Alexandros Fakos, Filomena Garcia, Bulent Guler, Daniel Harenberg, Juan Carlos Hatchondo, Aaron
Hedlund, Chaojun Li, Lilia Maliar, Serguei Maliar, Amanda Michaud, Jim Nason, Julia Thomas, Nora Traum,
Todd Walker, Xin Wei, and David Wiczer, as well as the editor and three anonymous referees. We also thank
participants at the Econometric Society World Congress 2015 and the Midwest Macro Meetings 2015. Code is provided
at https://sites.google.com/site/greygordon/code. Any mistakes are our own.

1

greygordon@gmail.com
shiqiu@indiana.edu
https://sites.google.com/site/greygordon/code


1 Introduction

Many optimal control problems in economics are either naturally discrete or can be discretized.

However, solving these problems can be costly. For instance, consider a simple growth model where

the state k and choice k′ are restricted to lie in {1, . . . , n}. One way to find the optimal policy g is

to evaluate lifetime utility at every k′ for every k. The n2 cost of this brute force approach grows

quickly in n. In this paper, we propose a divide and conquer algorithm that drastically reduces

this cost for problems with monotone policy functions. When applied to the growth model, the

algorithm first solves for g(1) and g(n). It then solves for g(n/2) by only evaluating utility at

k′ greater than g(1) and less than g(n) since monotonicity of g gives g(n/2) ∈ {g(1), . . . , g(n)}.
Similarly, once g(n/2) is known, the algorithm uses it as an upper bound in solving for g(n/4)

and a lower bound in solving for g(3n/4). Continuing this subdivision recursively leads to further

improvements, and we show this method—which we refer to as binary monotonicity—requires no

more than n log2(n) + 5n objective function evaluations in the worst case.

When the objective function is concave, further improvements can be made. For example, binary

monotonicity gives that g(n/2) is in {g(1), . . . , g(n)}, but the maximum within this search space

can be found in different ways. One way is brute force, i.e., checking every value. However, with

concavity, one may check g(1), g(1) + 1, . . . sequentially and stop as soon as the objective function

decreases. We refer to this approach as simple concavity. An alternative, Heer and Maußner’s (2005)

method, repeatedly discards half of the search space. We prove that this approach, which we will

refer to as binary concavity, combined with binary monotonicity computes the optimum in at most

14n+ 2 log2(n) function evaluations.

For problems with non-concave objectives like the Arellano (2008) sovereign default model,

binary monotonicity vastly outperforms brute force and simple monotonicity both theoretically

and quantitatively. Theoretically, simple monotonicity requires n2 evaluations in the worst case

(the same as brute force). Consequently, assuming worst-case behavior for all the methods, simple

monotonicity is 8.7, 35.9, and 66.9 times slower than binary monotonicity for n equal to 100, 500,

and 1000, respectively. While this worst-case behavior could be misleading, in practice we find

it is not. For instance, in the Arellano (2008) model, we find binary monotonicity is 5.1, 21.4,

and 40.1 times faster than simple monotonicity for grid sizes of 100, 500, and 1000, respectively.

Similar results hold in a real business cycle (RBC) model when not exploiting concavity. Binary

monotonicity vastly outperforms simple monotonicity because the latter is only about twice as fast

as brute force.

For problems with concave objectives like the RBC model, we find, despite its good theoretical

properties, that binary monotonicity with binary concavity is only the second fastest combination of

the nine possible pairings of monotonicity and concavity techniques. Specifically, simple monotonic-

ity with simple concavity is around 20% faster, requiring only 3.0 objective function evaluations

per state compared to 3.7 for binary monotonicity with binary concavity. While somewhat slower

for the RBC model, binary monotonicity with binary concavity has guaranteed O(n) performance

that may prove useful in different setups.
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So far we have described binary monotonicity as it applies in the one-state-variable case, but it

can also be used to exploit monotonicity in two state variables. Quantitatively, we show a two-state

binary monotonicity algorithm further reduces evaluation counts per state (to 2.9 with brute force

and 2.2 with binary concavity in the RBC example above), which makes it several times faster

than the one-state algorithm. Theoretically, we show for a class of optimal policies that the two-

state algorithm—without any assumption of concavity—requires at most four evaluations per state

asymptotically. As knowing the true policy and simply recovering the value function using it would

require one evaluation per state, this algorithm delivers very good performance.

We also show binary monotonicity can be used in a class of problems that does not have

monotone policies. Specifically, it can be used for problems of the form maxi′ u(z(i)−w(i′))+W (i′)

where i and i′ are indices in possibly multidimensional grids and u is concave, increasing, and

differentiable. If z and W are increasing, one can show—using sufficient conditions we provide—that

the optimal policy is monotone. However, even if they are not increasing, sorting z andW transforms

the problem into one that does have a monotone policy and so allows binary monotonicity to be

used. We establish this type of algorithm is O(n log n) inclusive of sorting costs and show it is

several times faster than existing grid search methods in solving a sovereign default model with

capital that features portfolio choice.

