An efficient method for finding the minimum of a function
of several variables without calculating derivatives

By M. J. D. Powell*

A simple variation of the well-known method of minimizing a function of several variables by
changing one parameter at a time is described. This variation is such that when the procedure
is applied to a quadratic form, it causes conjugate directions to be chosen, so the ultimate rate of
convergence is fast when the method is used to minimize a general function. A further variation
completes the method, and it ensures that the convergence rate from a bad approximation to a
minimum is always efficient. Practical applications of the procedure have proved to be very
satisfactory, and numerical examples are given in which functions of up to twenty variables are

minimized.

1. Introduction

There is no need to stress the importance of the problem
of finding values of n parameters x;, X5, . . ., X,, sO that
the value of a function of these parameters, f(x, X5 . . ., Xp),
is a minimum. Fletcher and Powell (1963) have pub-
lished an account of Davidon’s (1959) conjugate gradient
procedure, which has been found very satisfactory when
first derivatives of the function are available. However,
it is frequently the case that it is laborious or practically
impossible to calculate first derivatives, so there is a
definite need for minimization procedures which-do not
require them. Such procedures include Rosenbrock’s
(1960), the simplex method of Himsworth, Spendley
and Hext (1962), Smith’s method based on conjugate
directions (1962) and, of course, the well-known one of
changing one variable at a time. This last procedure
and some variations of it have been described by Spang
(1962).

A new method has been developed because, of the
above procedures, only Smith’s will find the minimum
of a general quadratic form in a finite number of steps,
and it is essential to be able to find such a minimum to
ensure ultimate fast convergence for a general function
having continuous second derivatives. Smith’s method
has the disadvantage that the first variable, x,, is changed
n times more frequently than the nth, so it is a little
slow in starting from a bad approximation to the mini-
mum. The method to be described has neither of
these deficiencies, and it has the further advantage that
it is practically invariant under linear transformations of
the co-ordinate space. Applications of the new pro-
cedure have been entirely satisfactory, and numerical
comparisons suggest that it is more efficient than
Rosenbrock’s method, which is possibly the most used
at the present time for minimization without derivatives.
However, unlike Rosenbrock’s procedure, the new
method is not designed to recognize constraints on the
variables.

The procedure is defined and the convergence proper-
ties are proved in the next four sections. Section 2
describes how the method of minimization which changes

one variable at a time is modified to find the minimum
of a quadratic form in a finite number of steps; the
proof of the efficacy of the modification is given in
Section 3. In Section 4 the description of an iteration
of the procedure is completed by the more practical
modification which ensures that the rate of convergence
is reasonable from a bad approximation to the minimum.
The theory of this is discussed in Section 5, and, from
this discussion, a result is derived which may be used
to force efficient convergence in many iterative pro-
cedures which search down n independent directions on
each iteration. In Section 6 the criterion for ultimate
convergence is considered, while in Section 7 a simple
application of the procedure is presented. The method
chosen for finding a minimum along a line is described
in Section 8, in Section 9 some program details are
given, and in Section 10 more numerical examples are
set out. The paper is concluded with a discussion in
which an opinion is given on the effectiveness of the
method, the situations in which other known methods
may be preferable and the fields in which it is thought
that existing methods may be improved.

2. How conjugate directions are chosen

Each iteration of the procedure commences with
a search down n linearly independent directions
£, 85 ... B, starting from the best known approxi-
mation to the minimum, p,. These directions are
chosen to be the co-ordinate directions initially, so the
start of the first iteration is identical to an iteration of
the method which changes one parameter at a time.
This latter method is modified to generate conjugate
directions by making each iteration define a new direc-
tion, &, and choosing the linearly independent directions
for the next iteration to be &,, &3, ..., §,, §&. The way
in which g is defined ensures that, if a quadratic is being
minimized, after k iterations the last £ of the n directions
chosen for the (k + 1)th iteration are mutually conjugate.
After niterations all the directions are mutually conjugate,
and it will be proved that in consequence the exact
minimum of the quadratic is found.
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Function minimization without calculating derivatives

Thus an iteration of the basic procedure is as follows.

