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Abstract 
Entropy considerations provide a natural esti- 

mate of the number of comparisons to sort incom- 
pletely shuffled data, which subsumes most previ- 
ous measures of configurational complexity. Sim- 
ple modifications to insertion sort and merge sort 
improve their performance on such data. The 
modified merge sort proves efficient both in theory 
and in practice. 

Introduction 
The problem of sorting incompletely shuffled 

data in random access memory is intuitively quite 
simple. It is often easy to tell at a glance whether 
some configuration is easy to sort, that is, whether 
fewer than lgN! comparisons are necessary. For 
instance, in updating data bases, a common tech- 
nique is to sort recent additions independently, then 
merge them with the previously sorted data. This 
requires 0 (MlgM +N) comparisons, where M is 
the number of recent additions. It is also common 
to use insertion sort for checking data in which a 
few elements are slightly misplaced. The question 
then arises: what are useful classes of 
configurations for which fewer than 0 (N&N) 
comparisons are necessary?, Various competing 
measures of disorder have been proposed, often 
together with special sorting algorithms tuned to 
those particular measures. l12v3 Until recently, meas- 
ures have often described only worst case perfor- 
mance, or have given overly imprecise estimates of 
complexity. Recent work by Petersson and Moffat4 
has to a great extent unified these measures. This 
paper discusses an alternative approach using infor- 
mation theoretic and combinatorial techniques. 

From an information theoretic viewpoint, the 
number of comparisons needed to sort a permuta- 
tion is an upper bound on the Kolmogorov com- 
plexity of the permutation. A sorting algorithm gen- 

*Computer Science Research Group, University of California 

at Berkeley, Berkeley, CA 94720. 

erates a string of comparisons unique to each per- 
mutation. These strings form a prefix-free encod- 
ing for permutations. Since there are N 1 permuta- 
tions, most permutations will require at least 1gN ! 
comparisons. The challenge is to determine classes 
of permutations which require fewer, and to con- 
struct sorting algorithms whose comparison counts 
approach the information theoretic limit within 
these classes. 

Desirable Properties 
We list some properties that a sorting algo- 

rithm should have for its comparison count to 
resemble Kohnogorov complexity (K-complexity). 
Each desideratum reflects the length of some sim- 
ple information theoretic encoding of permutations, 
and has a common analog in statistical mechanics. 
(The original motivation for these desiderata was 
the Kolmogorov-Sinai entropy5 of statistical phy- 
sics.) Most previous measures of disorder are sub- 
sumed by these properties. 
Define C(rc) to be the number of comparisons 
needed to bring permutation R: i + Zi into order. 

1. Reversal. 
Let -rr: i + XN+l-i. Define a sorting algorithm to 

be optimal over reversal when for any permutation 
fL 

c (-7c) = 0 (C (7c)). 

(Here = 0 (C (rr)) represents I UC(~) + bN for 
some constants a and b, and for all N .) The K- 
complexity of -rr is within a small additive constant 
of rc, as --‘II: can be encoded as “R = [encoding]; 
print 4. 

2. Inversion. 
Define a sorting algorithm to be optimal over 

inversion when for any permutation rc, 
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c (n-1) = 0 (C(n)). 
3. Composition. 

Let p.cr be a decomposition of ‘it. Define a sorting 
algorithm to be optimal over composition if 

c m = 0 (C (PI) + 0 (C cm 

for all decompositions of x. Later in the paper it is 
shown that full optimal&y over composition is not 
feasible. 

These properties define relations between the 
comparison counts for different permutations 
without actually limiting the count for any one per- 
mutation. We now restrict the comparison counts 
for specific permutations. 

4a Weak segmentation. 
Assume that rt can be cut into S segments such 

that 5 5 rrk for all j in segment i and all k in seg- 
ment i+l. Let Ci be the number of comparisons to 
sort segment i alone. A sorting algorithm is 
optimal over weak segmentation if 

C (n) = 0 (,$(Ci + lglvi )) = 0 W + t$G 1 

Only ElgN; = 0 (N) comparisons are necessary to 
distinguish the lengths of the S segments, as it is 
possible to express Ni in 2lgNi bits. 