For problems exhibiting global concavity, many attractive solution methods exist. These include

fast and globally accurate methods such as projection (including Smolyak sparse grid and cluster

grid methods), Carroll’s (2006) endogenous gridpoints method (EGM), and Maliar and Maliar’s

(2013) envelope condition method (ECM), as well as fast and locally accurate methods such as

linearization and higher-order perturbations. Judd (1998) and Schmedders and Judd (2014) provide

useful descriptions of these methods that are, in general, superior to grid search in terms of speed

and usually accuracy, although not necessarily robustness.1

In contrast, few computational methods are available for problems with non-concavities, such

as problems commonly arising in discrete choice models. The possibility of multiple local maxima

makes working with any method requiring first order conditions (FOCs) perilous, which discourages

the use of the methods mentioned above. As a result, researchers often resort to value function iter-

ation with grid search. As binary monotonicity is many times faster than simple monotonicity when

not exploiting concavity, its use in discrete choice models and other models with non-concavities

seems particularly promising.

However, recent research has looked at ways of solving non-concave problems using FOCs. Fella

(2014) lays out a generalized EGM algorithm (GEGM) for non-concave problems that finds all

points satisfying the FOCs and uses a value function iteration step to distinguish global maxima

from local maxima. The algorithm in Iskhakov, Jørgensen, Rust, and Schjerning (2016) is qualita-

tively similar, but they identify the global maxima in a different and way and show that adding i.i.d.

1For a comparison in the RBC context, see Aruoba, Fernández-Villaverde, and Rubio-Ramı́rez (2006). Maliar and
Maliar (2014) and a 2011 special issue of the Journal of Economic Dynamics and Control (see Den Haan, Judd, and
Juillard, 2011) evaluate many of these methods and their variations in the context of a large-scale multi-country RBC
model.
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taste shocks facilitates computation. Maliar and Maliar’s (2013) ECM does not necessitate the use

of FOCs, and Arellano, Maliar, Maliar, and Tsyrennikov (2016) use it to solve the Arellano (2008)

model. However, because of convergence issues, they use ECM only as a refinement to a solution

computed by grid search (Arellano et al., 2016, p. 454). While these derivative-based methods will

generally be more accurate than a purely grid-search-based method, binary monotonicity solves the

problem without adding shocks, requires no derivative computation, and is simple. We also show in

the working paper Gordon and Qiu (2017) that binary monotonicity can be used with continuous

choice spaces to significantly improve accuracy. Additionally, some of these methods either require

(such as GEGM) or benefit from (such as ECM) a grid search component, which allows binary

monotonicity to be useful even as part of a more complicated algorithm.

Puterman (1994) and Judd (1998) discuss a number of existing methods (beyond what we have

mentioned thus far) that can be used in discrete optimal control problems. Some of these methods,

such as policy iteration, multigrids, and action elimination procedures, are complementary to binary

monotonicity. Others, such as the Gauss-Seidel methods or splitting methods, could not naturally

be employed while simultaneously using binary monotonicity.2 In contrast to binary monotonicity,

most of these methods try to produce good value function guesses and so only apply in the infinite-

horizon case.

Exploiting monotonicity and concavity is not a new idea, and—as Judd (1998) pointed out—

the “order in which we solve the various [maximization] problems is important in exploiting”

monotonicity and concavity (p. 414). The quintessential ideas behind exploiting monotonicity and

concavity date back to at least Christiano (1990); simple monotonicity and concavity as used

here are from Judd (1998); and Heer and Maußner (2005) proposed binary concavity, which is

qualitatively similar to an adaptive grid method proposed by Imrohoroğlu, Imrohoroğlu, and Joines

(1993). What is new here is that we exploit monotonicity in a novel and efficient way in both one

and two dimensions, provide theoretical cost bounds, and show binary monotonicity’s excellent

quantitative performance. Additionally, we provide code and sufficient conditions for policy function

monotonicity.

The rest of the paper is organized as follows. Section 2 lays out the algorithm for exploiting

monotonicity in one state variable and characterizes its performance theoretically and quantita-

tively. Section 3 extends the algorithm to exploit monotonicity in two state variables. Section 4

shows how the algorithm can be applied to the class of problems with non-monotone policies.

Section 5 gives sufficient conditions for policy function monotonicity. Section 6 concludes. The ap-

pendices provide additional algorithm, calibration, computation, and performance details, as well

as examples and proofs.

2The operations research literature has also developed algorithms that approximately solve dynamic programming
problems. Papadaki and Powell (2002, 2003) and Jiang and Powell (2015) aim to preserve monotonicity of value
and policy functions while receiving noisy updates of the value function at simulated states. While they exploit
monotonicity in a nontraditional order, they do so in a random one and do not compute an exact solution.
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2 Binary monotonicity in one state

This section formalizes the binary monotonicity algorithm for exploiting monotonicity in one state

variable, illustrates how it and the existing grid search algorithms work, and analyzes its properties

theoretically and quantitatively.