(i) Forr=1,2,..., ncalculate A, so that f{p,_ +A,§,)
is a minimum and define p, = p,_; + A,E,.

(i) Forr=1,2,...,n— lreplace §, by §,, ;.

(iii) Replace &, by (p, — po)-

(iv) Choose A so that f{p, + A{p, — p,}) is a minimum

and replace p, by py + A{p, — po}-

3. Proof that a quadratic is minimized
If the quadratic function to be minimized is

f(x) = xAx + bx + ¢,
then the directions p and ¢ are defined to be conjugate if
pAq = 0.

For a minimum to be defined it is necessary for the
matrix 4 to be positive definite, but the proof does not
make use of this fact. Consequently the procedure of
Section 2 will find the stationary point of any quadratic
function, if each linear search finds a maximum or
minimum. The proof requires two theorems.

Theorem 1. If gq,, q ..., 4, m<n, are mutually
conjugate directions, then the minimum of the quadratic
f(x), where x is a general point in the m-dimensional
space containing x, and the directions q;, ¢, . . .,
may be found by searching along each of the directions
once only.

The required minimum is the point

Xo + '21 x4,
i-

where the parameters «;, i =1,2,...,m, are such as
to minimize

f{xo + .'%1 aiqi}

= ;1 {o2q,Aq; + o;q;.(2Ax, + b)} + f(xo).
There are no terms in o;e;, i 5= j, because of the mutual
conjugacy of the directions. Consequently the effect of
searching in the direction ¢; is to find «; to minimize

{o39:4q; + o9;.(24x, + b)},

and the resultant value of «; is independent of the other
terms of the function. Hence searching in each of the
directions once only will find the absolute minimum in
the space.

Theorem 2. If x, is the minimum in a space containing
the direction ¢, and x; is also the minimum in such a
space, then the direction (x; — x,) is conjugate to q.
9
By definition b—)\{ flxg + A9} =0atA=0.

Therefore 2MgAq + q.(2Axq +5b) =0, A = 0.
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Also .

Hence

20gAq + q.(2Ax; + b) =0, A = 0.
qA(xy — xo) =0,

which is the condition for conjugacy.

The convergence to the minimum of a quadratic
function in »n iterations will be proved by induction, so
it will be assumed that k iterations have been completed
and that the directions §,,_ ., §n—x+ 25 - - -» &n defined
for the (k + 1)th iteration, are mutually conjugate.
As these were the last k directions of search, applying
Theorem 1, the starting approximation for the (k + 1)th
iteration, p,, is the minimum in a space containing the
directions. By Theorem 1 again, the point p,, defined
in the (k + 1)th iteration, is also the minimum in such
a space. Hence, applying Theorem 2, the new direction
defined by the iteration is conjugate to §,_iy 1,
€, k+2s - - - & SO the general step of the induction is
proved.

The point p,, defined for the second iteration, and the
consequent p, are both minima in the direction §,, so
the second iteration yields a pair of conjugate directions,
thus commencing the induction. After n iterations all
the directions of search are mutually conjugate, so, by
Theorem 1, the required minimum will have been found.

4. Ensuring reasonable convergence

The basic procedure described in Section 2 is modified
to ensure that the rate of convergence to the minimum
is satisfactory, even when the initial approximation is
very poor. The reason why a change has to be made is
that on occasions the basic procedure may choose
nearly dependent directions, and this possibility has
been found to be serious if the function to be minimized
depends on more than five variables. In particular, in
the notation of Section 2, if A; is zero the resultant
directions will not span the full parameter space. There-
fore the modification described in this section allows a
direction other than &, to be discarded, so that the new
direction will always contain an appreciable component
of that which is lost.

In Section 5 it will be shown that sometimes it is
unwise to replace any one of §, §,,..., §, by &, so
the modification allows the old set of linearly independent
directions to be used again. An iteration of the recom-
mended procedure is as follows.

(i) For r=1,2,..., n calculate A, so that
fp,—1 + AE,)is aminimum and define p, = p,_;+A,E,.