4b. Strong segmentation. 
Assume that the sequence of segments from 4a is 

scrambled without changing their internal order. 
An algorithm is optimal over strong segmentation if 

Overhand shuffling, or block optimality,4*6 is a spe- 
cial case of strong segmentation, where 

t 
Ci+SlgN= (Ni-l)+SlgN=N-S+SlgN, 

,= 8 I= 

since perfectly ordered sequences require only 
N - 1 comparisons. (Overhand shuffling is the 
familiar technique of dropping short runs of cards 
from one hand into the remainder of the deck held 
in the other.) 

51. Repeated keys. 
Assume there are S IN distinct keys. A sorting 

algorithm is optimal over repeated keys if 

C(n)=O(N +lg $&)=O(N +@iLg#) 1= i 

where Ni is the number of elements with key i , and 
lg(N!/nNi !) is simply the entropy of a 

configuration with restricted keys. When S=N, this 
reduces to the usual C (rc) = 0 (1gN !). Although a 
configuration with repeated keys is not strictly a 
permutation, it can be made so by requiring stabil- 
ity. This leads to the next case. 

5b. Riffle shuffles (riffles). 
Riffles are the other common form of card 

shuffling, where the deck is cut, and the two sec- 
tions are interleaved randomly, without changing 
order within a section. 
Definition of an S-way riffle. A permutation rt is an 
S -way riffle if rr can be constructed by dividing the 
identity into S segments with lengths Ni, and inter- 
leaving the segments so that each remains mono- 
tonic. This is equivalent to requiring that rr-l con- 
sist of S runs, within which @I, rt~l, and rt$ are 
monotonic. 

A sorting algorithm is optimal over riffles if 

C(n)=O(N + ’ Nilg$). 
T I= 

This is a simple generalization of optimality for 
repeated keys, which can be considered as a riffle 
whose segments consist of runs of equal keys. 

5c. Runs. 
Assume that rt consists of S monotonic runs, with 

Ni the length of run i. Runs have the same com- 
plexity as riffle shuffles, and the same definition for 
optimality. Optimality over runs is a corollary of 
properties 5b and 2, as the inverse a permutation 
consisting of runs is a riffle. Note that this is not 
the usual measure of optimality over runs,t N IgS , 
which best applies only to runs of equal length. 

These properties subsume most previous 
measures of disorder, including Hist, Lot, and 
SMS .4 The possible exception is Reg .* 

LOC Z 
7 

max(lg 1 Xi - %-II , 1) 
8, 

Hist 3 
ci 

max(lg I rr? - ~21 I , 1) 

Reg = $max(log yj?((i-t)x( TCi -ITS I }. 1) 

SMS : iumber of shuffled monotone subsequences. 

Hist, Lot, and SMS together subsume all other 
measures of complexity.4 

* ln fact, Hid, La, and Reg are usually &fined in terms of 
difference at the time of insertion by insertion sort, but this 
makes only 0 (h’) difference and complicates analysis. Also, 
the usual definition of Reg is z(lg(t+l xi -R-, 1 )); replacing 

addition with multiplication supplies the necessary bits for ex- 
pressing both I and 1 % - q-, 1 and better reflects information 
theoretic complexity. 
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The five properties listed here form tighter 
bounds on complexity than other measures, which 
often are accurate only within a factor of two (Hist, 
Lot, and Reg), or only describe worst case 
behavior @MS). For our purposes, it will also be 
necessary to distinguish strong segmentation from 
the other desiderata, a distinction not made by 
difference-based measures like Hist , Lot , and Reg. 