2.1 Binary monotonicity, existing algorithms, and a simple example

Our focus is on solving

Π(i) = max
i′∈{1,...,n′}

π(i, i′) (1)

for i ∈ {1, . . . , n} with an optimal policy g. We say g is monotone (increasing) if g(i) ≤ g(j)

whenever i ≤ j.
For a concrete example, consider the problem of optimally choosing next period capital k′ given

a current capital stock k where both of these lie in a grid K = {k1, . . . , kn} having kj < kj+1 for all

j. For a period utility function u, a production function F , a depreciation rate δ, a time discount

factor β, and a guess on the value function V0, the Bellman update can be written

V (ki) = max
i′∈{1,...,n}

u(−ki′ + F (ki) + (1− δ)ki) + βV0(ki′) (2)

with the optimal policy g(i) given in terms of indices. Then (2) fits the form of (1). Of course,

not every choice is necessarily feasible; there may multiple optimal policies; there may be multiple

state and choice variables; and the choice space may be continuous. However, binary monotonicity

handles or can be adapted to handle all these issues.3

Our algorithm computes the optimal policy g and the optimal value Π using divide and conquer.

The algorithm is as follows:

1. Initialization: Compute g(1) and Π(1) by searching over {1, . . . , n′}. If n = 1, STOP. Com-

pute g(n) and Π(n) by searching over {g(1), . . . , n′}. Let i = 1 and i = n. If n = 2, STOP.

2. At this step, (g(i),Π(i)) and (g(i),Π(i)) are known. Find an optimal policy and value for all

i ∈ {i, . . . , i} as follows:

(a) If i = i+ 1, STOP: For all i ∈ {i, . . . , i} = {i, i}, g(i) and Π(i) are known.

(b) For the midpoint m = b i+i2 c, compute g(m) and Π(m) by searching over {g(i), . . . , g(i)}.

(c) Divide and conquer: Go to (2) twice, first computing the optimum for i ∈ {i, . . . ,m} and

then for i ∈ {m, . . . , i}. In the first case, redefine i := m; in the second, redefine i := m.

3Beyond the two-state binary monotonicity algorithm in Section 3, the online appendix shows how multiple state or
choice variables can be implicit in the i and i′ and exploits that fact. It also shows how additional state and/or choice
variables, for which one does not want to or cannot exploit monotonicity, may be handled. Further, the appendix
shows that, under mild conditions, binary monotonicity will correctly deliver an optimal policy (1) even if there are
multiple optimal policies and (2) even if there are nonfeasible choices. For the latter result, π(i, i′) must be assigned
a sufficiently large negative number when an (i, i′) combination is not feasible. Moreover, continuous choice spaces
can be handled without issue as discussed in the working paper Gordon and Qiu (2017).
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Figure 1 illustrates how binary and simple monotonicity work. The blue dots represent the

optimal policy of (2), and the empty circles represent the search spaces implied by the respective

algorithms. With simple monotonicity, the search for i > 1 is restricted to {g(i− 1), . . . , n′}, which

results in a nearly triangular search space. For binary monotonicity, the search is restricted to

{g(i), . . . , g(i)} where i and i are far apart for the first iterations but rapidly approach each other.

This results in an irregularly shaped search space that is large at the first iterations i = 1, n,

and n/2 but much smaller at later ones. For this example, the average search space for simple

monotonicity, i.e., the average size of {g(i − 1), . . . , n′}, grows from 10.6 for n = n′ = 20 to 51.8

for n = n′ = 100. This is, roughly, a 50% improvement on brute force. In contrast, the average

size of binary monotonicity’s search space is 7.0 when n = n′ = 20 (34% smaller than simple

monotonicity’s) and 9.5 when n = n′ = 100 (82% smaller), a large improvement.

Figure 1: A graphical illustration of simple and binary monotonicity

Binary monotonicity restricts the search space but does not say how one should find a maximum

within it. In solving maxi′∈{a,...,b} π(i, i′) for a given i, a, and b, one can use brute force, evaluating

π(i, i′) at all i′ ∈ {a, . . . , b}. In Figure 1, this amounts to evaluating π at every empty circle and

blue dot. However, if the problem is concave, simple or binary concavity may be used. Simple

concavity proceeds sequentially from i′ = a to i′ = b but stops whenever π(i, i′ − 1) > π(i, i′). In

Figure 1, this amounts to evaluating π(i, i′) from the lowest empty circle in each column to one

above the blue dot. In contrast, binary concavity uses the ordering of π(i,m) and π(i,m+ 1) where

m = ba+b2 c to narrow the search space: If π(i,m) < π(i,m + 1), an optimal choice must be in

{m+ 1, . . . , b}; if π(i,m) ≥ π(i,m+ 1), an optimal choice must be in {a, . . . ,m}. The search then

proceeds recursively, redefining the search space accordingly until there is only one choice left. In
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Figure 1, this amounts to always evaluating π(i, i′) at adjacent circles (m and m + 1) within a

column with the adjacent circles progressing geometrically towards the blue dot. For our precise

implementation of binary concavity, see Appendix A.

2.2 Theoretical cost bounds

We now characterize binary monotonicity’s theoretical performance by providing bounds on the

number of times π must be evaluated to solve for g and Π. Clearly, this depends on the method

used to solve

max
i′∈{a,...,a+γ−1}

π(i, i′). (3)

While brute force requires γ evaluations of π(i, ·) to solve (3), binary concavity requires at most

2dlog2(γ)e evaluations, which we prove in the online appendix.