(ii)) Find the integer l1<m< n so that
{f(pm— 1) _f(pm)} is and  define
A=f(Pm-1) —f(Pm)-

(iii) Calculate f3 = f(2p, — po), and define f; = f(p,)
and f, = f(p,).

(iv) If either f; > f, and/or

(i =2 + /). (i — o — B > AL — f3)?

use the old directions §,, &,, . . ., §, for the next iteration
and use p, for the next p,, otherwise

m,

a maximum,
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(v) defining & = (p, — po), calculate A so that
f(p, + A) is a minimum, use §;, &, ..., §,_1,
Enits Emizs - En § as the directions and p, + Ag
as the starting point for the next iteration.

A consequence of the above modification is that one
of the mutually conjugate directions may be thrown
away, so that more than # iterations are required to find
the exact minimum of a quadratic. This is unfortunate,
but the next section should convince the reader that the
modification is of value; in fact it was found to be
essential, to minimize a function of twenty variables.

5. Proof that the convergence is always efficient

The modification given in the last section is based on
a very useful result. It is that, if the directions
€., &, ..., E, are scaled so that, in the notation of
Section 3,

i=12,...,n,

EAE, =1,

the determinant of the matrix whose columns are the
vectors §; takes its maximum value if and only if the
directions are mutually conjugate. This is proved in
the following way.

Any set of similarly scaled mutually conjugate direc-
tions, Ny, My, ..., N, is chosen. By definition it will
have the property that

ndn;=98; i=12,..,nj=12,...,n

There is a transformation linking & and 0 of the form
E = .E Uimjs
j=1

and the determinant of the matrix having columns &; is
equal to the determinant of the matrix having columns
¥); multiplied by the determinant of the transformation
matrix U. Now

n n

EiAgj = 21 1§1 UikUjmkA'flz

=

= Z UikUjka
k=1
and, in particular,
U Un=1, i=12,...,n
k=1

Hence the determinant of U does not exceed unity, and
it equals unity only if U is an orthogonal matrix. In
this case

3%} E..j = 31',',
so the directions §; are mutually conjugate.

The consequence of the above theorem is that
€, Es - .., &, should be chosen to make the corre-
sponding determinant as large as possible, and this is
a more powerful criterion than one of orthogonality
because it is independent of linear transformations of
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the parameter space. The criterion is applied by using
the new direction, §, defined by an iteration, if it can
cause the determinant to increase, and by rejecting the
direction the replacement of which causes the new
determinant to be largest. It will now be proved that
the direction which should be discarded, if any, is
E,, 1<m< n, wheremissuchthat{f(p,_ ) —f(p.)}
is a maximum.

Because f{(p;) is a minimum in the direction §;, if §;
is scaled so that

giAE.u' =1,

the displacement from p;_, to p; is

VIfpi—) — f(p)] . & = «;. &, say.

The direction defined by the iteration is

Pn — Po= O‘lgl + aZEZ +.o.o0F c‘ngm
so, if p, — po = n§,, where

gpAgp = 1,

the effect of replacing the column vector §; by the
vector §, is to multiply the determinant of directions
by «;/u. Consequently the direction to be discarded, if
any, is that for which «; is largest, and this is the direction

-

Obviously this replacement should be made only if
om > M, and to calculate u the function values fi, f;
and f;, defined in Section 4, are used. Because these
three function values are equally spaced along §,, the
predicted stationary value of the function along the new
direction is

L (i
e N

and this value is predicted to be a minimum if

(fi—2f,+1f) >0

If the above second difference term is negative, a new
direction should certainly be defined, otherwise p is
predicted as

VU =) £ V(=)

the plus or minus sign depending on whether f; is
greater or less than f;. In the former case it is straight-
forward to show that the old directions should be used
again; in the latter case new directions should be defined
only if, in the notation of Section 4,

VA= V(i =) — V(2= )

The above results have been condensed in the criterion
that p, — p, should not be used for the next iteration if
and only if either f3 > f; and/or

(fi — 262 + )i — fo — D)? > 3A(S, — )%

Because the recommended procedure cannot cause the
determinant of directions to decrease, the efficiency of
the directions of search §;, &,, . . ., §, is never less than
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that of the original co-ordinate directions. If the
co-ordinate directions are poor, improved directions will
be found without difficulty. Therefore it is asserted
that the rate of convergence is always reasonable.