Data Compression of Comparison Strings 
Consider the comparison trace of any (stable) 

sorting algorithm. The i tb bit represents the sense 
of the i th comparison, with 0 representing 5 and 1 
representing >. If the trace has fewer than 1gN ! 
bits, then the sorting algorithm is also a data 
compression algorithm. (It may be possible to 
compress the trace further after sorting is com- 
plete.) In the cases of insertion sort and merge sort, 
the two most common stable sorts, it is sometimes 
possible to compress data on the fly, reducing the 
number of comparisons. This is achieved by using 
different searching strategies for making insertions 
into an ordered list. 

Consider the complexity of inserting an ele- 
ment x into an ordered list of i-l elements, 
[x 1 , . ..Ji-t]. Insertion SOlt uses li comparisons, 
where li is i minus the rank of x in [XI, . . ..xi-11. 
The total comparison count is at most Inv (z)+N-1, 
where Wnv (rc) < N2/2, is the number of nearest 
neighbor swaps needed to bring 7c into order. This 
can be improved in various ways. First, a binary 
search uses at most Igi comparisons. This is best 
conceived as insertion into a balanced tree. This 
uses 

C(n)< 
t 

Igi <N&N 
I= 

comparisons. However, the excellent behavior of 
insertion sort for small Inv has been lost. 
It can be regained by using an exponential search7 
beginning at Xi-l. An exponential search compares 
x first with Xi-l. Then x is compared with Xi-2, 
xi-49 xi-89 increasing by powers of two until 
x > Xi-j. From here, a binary search is made on the 
j/2 positions between Xi-j and xi-j/z. This may be 
considered as a linear search up the rightmost 
branch of a balanced tree, followed by a binary 
search down the tree. Figure la shows an example 
of this. 

4 
\ 

a 
Figure la. Insertion sort with exponential 
search. Arrows demonstrate insertion 
between elements i-4 and i-5. 6 = 21g5 com- 
parisons are necessary. 

Insertion sort with exponential search uses 

C (7C) = 
fi 

tTMQlgk, 1) < 2N lgh7 
‘- 

comparisons. Compared to insertion sort, the worst 
case occurs when every insertion is between ele- 
ments xi-2 and Xi-s. In this case, at most 
(4/3)Iflv(1r) comparisons are used. An analogous 
algorithm using a more complicated data structure 
can be found in Mehlhom (8). 

The algorithm can be extended further by 
replacing the linear search on the rightmost branch 
with an exponential search. An example is shown 
in Figure lb. 

Figure lb. Insertion sort with double ex- 
ponential search. lg5 + 21glg5 = 6 comparis- 
ons are again necessary. 

Insertion sort with double exponential search 
uses 

C(X) = 
t 

(lgli + max(2lglgli , 1)) < N lglv + 2N lglglv 
I= 

comparisons, and at most (5/3)Inv (rr) comparisons. 
Further levels of extended search are described in 
Bentley and Yao,7 and lead to encoding li bits in 
U(li) bits, where U(h) is the universal code, 
requiring the sum of positive terms in 

(lgli + 1) + (lglgli + 1) +(lglglgli + 1) + ’ f ’ 

bits. All of these strategies reflect methods from 
elementary information theory for encoding a 
number li in 0 (lgli ) bits.9 

Theorem: Insertion sort with exponential 
search (ISES) is optimal over inversion and weak 
segmentation. 
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ProofiNotethatZiII~i-il +lforalli,andthat 
insertion sort with exponential search uses at most 

C(7C) I 
t? 

max(2lg( 1 ‘ITi - i 1 + l), 1) 
I- 

comparisons. Since 1 7& -i I = I 7C$ - 7Ci 1 , C(7C) 
is approximately C(7tl). For weak segmentation, 
Ii remains the same for points on the interior of the 
segments. For the first endpoint of a segment, li is 
the length of the previous segment. 

By searching the leftmost branch whenever 
the previous insertion occurred to the left of the 
root, we can still get at most (5/3)Inv@) and 
NlglV + Vvlglglv comparisons. This maintains the 
properties of ISES, with the addition of optimality 
over reversal. 