Proposition 1 gives the main theoretical result of the paper:

Proposition 1. Suppose n ≥ 4 and n′ ≥ 3. If brute force grid search is used, then binary mono-

tonicity requires no more than (n′ − 1) log2(n − 1) + 3n′ + 2n − 4 evaluations of π. Consequently,

fixing n = n′, the algorithm’s worst case behavior is O(n log2 n) with a hidden constant of one.

If binary concavity is used with binary monotonicity, then no more than 6n+ 8n′ + 2 log2(n
′ −

1)− 15 evaluations are required. Consequently, fixing n = n′, the algorithm’s worst case behavior is

O(n) with a hidden constant of 14.

Note the bounds stated in the abstract and introduction, n log2(n) + 5n for brute force and 14n+

2 log2(n) for binary concavity, are simplified versions of these for the case n = n′.

These worst-case bounds show binary monotonicity is very powerful. To see this, note that even

if one knew the optimal policy, recovering Π would still require n evaluations of π (specifically,

evaluating π(i, g(i)) for i = 1, . . . , n). Hence, relative to knowing the true solution, binary mono-

tonicity is only asymptotically slower by a log factor when n = n′. Moreover, when paired with

binary concavity, the algorithm is only asymptotically slower by a factor of 14.

2.3 Quantitative performance in the Arellano (2008) and RBC models

We now turn to assessing the algorithm’s performance in the Arellano (2008) and RBC models.

First, we use the Arellano (2008) model to compare our method with existing techniques that

only assume monotonicity. Second, we use the RBC model to compare our method with existing

techniques that assume monotonicity and concavity. We will not conduct any error analysis here

since all the techniques deliver identical solutions. The calibrations and additional computation

details are given in Appendix B. For a description of how the Arellano (2008) and RBC models

can be mapped into (1), see the online appendix.
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2.3.1 Exploiting monotonicity in the Arellano (2008) model

Figure 2 compares the run times and average π-evaluation counts necessary to obtain convergence in

the Arellano (2008) model when using brute force, simple monotonicity, and binary monotonicity.

The ratio of simple monotonicity’s run time to binary monotonicity’s grows virtually linearly,

increasing from 5.1 for a grid size of 100 to 95 for a grid size of 2500. The speedup of binary

monotonicity relative to brute force also grows linearly but is around twice as large in levels. This

latter fact reflects that simple monotonicity is only about twice as fast as brute force irrespective

of grid size. For evaluation counts, the patterns are similar, but binary monotonicity’s speedups

relative to simple monotonicity and brute force are around 50% larger.

Figure 2: Cost comparison for methods only exploiting monotonicity

Binary monotonicity is faster than simple monotonicity by a factor of 5 to 20 for grids of a

few hundred points, which is a large improvement. While these are the grid sizes that have been

commonly used in the literature to date (e.g., Arellano, 2008, uses 200), the cost of using several

thousand points is relatively small when using binary monotonicity. For instance, in roughly the

same time simple monotonicity needs to solve the 250-point case (1.48 seconds), binary mono-

tonicity can solve the 2500-point case (which takes 1.51 seconds). At these larger grid sizes, binary

monotonicity can be hundreds of times faster than simple monotonicity.
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2.3.2 Exploiting monotonicity and concavity in the RBC model

To assess binary monotonicity’s performance when paired with a concavity technique, we turn

to the RBC model. Table 1 examines the run times and evaluation counts for all nine possible

combinations of the monotonicity and concavity techniques.

n = 250 n = 500

Monotonicity Concavity Eval./n Time (s) Eval./n Time (s) Increase

None None 250.0 8.69 500.0 29.51 3.4
Simple None 127.4 3.43 253.4 13.29 3.9
Binary None 10.7 0.40 11.7 0.85 2.1

None Simple 125.5 4.39 249.6 17.28 3.9
Simple Simple 3.0 0.14 3.0 0.26 1.9
Binary Simple 6.8 0.30 7.3 0.60 2.0

None Binary 13.9 0.58 15.9 1.27 2.2
Simple Binary 12.6 0.43 14.6 0.95 2.2
Binary Binary 3.7 0.20 3.7 0.36 1.8

Note: The last column gives the run time increase from n = 250 to 500.

Table 1: Run times and evaluation counts for all monotonicity and concavity techniques

Perhaps surprisingly, the fastest combination is simple monotonicity with simple concavity.

This pair has the smallest run times for both values of n and the time increases linearly (in fact,

slightly sublinearly). For this combination, solving for the optimal policy requires, on average, only

three evaluations of π per state. The reason for this is that the capital policy very nearly satisfies

g(i) = g(i−1)+1. When this is the case, simple monotonicity evaluates π(i, g(i−1)), π(i, g(i−1)+1),

and π(i, g(i − 1) + 2); finds π(i, g(i − 1) + 1) > π(i, g(i − 1) + 2); and stops. The second fastest

combination, binary monotonicity with binary concavity, exhibits a similar linear (in fact, slightly

sublinear) time increase. However, it fares worse in absolute terms, requiring 3.7 evaluations of π

per state. All the other combinations are slower and exhibit greater run time and evaluation count

growth.