6. The criterion for ultimate convergence

Ideally the ultimate convergence criterion would cause
the iterative procedure to end as soon as the differences
between the predicted values of the variables, x;, and
their actual values at the true minimum were less than
given amounts, ¢, i=12,...,n. However, it is
believed that it is impossible to choose such a con-
vergence criterion which is effective for the most general
function having continuous second derivatives, so a
compromise has to be made between stopping the
iterative  procedure too soon and calculating
f(xy, x5, . . ., x,,) an unnecessarily large number of times.

The obvious criterion is to assume convergence when
an iteration causes each variable to be changed by less
than the required accuracy. It is usually efficacious
because the ultimate rate of convergence is better than
linear, but it sometimes terminates the procedure before
the required accuracy has been achieved. In these cases
there are directions along which the function varies very
slowly, and, because the method may not allow the
function to increase, it must make just small changes in
the variables to detect these directions.

Asthe procedure has been coded as a general subroutine
a very safe convergence criterion was chosen. Conse-
quently it has caused many wunnecessary function
evaluations to be requested, but it has not failed to
yield the required accuracy. It is as follows:

(i) Apply the normal procedure until an iteration
causes the change in every variable to be less than one-
tenth of the required accuracy, say the resultant point
1S a.

(ii) Increase every variable by ten times the required
accuracy.

(iii) Apply the normal procedure until an iteration
causes the change in every variable to be less than one
tenth of the required accuracy again. Say the resultant
point is b.

(iv) Find the minimum on the line through a and b,
say it is c.

(v) Assume ultimate convergence if the components
of (a — ¢) and (b — ¢) are all less than one-tenth of the
required accuracy in the corresponding variables,
otherwise

(vi) include the direction (@ — ¢) in place of §;, and
restart the procedure from (i).

It is based on the assumption that, if the function
varies slowly along some direction, the procedure will
converge to a point on this direction. Therefore two
different starting values are likely to yield the required
minimum or two different points on such a direction,
and, in the latter case, the direction is incorporated in
the directions of search.
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Stage (vi) may be questioned because a check has not
been made that the determinant of directions has
increased. To apply this check requires one to solve a
set of linear equations as well as obtaining estimates of
the relative magnitudes of the directions. Because the
new direction is almost certainly a good one, it is
considered that extra sophistication is unnecessary.

7. The procedure applied to a function of three variables

To illustrate the elements of the method a maximum
of the function

— —__1_ 7
=17 % —+ sin {'%77}/‘2}
+ exp {_ (" z

2
-2

=)

will be found. The function is bounded, and its maxima

occur at

x =y =2z= 1 4/(4n + 1), n integral.

S

The starting point for the procedure is chosen to be
(0, 1, 2), and the progress of the first six iterations is
set out in Table 1.

The most striking feature of this table is that the
function attains the value 2-0000 very quickly, it remains
at this value for six linear searches, and then, on the
last search of the third iteration, the progress is remark-
able. The reason is that the first iteration defines values
of the parameters such that the exponential term of the
function is practically negligible. Therefore searching
along x on the second iteration maximizes the first
term of the function, searching along y maximizes the
second term, and consequently the function value is
2-0000. Because the function depends primarily upon
(x — y) and yz at this point, there is a direction along
which it varies very slowly, so, as has been asserted, the
changes in the parameters are small although the best
approximation is far from the required minimum. To
determine this direction a set of mutually conjugate
directions is built up, the last of the set being n, which
is forced to be conjugate to both z and n;. Therefore n,
is the direction along which the function varies slowly,
so a search along it results in a spectacular change in
the variables. After the third iteration moderately
efficient directions have been defined, and the resultant
convergence to the minimum is very satisfactory. Note
that an inadequate convergence criterion might have
accepted the values of the variables at the end of iteration
No. 2.