For the final modification, insert element i by 
comparing it with the i-1st element of the original 
permutation, and search from there.lp6 If an 
exponential search is used, at most 

C(7C)12 
fi 

max(lg1 dil ,l)IZOC(Z) 
‘- 

comparisons are necessary, where di is the distance 
between the i -1st and i th insertions; now the quan- 
tity 1 1; - Zi-11 = 1 7Ci - ‘IFi- 1 is compressed, rather 
than Zi alone.4 We call this strategy insertion sort 
with differential search (ISDS). 

Theorem: ISDS is optimal over reversal, 
weak and strong segmentation, and runs. 
Proof: For the elements of run j, 
maX(2lg 1 ‘Itilci-11 , 1) is at most uVjlg(N/Nj), 
which occurs when elements in the run are uni- 
formly spaced. Proofs for segmentation are as for 
ISES above. 

Using 21g 1 7Ci *i-i 1 comparisons to make 
insertion i is the same estimate of complexity 
achieved by encoding nearest neighbor differences 
in 21g 1 nilEi- 1 bits. 

ISDS lacks optimality over inversion and 
composition. 

Observation: No sorting algorithm can 
achieve optimality over composition while main- 
taining optimal&y over both runs and strong seg- 
mentation without analysis of the comparison trace. 
Let p be a permutation consisting of S equal runs, 
and CJ be an overhand shuffle. Optimality over 
composition would require 
C (p-a) = 0 (NlgS + C (0)). The composition will 
consist of S pieces corresponding to the S runs of 
p. Each piece is a miniature of the overhand 
shuffle, with segments shorter by a factor of S. 
0 (C (o)-1gS) = 0 (C (6)) comparisons will be 

necessary to sort any one of these pieces. If each 
piece is sorted independently, a total of 
0 (SC (0) + NlgS) comparisons will be made. To 
achieve full optimality over composition, the 
configurations of some of the pieces must be sorted 
by extrapolation from the others. This requires 
analysis of the comparison trace. 

However, insertion sort is optimal over com- 
position for a limited class of permutations. Let 
npk be a decomposition of p into permutations 
that require optimality only over runs, inversion, 
and weak segmentation for efficient sorting. Define 
an algorithm to be optimal over weak composition 
if 

c (P) = 0 qc (Pr )) 

Theorem: Insertion sort with differential 
search is optimal over weak composition. 
Proof (sketch): composition of m runs with n runs 
leads to 0 (mn ) runs, and so requires 
0 (N (lgm+lgn )) comparisons. Weak segmentation 
never changes relative positions by more than a 
fixed amount, and 
lg( 1 Iti+&- 1 + C) I lg 1 IEi*i-t 1 + 1gC. Since 
ISDS is not optimal over inversion, there are no 
further cases. 

Further recursive iteration of exponential 
search7 leads to an insertion sort with differential 
search requiring at most 

C(n)s & u(l G*i-II ) I- 
comparisons, which corresponds to encoding 
nearest neighbor differences using their universal 
encodings. This too is optimal over runs, strong 
segmentation, and weak composition. 

Merge Sort 
To get optimal@ over inversion we must 

also require 

C(~)=O(N+I=lgln;l-~~~I )=O(N+Hist(n)) 
f: 

comparisons. If this is achieved while maintaining 
optimality over weak composition, all desiderata 
except full optimality over composition will be 
satisfied. With a simple modification, merge sort 
comes close. 

Let lists A =[AI,A~;.. A,] and 
B = [B1, . . . . B,] be two adjacent lists to be merged 
(called hereafter “merge lists”), and assume 
A1 > Bl. In this case element AI must be inserted 
into list B. The usual technique here is a linear 
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search of length Ii for insertion i. Again 
“compress” 1; bits into max(2lgli. 1) bits, using 
the same method of an exponential search followed 
by a binary search. We name this algorithm merge 
sort with exponential search (MSES). The worst 
case again occurs for insertions after element two, 
where 4 comparisons are needed, rather than 3 as in 
traditional merge sort. This yields a worst case of 
(4/3)NlgN comparisons. For “random” data, 
where insertions occur after position j with fre- 
quency 2-j. the expected number of comparisons is 
=l.O8N(lgN - 1). A variant of this algorithm was 
first described in (6), where natural merge sort was 
used to minimize recopying. 