While Table 1 only reports the performance for two grid sizes, it is representative. This can be

seen in Figure 3, which plots the average number of π evaluations per state required for the most

efficient methods. Simple monotonicity with simple concavity and binary monotonicity with binary

concavity both appear to be O(n) (with the latter guaranteed to be), but the hidden constant is

smaller for the former. The other methods all appear to be O(n log n).

3 Binary monotonicity in two states

In the previous section, we demonstrated binary monotonicity’s performance when exploiting mono-

tonicity in one state variable. However, some models have policy functions that are monotone in
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Figure 3: Empirical O(n) behavior

more than one state. For instance, under certain conditions, the RBC model’s capital policy k′(k, z)

is monotone in both k and z. In this section, we show how to exploit this property.

3.1 The two-state algorithm and an example

Our canonical problem is to solve

Π(i, j) = max
i′∈{1,...,n′}

π(i, j, i′) (4)

for i ∈ {1, . . . , n1} and j ∈ {1, . . . , n2}, where the optimal policy g(i, j) is increasing in both

arguments. The two-state binary monotonicity algorithm first solves for g(·, 1) using the one-state

algorithm. It then recovers g(·, n2) using the one-state algorithm but with g(·, 1) serving as an

additional lower bound. The core of the two-state algorithm assumes g(·, j) and g(·, j) are known

and uses them as additional bounds in computing g(·, j) for j = b j+j2 c. Specifically, in solving for

g(i, j), the search spaced is restricted to integers in [g(i, j), g(i, j)] ∩ [g(i, j), g(i, j)] instead of just

[g(i, j), g(i, j)] as the one-state algorithm would. Appendix A gives the algorithm in full detail.

Figure 4 illustrates how the two-state binary monotonicity algorithm works when applied to the

RBC model using capital as the first dimension. The figure is analogous to Figure 1, but the red

lines indicate bounds on the search space coming from the previous solutions g(·, j) and g(·, j). At

j = n2 (the left panel), g(·, 1) has been solved for and hence provides a lower bound on the search

space as indicated by the red, monotonically increasing line. However, there is no upper bound on

the search space other than n′. At j = bn2+1
2 c (the right panel), g(·, 1) and g(·, n2) are known, and
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the bounds they provide drastically narrow the search space.

Figure 4: Example of binary monotonicity in two states

3.2 Quantitative performance in the RBC model

Table 2 reports the evaluation counts and run times for the RBC model when using the two-state

algorithm with the various concavity techniques. We again treat the first dimension as capital, so

n1 = n′ but n1 does not necessarily equal n2. For ease of reference, the table also reports these

measures when exploiting monotonicity only in k. The speedup of the two-state algorithm relative

to the one-state algorithm ranges from 1.7 to 3.7 when considering evaluation counts and 1.2 to

2.4 when considering run times. Exploiting monotonicity in k and z, even without an assumption

on concavity, brings evaluation counts down to 2.9. This is marginally better than the “simple-

simple” combination seen in Table 1, which had a 3.0 count for these grid sizes. However, when

combining two-state binary monotonicity with binary concavity, evaluations counts drop to 2.2.

This significantly improves on the simple-simple 3.0 evaluation count and is only around twice as

slow as knowing the true solution.

Monotonicity Concavity Eval Time Eval Speedup Time Speedup

k only None 10.7 0.42 − −
k only Simple 6.8 0.29 − −
k only Binary 3.7 0.19 − −
k and z None 2.9 0.18 3.7 2.4
k and z Simple 2.4 0.16 2.8 1.8
k and z Binary 2.2 0.16 1.7 1.2

Note: Time is in seconds; the speedups give the two-state algorithm improvement
relative to the one-state; grid sizes of n1 = n′ = 250 and n2 = 21 are used.

Table 2: Run times and evaluation counts for one-state and two-state binary monotonicity
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How the two-state algorithm’s cost varies in grid sizes can be seen in Figure 5, which plots

evaluations counts per state as grid sizes grow while fixing the ratio n1/n2 and forcing n1 = n′ (for

this figure, concavity is not exploited). The horizontal axis gives the number of states in log2 so

that a unit increment means the number of states is doubled. In absolute terms, the evaluations

per state are below 3 for a wide range of grid sizes. While the overall performance depends on the

n1/n2 ratio with larger ratios implying less efficiency, in all cases the evaluation counts fall and

appear to asymptote as grid sizes increase.

Figure 5: Two-state algorithm’s empirical O(n1n2) behavior for n1 = n′ and n1/n2 in a fixed ratio

3.3 Theoretical cost bounds

While Figure 5 suggests the two-state algorithm is in fact O(n1n2) as n1, n2 and n′ increase (holding

their proportions fixed), we have only been able to prove this is the case for a restricted class of

optimal policies:4

Proposition 2. Suppose the number of states in the first (second) dimension is n1 (n2) and the

number of choices is n′ with n1, n2, n
′ ≥ 4. Further, let λ ∈ (0, 1] be such that for every j ∈

{2, . . . , n2− 1} one has g(n1, j)− g(1, j) + 1 ≤ λ(g(n1, j + 1)− g(1, j − 1) + 1). Then, the two-state

binary monotonicity algorithm requires no more than (1 + λ−1) log2(n1)n
′nκ2 + 3(1 + λ−1)n′nκ2 +

4n1n2 + 2n′ log2(n1) + 6n′ evaluations of π where κ = log2(1 + λ).