8. Finding the minimum along a line

To find the minimum on a line, the following data
must be provided:

(i) a point on the line, p,
(ii) the direction of the line, §,
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(iii) an upper bound to the length of step along the
line, m,

(iv) an order of magnitude of the length of step along
the line, ¢, assumed to be less than m, and

(v) the accuracy to which the minimum is required, e.

The method of minimization must be such as to find
the minimum of a quadratic form, so it is primarily
based on the quadratic defined by three function values.

Initially f(p) and f(p + q&) are calculated, and then
either f(p — q§) or f(p + 24q§) is worked out depending
on whether f(p) is less than or greater than f(p + g&).
These three function values are now used in the general
formula which predicts the turning value of the quadratic
defined by a, fip + a§), b, f(p + bE), ¢ and fip + c§)
to be at (p + d§), where

1 (0 — A + (& — a)fy + (@ — B,
2 G-t C—af+@—bf

It is a minimum if

(b—c)f,,—{—(c—a)f,,—{—(a—b)fC<0
(@a—b)b—c)c—a) )

If the turning value is predicted to be a maximum, or
if the value of d is such that to calculate f(p + d&) a
step greater than m must be taken, the maximum allowed
step is taken in the direction of decreasing f, and the
function value at the point which is furthest from (p + d &)
is discarded, so the prediction may be repeated.

Otherwise d is compared with a, b and ¢, and, if it is
within the required accuracy of one of them, that point
is chosen as the minimum. If it is not, f(p + d§) is
calculated so that the quadratic prediction may be
repeated; the function value which is thrown away out
of fip + ak), flp + bE) and f(p + cE) is normally the
greatest, but it is not if rejecting a smaller one can yield
a definite bracket on a minimum, which would not be
obtained otherwise.

In order to reduce the number of times f(x,, X3, . . ., Xp)
has to be calculated, advantage may be taken of the
fact that three function values are sufficient to predict

d=

32
e +A8)}.
The prediction of the second derivative is

(b —fa +(c — a)fy + (@ —b)fe
(@a—b)b — c)c—a)

so, if after finding the minimum in the direction § the
components of § are scaled by 1/4/D, the next time a
minimum is sought in the same direction the unit second
deviative may be used. In this case just f(p) and
f(p + q&) are sufficient to predict the minimum to be at

(p + d%),

D=—-2.

_Jp +48) —f(p)
q

The criterion given in Section 4 is such that, if a new

d=1q
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Table 1

A function of three variables

ITERATION | DIRECTION x y z f

0 — 0-0000 | 1-0000 | 2-0000 | 1-5000

X 0-3674 | 1-0000 | 2-0000 | 1-5879

y 0-3674 |0-4799 | 2-0000 | 1-9857

z 0-3674 [0-4799 | 2-0827 | 1-9876
2 x 0-4799 {0-4799 | 2-0827 | 2-0000
2 y 0-4799 | 0-4802 | 2-0827 | 2-0000
2 z 0-4799 | 0-4802 | 2-0821 | 2-0000
2 n, 0-4801 | 0-4802 | 2-0821 | 2-0000
3 y 0-4801 | 0-4803 | 2-0821 | 2-0000
3 z 0-4801 | 0-4803 | 2-0815 | 2-0000
3 n, 0-4802 [ 0-4803 | 2-0815 | 2-0000
3 n, 0-7449 [0-7511 | 0-8648 | 2-8320
4 z 0-7449 |0-7511|0-9217 | 2-8387
4 n 0-6401 |0-7509 | 0-9222 12-8670
4 n, 0-6357 | 0-7463 | 0-9426 | 2-8683
4 ny 0-5505|0-7426 . 1-0033 | 2-8768
5 z 0-5505|0-7426 | 1-0472 | 2-8813
5 n, 0-5581(0-7503 | 1-0125 |2-8853
5 n; 0-5627 |0-7505|1-0092 | 2-8853
5 ng 0-7995 [0-9050 | 1-1236 |2-9731
6 n, 0-8159 [0-9218 | 1-0482 |2-9870
6 n, 0-8656 [0-9239 | 1-0127 | 2-9904
6 ny 0-9272 {0-9641 | 1-0424 | 2-9968
6 ns 0-9969 | 0-9964 | 0-9982 | 3-0000

direction is defined, three function values on this direction
will have been calculated, so a prediction of the minimum
may be made immediately. Therefore, it is only during
the first »n linear searches of the first iteration of the
procedure that it is necessary to calculate two function
values, in addition to f(p), for the initial prediction of the
minimum in the direction &.