Theorem: Merge sort with exponential 
search is optimal over reversal, inversion, weak 
composition, runs, riffles, and weak segmentation. 
It is suboptimal for strong segmentation, where it 
requires an additional 
0 (S lgNlg(N/S)) = 0 (S 1gNlglgN) comparisons. 
(A proof is sketched in the appendix.) 

Optimality over strong segmentation would 
require an analysis of the comparison trace, as 
strong segmentation, or overhand shuffling, leads to 
correlations between different merge passes. How- 
ever, within the class where MSES is optimal, 
further improvement is possible.* Using natural 
merge improves the behavior over runs by up to 
N-l comparisons. However, this comes at the 
expense of about SN comparisons for random data. 
More consistent improvement comes from making 
a hybrid of exponential search and linear search 
(MSLS) merge sorts. This can be done with no 
memory of the comparison trace, simply switching 
to linear search when a short run occurs between 
insertions, and to exponential search when a long 
run occurs. An effective heuristic is to use linear 
search until a run of length 7 occurs, and to return 
to linear search when a run of length 1 occurs. The 
worst case versus MSES occurs for alternating seg- 
ments of lengths near 30 and length 1, where the 
hybrid uses 3j2 times as many comparisons. (This 
can occur for carefully constructed overhand 
shuffles.) The worst case behavior versus MSLS 
remains (4/3)N 1gN. However, the average number 
of comparisons on random data is less than 1.003 
times greater than MSLS. The behavior on runs and 
riffles is also close to the information theoretic 
limit, at 

Analogous hybridization of natural and pairwise 
first passes makes a similar improvement in the 
0 (N) term for runs. 

Figures 2a-c show the performance of MSES 
and the MSES/MSLS hybrid for some of the cases 
discussed previously. Figures 2a and 2c were gen- 
erated by composition of IL-way and 3-way riffles 
and runs. The MSEVMSLS hybrid requires up to 
.6N extra comparisons for compositions of unbal- 
anced riffles. Figure 2b was generated by extract- 
ing a run of length N -MS, scrambling it, and 
riffling it back. 

H =(N-LMS)+ lg((LMS)!)+ 
2((N-LMS)lg(NI(N-LIMS)) + LMS lg(N /MS)) 

This demonstrates the behavior for shuffled mono- 
tonic sequences with unbalanced lengths. In all 
cases,N = 218. 

runs, N (l+logS )-(S (l+loge )) 

0 5 10 15 
logs 

Figure 2a. Performance in comparisons of hybrid 
MSES/MSLS for runs and riffles. The tick-mark 
at right shows the information theoretic limit for 
random data, log(N !). 

3 

1.0031g Nl >TpT +0(N). 

* Similar improvement of insertion sort is also possible. 
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0 5 10 15 20 
LMS 

Figure 2b. Performance on Longest Monotonic 
Subsequence (LMS). Comparison counts for 
MSES, MSLS, the hybrid, and the hybrid with na- 
tural merging are shown. The steeper of the two 
hybrid curves is motied natural merge. The in- 
formation theoretic limit is shown for comparis- 
on. 

A 4 Ib 1; : 
2logS 

Figure 2c. Performance of hybrid on shuffled 
monotone sequences. The three curves result 
from different orders of composition of logs runs 
with logs riffles. 