4We abuse notation in writing O(n1n2) to emphasize the algorithm’s performance in terms of the total number
of states, n1n2. Formally, for n1/n2 = ρ and n1 = n′ =: n, O(n1n2) should be O(n2/ρ).
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For n1 = n′ =: n and n1/n2 = ρ with ρ a constant, the cost is O(n1n2) with a hidden constant

of 4 if (g(n, j)− g(1, j) + 1)/(g(n, j + 1)− g(1, j − 1) + 1) is bounded away from 1 for large n.

For any function monotone in i and j, the restriction g(n1, j) − g(1, j) + 1 ≤ λ(g(n1, j + 1) −
g(1, j − 1) + 1) is satisfied for λ = 1. However, for the algorithm’s asymptotic cost to be O(n1n2),

we require, essentially, λ < 1. When this is the case, the two-state algorithm—without exploiting

concavity—is only four times slower asymptotically than when the optimal policy is known. In the

RBC example, we found that (g(n, j)− g(1, j) + 1)/(g(n, j+ 1)− g(1, j− 1) + 1) was small initially

but grew and seemed to approach one. If it does limit to one, the asymptotic performance is not

guaranteed. However, the two-state algorithm has shown itself to be very efficient for quantitatively-

relevant grid sizes.

4 Extension to a class of non-monotone problems

In this section, we briefly describe how the model can be applied to a class of problems with

potentially non-monotone policies. Our canonical problem is to solve, for i = 1, . . . , n,

V (i) = max
c≥0,i′∈{1,...,n′}

u(c) +W (i′)

s.t. c = z(i)− w(i′),

(5)

where u′ > 0, u′′ < 0 with an associated optimal policy g. Here, as before, i and i′ can be thought

of as indices in possibly multidimensional grids. While this is a far narrower class of problems than

(1), it is broad enough to apply in the Arellano (2008) and RBC models, as well as many others.

If z and W are weakly increasing, then one can show (using the sufficient conditions given in

the next section) that g is monotone. Our main insight is that binary monotonicity can be applied

even when z and W are not monotone by creating a new problem where their values have been

sorted. Specifically, letting z̃ and W̃ be the sorted values of z and W , respectively, and letting w̃

be rearranged in the same order as W̃ , the transformed problem is to solve, for each j = 1, . . . , n,

Ṽ (j) = max
c≥0,j′∈{1,...,n′}

u(c) + W̃ (j′)

s.t. c = z̃(j)− w̃(j′)

(6)

with an associated policy function g̃. Because W̃ and z̃ are increasing, binary monotonicity can be

used to obtain g̃ and Ṽ . Then, one may recover g and V by undoing the sorting. Evidently, this

class of problems allows for a cash-at-hand reformulation with z as a state variable, so the real

novelty of this approach lies in the sorting of W .

Theoretically, this algorithm is asymptotically efficient when an efficient sorting algorithm is

used. Specifically, the sorting for z can be done in O(n log n) operations and the sorting for W

and w in O(n′ log n′) operations. Since binary monotonicity is O(n′ log n) +O(n) as either n or n′

grows, the entire algorithm is O(n log n) + O(n′ log n′) as either n or n′ grows. Fixing n′ = n, this
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is the same O(n log n) cost seen in Proposition 1. Additionally, the online appendix shows these

good asymptotic properties carry over to commonly-used grid sizes in a sovereign default model

with bonds and capital that entails a nontrivial portfolio choice problem.

5 Sufficient conditions for monotonicity

In this section, we provide two sufficient conditions for policy function monotonicity. The first, due

to Topkis (1978), is from the vast literature on monotonicity.5 The second is novel (although an

implication of the necessary and sufficient conditions in Milgrom and Shannon, 1994) and applies

to show monotonicity in the Arellano (2008) model and sorted problem (6), whereas the Topkis

(1978) result does not.

The Topkis (1978) sufficient condition has two main requirements. First, the objective function

must have increasing differences. In our simplified context, this may be defined as follows:

Definition 1. Let S ⊂ R2. Then f : S → R has weakly (strictly) increasing differences on S if

f(x2, y)− f(x1, y) is weakly (strictly) increasing in y for x2 > x1 whenever (x1, y), (x2, y) ∈ S.

For smooth functions, increasing differences essentially requires that the cross-derivative f12 be

non-negative. However, smoothness is not necessary, and we include many sufficient conditions for

increasing differences in the online appendix.