9. Other programming details

The procedure of this paper has been coded, in
FORTRAN, for the IBM 7030 computer. It is pro-
grammed as a FORTRAN subroutine so a number of
parameters are communicated through the calling
sequence. These are

(i) the number of variables, n,
(i) initial values of the variables x{, x5, . . ., Xp
(iii) the requested accuracy in the components of the

calculated position of the minimum, &, &, . . ., &,
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(iv) a scalar, E, which defines m for each linear search
as the largest number such that the components of m§
do not exceed Ee,, Ee,, .. ., Ee,,

(v) a parameter controlling the amount of information
printed while the procedure is being carried out,

(vi) a parameter to select one of the two ultimate
convergence criteria given in Section 6 of this paper, and

(vii) an integer to limit the total number of iterations.
In addition the user of the subroutine must provide a
sequence of orders to calculate f(x,, x,, . . ., x,) for any
values of the variables.

As recommended in Section 2, the directions §; are
chosen initially to be unit vectors in the co-ordinate
directions, so the value of g for the search in the
direction §; is set to {%5.E.¢;. After each linear search
the directions are scaled to have unit second derivative;
therefore, after the first iteration, the value of g is chosen
to be independent of i. The value of e, the accuracy
to which the minimum is required along a line, is set
so that each parameter is determined to at least 0-05 of
the required final accuracy, except that a relative error
of 3% in a linear search is tolerated.

When an iteration has been completed the ultimate
convergence criterion is tried, and a check is made on
the number of iterations. If these do not cause the
subroutine to be left, the total change in the function
due to the last iteration, Af, is noted. If it is zero an
error return results, otherwise g is set to 0-44/(Af).
If it is necessary to reduce g so that the step size, which is
limited by E, is not too large, this is done before a new
iteration is initiated.

After the execution of the subroutine has been com-
pleted, the components of the calculated position of the
minimum are set in x, X, . . ., X,,.

10. More numerical examples

The procedure was developed using a bounded tri-
gonometrical function suggested by Fletcher and Powell.
Itis
f(xls X250y xn)

n n 2
= { 2 (A;sinx; + B;;cos x;) — E,} .
i=1 ji=1
The matrix elements of 4 and B are generated to be
random integers between —100 and +100, and values
of x;, x5,..., x, are chosen randomly between —r
and 7. For these values the parameters E; are calculated
to be

E;,= % (4;;sinx; + B;jcosx;) i=1,2,...,n,

j=1
and then the starting values of the variables x;, x5, . . ., X,
are displaced from the values defined above by random
increments of up to +0-17. The known minima were
found for values of n ranging from 3 to 20, and the
resultant number of function evaluations is given in
Table 2.
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Table 2
Functions of many variables

n ng ne €c

3 61 96 3 x10-8
3 84 120 4 x 10-°
5 104 166 2 x 108
5 103 167 7 x 10-8
10 329 483 4 x 107
10 369 524 4 x 107
20 1,519 1,954 8 x 107
20 2,206* 2,823* 3 x 106

n = number of variables

ng = number of functions to achieve 10 -4 accuracy
ne = number of functions for convergence

e. = final accuracy in variables

* See text (Section 10)

The more stringent convergence criterion was used,
and the table shows clearly that it can require many extra
iterations. The latter twenty-variable case is marked
with an asterisk because it was on this case that all other
convergence criteria tried were ineffective. The difficulty
of this particular minimization was stressed when the
procedure had appeared to converge for the first time.
At this stage the parameters were changing by less than
10—5 per iteration, and the function had been reduced
to 0-0043. Increasing the parameters by only 0-001
each caused the function to increase to 3-6. Finding the
final minimum forced a variable to change by 0-014.
A random displacement of this amount would probably
alter the function by about 200, the actual displacement
changed the function by only 0-0043.