Performance 
We have shown that merge sort with 

exponential search, and its hybrid with MSLS, have 
comparison counts near the information theoretic 
limit for a large class of permutations. We have 
shown that further improvement, to find other 
classes of low-complexity permutations, would be 
impractical, as analysis of the comparison trace 
would be required. (This is a time-intensive propo- 
sition!) Whether MSES is in fact practical, that is 
whether it actually reduces the time spent sorting, 

can only be found by experiment. 
In tests on the Sun SPARC station, on ran- 

dom data, hybrid MSES/MSLS is at most 1% 
slower (in CPU time, not just comparisons) than 
MSLS alone. We’ll not get in to what might 
comprise “real” data here. However, for sorting 
lines of C code, the text of this paper, and 
PostScript, the MSES/MSLS hybrid used between 
lg(N !)-2.5N and lg(N !)-SN comparisons, and 
between 10% and 30% less time than MSLS alone. 
On this paper sorted as words (as for a spelling 
checker), the hybrid used about lg(N!)-.5N, or 
about .951g(N !) comparisons. Hybrid 
MSES/MSLS is competitive with Quicksort, even 
on random data Versus BSD UMX* system qsort, 
the hybrid is faster for all data. Versus the fastest 
readily available qsort, lo the hybrid is 25% slower 
on mndom integers; for random strings, time differ- 
ences are negligible. 

Discussion 
We have defined several intuitively reason- 

able properties corresponding to various classes of 
presortedness. For these classes, we have made 
accurate estimates of information theoretic com- 
plexity. For a large and important subset of this 
class, merge sort with hybrid exponential and linear 
search is near-optimal. Further qualitative 
improvement of merge sort, to include optima&y 
over a larger class, would come at a penalty in both 
time and space, and likely would prove impractical. 

Recent studies by Moffat et al” has shown 
that splaysort, and other tree-based strategies, are 
optimal over strong segmentation, runs/riffles and 
inversion. In particular, their experiments indicate 
that splaysort is Reg-optimal. However, splaysort 
requires = 1.45NlgN comparisons for random data, 
significantly more than the MSES/MSLS hybrid. 
Merge sort with competitive search strategies is 
likely to maintain two notable advantages. Its mul- 
tiplicative constant near unity (~1.003NlgN) gives 
expected behavior only slightly worse than MSLS 
alone on random data, and a much larger set of per- 
mutations where it actually uses fewer than 1gN ! 
comparisons. In comparison with MSLS, hybrid 
MSES/MSLS has minimal computational overhead, 
requiring no additional memory, about 2 additional 
operations per comparison, and about 1% more 
CPU time on random data. Merge sort with hybrid 
exponential and linear search is thus the strategy of 
choice for even slightly presorted data. 

*UNIX isatrademark ofAT&T. 
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Appendix 
l Merge sort with exponential search (MSES) has 
nearly optimal efficiency when merging two lists. 

Let li be the length of the ith insertion-free 
run. MSES requires 

~mN%li, 1) 

comparisons. Assume the positions of the i-2 and 
i+2 insertions into the second list are known. If 
both positions are the same, no comparisons will be 
needed for “insertion” i. If they are different, 
lg(li-2 + li) > lgli comparisons are needed. Thus 
the complexity of merging two sequences is at least 

H 2 zmax(lgli , 1). 
1 

Further modifications that choose between competi- 
tive search strategies (such as hybrid MSES/MSLS) 
will bring MSES nearer to the information theoretic 
limit. 

When merging a list of length N1 with one of 
length N2 L N,, this translates to a worst case 
behavior of 

MSES ignores correlations between merge passes, 
which would be required for optimality over strong 
segmentation, and long-range correlations which 
would be required for full optimality over composi- 
tion. For the other properties, MSES is nearly 
optimal, that is, they correspond to variations in the 
lengths of insertion-free runs (density of inser- 
tions). 
l MSES is optimal over riffle shuffles. 

Define Ni the length of the ith shuffled 
subsequence; its elements will be consecutive after 
sorting. After lg(N /Ni) passes, there will be at 
most Ni runs to be joined end-to-end. In the worst 
case, each run will have one element of the original 
subsequence. The first &Ni passes require at most 
(4/3)Ni Ig(N /Ni ) comparisons for sequence i . Each 
additional pass will double the length of consecu- 
tive runs into which no additional insertions will be 
made. This requires 0 (Ni j2-j ) = 0 (Ni ) com- 

parisons. For future reference, we call a monotonic 
sequence 17 in contiguity when the number of 
merge lists containing elements of q begins to 
decrease exponentially. 
l MSES is optimal over runs. 