The second requirement is that the feasible choice correspondence must be ascending. For our

purposes, this may be defined as follows:

Definition 2. Let I, I ′ ⊂ R with G : I → P (I ′) where P denotes the power set. Let a, b ∈ I with

a < b. G is ascending on I if g1 ∈ G(a), g2 ∈ G(b) implies min{g1, g2} ∈ G(a) and max{g1, g2} ∈
G(b). G is strongly ascending on I if g1 ∈ G(a), g2 ∈ G(b) implies g1 ≤ g2.

One way for the choice set to be ascending is for every choice to be feasible. An alternative we

establish in the online appendix is for feasibility to be determined by inequality constraints such as

h(i, i′) ≥ 0 with h increasing in i, decreasing in i′, and having increasing differences.

Now we can state Topkis’s (1978) sufficient condition as it applies in our simplified framework:

Proposition 3 (Topkis, 1978). Let I, I ′ ⊂ R, I ′ : I → P (I ′), and π : I×I ′ → R. If I ′ is ascending

on I and π has increasing differences on I × I ′, then G defined by G(i) := arg maxi′∈I′(i) π(i, i′) is

ascending on {i ∈ I|G(i) 6= ∅}. If π has strictly increasing differences, then G is strongly ascending.

Note that a requirement is that the feasible choice correspondence is ascending while the result

is that the optimal choice correspondence is ascending. If the optimal choice correspondence is

strongly ascending, then every optimal policy is necessarily monotone. However, for simple and

5This literature includes Athey (2002); Hopenhayn and Prescott (1992); Huggett (2003); Jiang and Powell (2015);
Joshi (1997); Majumdar and Zilcha (1987); Milgrom and Shannon (1994); Mirman and Ruble (2008); Mitra and
Nyarko (1991); Puterman (1994); Quah (2007); Quah and Strulovici (2009); Smith and McCardle (2002); Stokey and
Lucas Jr. (1989); Strulovici and Weber (2010); Topkis (1998); and others. The working paper Gordon and Qiu (2017)
gives additional discussion on these papers and how they relate to the sufficient conditions here.
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binary monotonicity to correctly deliver optimal policies, the weaker result that the optimal choice

correspondence is ascending is enough, which we prove in the online appendix.

While the Topkis (1978) result is general, it cannot be used to show monotonicity in the Arel-

lano (2008) model or the sorted problem because their objective functions typically do not have

increasing differences.6 Proposition 4 gives an alternative sufficient condition that does apply for

these problems:

Proposition 4. Let I, I ′ ⊂ R. Define G(i) := arg maxi′∈I′,c(i,i′)≥0 u(c(i, i′)) + W (i′) where u is

differentiable, increasing, and concave.

If c is increasing in i and has increasing differences and W is increasing in i′, then G is

ascending (on i such that an optimal choice exists). If, in addition, c is strictly increasing in i and

W is strictly increasing in i′, or if c has strictly increasing differences, then G is strongly ascending.

While the objective’s functional form is restrictive, it still applies in many dynamic programming

contexts with u ◦ c as flow utility and W as continuation utility. The online appendix shows how

Propositions 3 and 4 may be used to establish monotonicity in the RBC and Arellano (2008) models,

respectively.

6 Conclusion

Binary monotonicity is a powerful grid search technique. The one-state algorithm is O(n log n) and

an order of magnitude faster than simple monotonicity in the Arellano (2008) and RBC models.

Moreover, combining it with binary concavity guarantees O(n) performance. The two-state algo-

rithm is even more efficient than the one-state and, for a class of optimal policies, gives O(n1n2)

performance without any assumption of concavity. Binary monotonicity is also widely applicable

and can even be used in a class of non-monotone problems. While binary monotonicity should

prove useful for concave and non-concave problems alike, its use in the latter—where few solution

techniques exist—seems especially promising.
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A Additional algorithm details

This appendix gives our implementation of binary concavity and the two-state algorithm. The

working paper Gordon and Qiu (2017) contains a non-recursive implementation of the one-state

binary monotonicity algorithm.

A.1 Binary concavity

Below is our implementation of Heer and Maußner (2005)’s algorithm for solving maxi′∈{a,...,b} π(i, i′).

Throughout, n refers to b− a+ 1.

1. Initialization: If n = 1, compute the maximum, π(i, a), and STOP. Otherwise, set the flags

1a = 0 and 1b = 0. These flags indicate whether the value of π(i, a) and π(i, b) are known,

respectively.

2. If n > 2, go to 3. Otherwise, n = 2. Compute π(i, a) if 1a = 0 and compute π(i, b) if 1b = 0.

The optimum is the best of a, b.

3. If n > 3, go to 4. Otherwise, n = 3. If max{1a,1b} = 0, compute π(i, a) and set 1a = 1.

Define m = a+b
2 , and compute π(i,m).

(a) If 1a = 1, check whether π(i, a) > π(i,m). If so, the maximum is a. Otherwise, the

maximum is either m or b; redefine a = m, set 1a = 1, and go to 2.

(b) If 1b = 1, check whether π(i, b) > π(i,m). If so, the maximum is b. Otherwise, the

maximum is either a or m; redefine b = m, set 1b = 1, and go to 2.