M. J. Box has minimized the same test function using
Rosenbrock’s procedure. Three five-dimensional cases
required 465, 466 and 388 function evaluations, and
three ten-dimensional cases needed 1,210, 1,258 and
1,298 evaluations. The program was stopped imme-
diately an accuracy of 10~4 had been obtained, by cal-
culating the difference between the predicted and the
known positions of the minima. Therefore these figures
should be compared with those in the column of
Table 2 headed #,, which suggest that the method of this
paper can be more than three times as fast as
Rosenbrock’s.

Another comparison was made using Rosenbrock’s
function

SCer, x3) = 100(x; — xP? 4 (1 — x)2.

The progress of thirteen iterations is recorded in Table 3.
As Rosenbrock points out, this function is interesting
because it corresponds to a deep parabolic valley, so an
efficient minimization method has to choose new direc-
tions frequently. The method of this paper has been
entirely successful.
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For the final example the procedure was applied to the
function, used by Powell (1962),

Sx) = (x; + 10x)? + 5(x3 — x4)?
+ (x2 — 2x3)* + 10(x; — x4)*.

This test was made as the function cannot be approxi-
mated by a quadratic in the neighbourhood of the mini-
mum because of the two fourth-power terms; the second
derivative matrix A is doubly singular, and the required
scaled directions & tend to have infinite components.
It is expected that the fast convergence of the method will
break down, and Table 4 shows that the rate of approach
to the minimum is approximately linear.

The procedure is started at (3, —1, 0, 1), and it soon
finds a fair approximation to the minimum at which
each of the four terms which are summed to form f(x)
are comparable. From then on it is effectively searching
in the two-dimensional space defined by

x1+10x2:0andx3—x4=0;

this is illustrated by the last four columns of the table.
Consequently the new directions of search chosen have
large components in the space, which explains why even
the linear convergence rate is quite fast.

11. Discussion

The method described in this paper finds an uncon-
strained minimum of a function of several variables
without calculating derivatives. The examples presented
and the theory behind the method suggest that it is
significantly more efficient than other methods which
have been referred to, but it does contain two unsatis-
factory features. The first is that as the number of
variables increases there is a tendency for new directions
to be chosen less often. This could be overcome by
always using a new direction and forcing the remaining

Table 3
A function of two variables
FUNCTION
ITERATION | VALUES X1 X2 f(x1, x2)
0 1 —1-2000 1-0000 24-2000
1 14 —0-9912 0-9927 3-9753
2 25 —0-7674 0-5485 3-2863
3 35 —0-5017 0-2064 2-4608
4 46 —0-2840 0-0307 1-8978
5 57 —0-0123 |—0-0408 1-1927
6 71 0-2568 0-0369 0-6366
7 84 0-4379 0-1624 0-4026
8 97 0-6810 0-4478 0-1274
9 109 0-8341 0-6818 0-0469
10 122 0-8894 0-7948 0-0137
11 131 1-0014 0-9997 0-0010
12 142 0-9926 0-9850 6 x 10—3
13 151 1-0000 1-0000 |7 x 1010

directions to be conjugate to the new one by a projection
technique, but this would require each iteration to demand
approximately three times as many function values.
The ultimate convergence criterion is also unsatisfactory,
but it is not an essential part of the method and any
improved criterion could easily be incorporated.