When adjacent lists of length 2i are merged, 
either they are both subsequences of a longer run in 
the original configuration, and O(j) comparisons 
are made, or they include adjacent runs from the 
initial configuration, and O(s) comparisons are 
necessary. The first case adds to 0 (Ni) comparis- 
ons for run i over the tkst lylvi passes. the second 
contributes 0 (Ni) comparisons for each additional 
paSS, for a total of 0 (Ni (IgN-&Ni )). The a@u- 
ment can be made more rigorous by showing that 
the algorithm behaves gracefully when merging 
two lists that include subsequences of adjacent 
runs. It does, because adjacent runs need be 
merged only once, even when they are merged 
incrementally. The details are omitted, there are 
about 5 special cases. 

0 O( e 
i lg(N /Ni) comparisons am needed to 

1= 
merge S monotonic sequences with lengths Ni, 
independently of the order of merging. Fist recon- 
sider disjoint sequences, or runs. 

Assume that on the final merge pass 
sequences (1, . . . . k) are merged with sequences 
(k+l, . . . . S ). Assume further that the 6rst passes 
required at most 

comparisons. The final pass merges 
e, 

Ni elements 
1= 

with Ni elements, requiring at most 

comparisons for a total of at most 2 
e 

i lg(N / Ni ). 
I= 

The same proof holds for shuffled sequences, once 
they have been brought into contiguity. Shuffled 
monotonic sequences must first be brought into 
contiguity, requiring the same number of comparis- 
ons as riffle shuffles. Then they must be merged. 
Note that two sequences can be merged with each 
other only once, even if different fractions are 
merged on different merge passes. Thus the argu- 
ment for runs merged in arbitrary order still holds. 
As expected, shuffled monotone sequences are 
twice as complex as the same number of riftles or 
NIIS. 
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This proof can be extended to composition an 
arbitrary numbers of runs with a different number 
of riffles, and to allow optimality over weak seg- 
mentation. In all cases, sequences can be con- 
sidered to have two densities. 
Define n(i)zxr to avoid double subscripts. 
Let X represent a monotonic sequence with ele- 
mentsX(l) ..e X(1 X 1 ). 
Define density in position for sequence X : 

6. 

7. 

C. Levcopoulos, 0. Petersson, and S. Carls- 
son, “Sublinear Merging and Natuml Mer- 
gesort,” in Proc SIGAL International Sympo- 
sium on Algorithms, Lecture Notes in CS, 
vol. 450, Springer-Verlag, 1990. 
J. Bentley and A. Yao, “An Almost Optimal 
Algorithm for Unbounded Searching,” Znfor- 
mation Processing Letters, vol. 5, pp. 82-87, 
1976. 

pr = l/c 17+(X(i))-7+X(i-1)I > 

Define density in value for sequence X : 

8. 

pV = l/c I x(X(i))-x(X(i-1))) > 

K. Mehlhom, “Sorting Presorted Files,” in 
Proc. 4th GI Conference on Theoretical CS, 
Lecture Notes in CS, vol. 67, Springer- 
Verlag, 1979. 

For S sequences X 1 1. . Xs , the complexity of 
merging is 

ow -* I Xal ogPp&)+kp”wclN t 

Riffle shuffles are reflected in pp ; runs in py . Weak 
segmentation is reflected in variations in density, 
and in the positions of endpoints of subsequences. 

9. 

10. 

11. 

T. M. Cover and J. A. Thomas, Elements of 
Information Theory, pp. 144-150, Wiley & 
sons, 1991. 

Merge sort with exponential search behaves 
sub-optimally over strong segmentation because 
there is a strong correlation (low relative entropy) 
between the positions of insertions in different 
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