4. Here, n ≥ 4. Define m = ba+b2 c and compute π(i,m) and π(i,m+ 1). If π(i,m) < π(i,m+ 1),

a maximum is in {m + 1, . . . , b}; redefine a = m + 1, set 1a = 1, and go to 2. Otherwise, a

maximum is in {a, . . . ,m}; redefine a = m, set 1b = 1, and go to 2.
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A.2 The two-state binary monotonicity algorithm

We now give the two-state binary monotonicity algorithm in full detail. To make it less verbose,

we omit references to Π, but it should be solved for at the same time as g.

1. Solve for g(·, 1) using the one-state binary monotonicity algorithm. Define l(·) := g(·, 1),

u(·) := n′, j := 1, and j := n2.

2. Solve for g(·, j) as follows:

(a) Solve for g(1, j) on the search space {l(1), . . . , u(1)}. Define g := g(1, j) and i := 1.

(b) Solve for g(n1, j) on the search space {max{g, l(n1)}, . . . , u(n1)}. Define g := g(n1, j)

and i := n1.

(c) Consider the state as (i, i, g, g). Solve for g(i, j) for all i ∈ {i, . . . , i} as follows.

i. If i = i+ 1, then this is done, so go to Step 3. Otherwise, continue.

ii. Letm1 = b i+i2 c and compute g(m1, j) by searching {max{g, l(m1)}, . . . ,min{g, u(m1)}}.
iii. Divide and conquer: Go to (c) twice, once redefining (i, g) := (m1, g(m1, j)) and

once redefining (i, g) := (m1, g(m1, j)).

3. Here, g(·, j) and g(·, j) are known. Redefine l(·) := g(·, j) and u(·) := g(·, j). Compute g(·, j)
for all j ∈ {j, . . . , j} as follows.

(a) If j = j + 1, STOP: g(·, j) is known for all j ∈ {j, . . . , j}.

(b) Define m2 := b j+j2 c. Solve for g(·,m2) by essentially repeating the same steps as in 2

(but everywhere replacing j with m2). Explicitly,

i. Solve for g(1,m2) on the search space {l(1), . . . , u(1)}. Define g := g(1,m2) and

i := 1.

ii. Solve for g(n1,m2) on the search space {max{g, l(n1)}, . . . , u(n1)}. Define g :=

g(n1,m2) and i := n1.

iii. Consider the state as (i, i, g, g). Solve for g(i,m2) for all i ∈ {i, . . . , i} as follows.

A. If i = i+ 1, then this is done, so go to Step 3 part (c). Otherwise, continue.

B. Letm1 = b i+i2 c and compute g(m1,m2) by searching {max{g, l(m1)}, . . . ,min{g, u(m1)}}.
C. Divide and conquer: Go to (iii) twice, once redefining (i, g) := (m1, g(m1,m2))

and once redefining (i, g) := (m1, g(m1,m2)).

(c) Go to Step 3 twice, once redefining j := m2 and once redefining j := m2.

While one could “transpose” the algorithm, i.e., solve for g(1, ·) in Step 1 rather than g(·, 1) and

so on, this has no effect. The reason is that the search space for a given (i, j) is restricted to

[g(i, j), g(i, j)] ∩ [g(i, j), g(i, j)]. In the transposed algorithm, the search for the same (i, j) pair

would be restricted to [g(i, j), g(i, j)] ∩ [g(i, j), g(i, j)]. Evidently, these search spaces are the same

as long as i, i, j, j are the same in both the original and transposed algorithm. This is the case
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because—in both the original and transposed algorithm—i is reached after subdividing {1, . . . , n1}
in a order that does not depend on g and similarly for j.

B Calibration and computation details

This appendix gives additional calibration and computation details.

For the growth and RBC model, we use u(c) = c1−σ/(1− σ) with σ = 2, a time discount factor

β = .99, a depreciation rate δ = .025, and a production function zF (k) = zk.36. The RBC model’s

TFP process, log z = .95 log z−1 + .007ε with ε ∼ N(0, 1), is discretized using Tauchen (1986)’s

method with 21 points spaced evenly over ±3 unconditional standard deviations. The capital grid

is linearly spaced over ±20% of the steady state capital stock. The growth model’s TFP is constant

and equal to 1, and its capital grid is {1, . . . , n}. A full description of the RBC model may be found

in Aruoba et al. (2006).

For the Arellano (2008) model, we adopt the same calibration as in her paper. For n bond

grid points, 70% are linearly spaced from −.35 to 0 and the rest from 0 to .15. We discretize the

exogenous output process log y = .945 log y−1 + .025ε with ε ∼ N(0, 1) using Tauchen (1986)’s

method with 21 points spaced evenly over ±3 unconditional standard deviations.

All run times are for the Intel Fortran compiler version 17.0.0 with the flags -mkl=sequential

-debug minimal -g -traceback -xHost -O3 -no-wrap-margin -qopenmp-stubs on an Intel Xeon

E5-2650 processor with a clock speed of 2.60GHz. The singly-threaded jobs were run in parallel

using GNU Parallel as described in Tange (2011). When the run times were less than two min-

utes, the model was repeatedly solved until two minutes had passed and then the average time per

solution was computed.
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