It is hoped that the method will prove suitable for the
majority of problems which require the position of an
unconstrained maximum or minimum to be found. If
the derivatives of the function can be calculated as easily
as function values, Davidon’s method will sometimes be
more effective. If the function to be minimized is a
sum of squares which tends to zero at the minimum,
for example, when non-linear equations are being solved,
and if a good approximation to the minimum is known,

Table 4
A function of four variables
! FUNCTION
ITERATION ‘ VALUES f X1 x1 + 10x2 X3 X3 — X4

|
0 | 1 215-0 3-0000 —1-0000 0-0000 1-0000
2 1 41 3-7759 1-5224 0-5283 0-5054 —0-5418
4 72 0-8857 0-6742 —0-6891 0-3044 —0-0972
6 | 102 0-0043 0-1969 —0-0282 0-0594 —0-0081
8 ; 126 3x 104 0-0658 0-0066 —0-0051 —0-0002
10 ‘ 148 8 x 103 0-0115 —3 x 1073 | —0-0365 0-0004
12 ’ 177 3 x 106 0-0056 —7 x 10—4 | —0-0137 0-0002
14 ' 208 4 % 108 0-0112 1 x 104 0-0037 —3 x 10-¢
16 235 5x 10-°? 0-0055 3x 105 0-0038 2 x 107
18 l 266 8 x 10— 0-0016 7 x 10-7 0-0004 3 x 107
20 } 295 2 x 10—12 0-0001 —1 x 10-7 | —0-0004 —5x 108
30 ‘ 433 1 x 102t | —4 x 10—¢ 2x 10-11) —3 x 10-6| 4 x 10—13

|
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the method of least squares can converge much more procedures may find a local minimum rather than the
quickly. This is because the function to be minimized absolute minimum, and this is a difficult problem to
is of form overcome. If there are many variables it will certainly
m prove too arduous to apply a searching technique, so it
F(x) = X {fi(x)}? is recommended that different initial approximations
k=1 are tried to see if they cause more favourable extrema to

so it can be reasonable to assume that be found.

e
bx, birk b_)j;k . 12. Acknowledgements

It is a pleasure to acknowledge the interest and
Therefore an evaluation of all the derivatives at a single encouragement of Mr. A. R. Curtis. Many of the ideas
point is sufficient to predict the position of the minimum. presented in this paper are a direct consequence of his
It is likely that a method for minimizing a sum of squares questions and criticisms. The author is also most
without using derivatives will be developed, and one grateful to Mr. M. J. Box who provided the results of
would expect it to be faster than the method of this applying Rosenbrock’s procedure to a function of several

paper by a factor of order n. Of course, all of these variables.

References

Davipon, W. C. (1959). “Variable metric method for minimization,” A.E.C. Research and Development Report, ANL-5990
(Rev.).

FLETCHER, R., and PoweLL, M. J. D. (1963). “A rapidly convergent descent method for minimization,” The Computer Journal,
Vol. 6, p. 163.

HimMsworTH, F. R., SPENDLEY, W., and HExT, G. R. (1962). “The sequential application of simplex designs in optimisation and
evolutionary operation,” Technometrics, Vol. 4, p. 441.

PoweLL, M. J. D. (1962). “An iterative method for finding stationary values of a function of several variables,” The Computer
Journal, Vol. 5, p. 147.

Smith, C. S. (1962). “The automatic computation of maximum likelihood estimates,” N.C.B. Scientific Dept., Report No.
S.C. 846/MR /40.

SPANG, H. A. (1962). “A review of minimization techniques for nonlinear functions,” S.I.4.M. Review, Vol. 4, p. 343.

RoseNBrOCK, H. H. (1960). ““An automatic method for finding the greatest or least value of a function,” The Computer Journal,
Vol. 3, p. 175.

Errata to Errata

“Elementary Divisors of the Liebmann Process,” by
G. A. Miles, K. L. Stewart and G. J. Tee. The Computer
Journal, Vol. 6, No. 4, pp. 352-355 (January, 1964).

We regret that misprints occurred in the Errata to this
article, published in The Computer Journal, Vol. 7, No. 1,
p- 39 (April 1964). These previous Errata should be
replaced by the following corrections to the original
article:

(1) P. 353, line before (2.12), replace “‘m;” by “A™°,

(2) P. 354, third line after (3.13), replace “Y(n — m)”
by “ni(n —_ m)”.
(3) P. 355, in (3.18), replace “plAn—m+v+a> pby

Co¥n—m+v+a)»

“n
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