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Abstract

We present a random number generator that is useful for serious computations
and can be implemented easily in any language that has 32-bit signed integers, for
example C, C++ and FORTRAN. This combination generator has a cycle length that
would take two millennia to compute on widely used desktop computers. Based on an
extensive search, we provide parameter values better than those previously available
for this generator. c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Economists use computer-generated random numbers in applications that
range from the commonplace—simulation—to relatively novel ones—
optimization and estimation (Robert and Casella, 1999). In this paper, we
examine a generator that is easy to program in virtually any environment and
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is a generalization of the one often used. We provide better parameter values
than those previously available. 1

2. Congruential generators

There are a large number of pseudorandom number generators available
(Niederreiter, 1992, Chapters 7–10; Knuth, 1998, Chapter 3; Gentle, 1998,
Chapter 1). We focus on multiplicative congruential generators in this paper.
While generators such as those proposed by Marsaglia and Zaman (1991) and
related ones have received a great deal of attention in recent years, not all of
this attention is complimentary (L’Ecuyer, 1997) and the properties of con-
gruential generators are well understood. Multiplicative congruential genera-
tors with distributed lags of past values also have been proposed (L’Ecuyer,
1996), but the extra computation is not always necessary.
A multiplicative congruential generator is

xi= axi−1 modm; (1)

where xi is the ith member of the sequence of pseudorandom numbers, a
is a multiplier, m is the nonzero modulus and the mod operator means that
axi−1 modm is the least nonnegative remainder from dividing axi−1 by m.
Generators such as (1) are used to produce nonnegative integers because
arithmetic in integers can be exact. The integers can be transformed to decimal
numbers (Monahan, 1985).

2.1. Combination generators

Combining congruential generators provides a powerful generalization of
the multiplicative generator. Consider two multiplicative generators used to
generate underlying sequences {yi} and {zi} with moduli my and mz, where
my¿mz without loss of generality. The sequences can be added or sub-
tracted, but subtraction makes it easier to avoid overIow. The generator of
the combined sequence {xi} is

xi=(yi − zi)modmy: (2)

The Jnal mod operation on the diKerence keeps the sequence of pseudo-
random numbers on [1; my − 1].

L’Ecuyer and Tezuka (1991) show that the generator (1) is approximately
equivalent in important respects to a multiplicative congruential generator with
a much larger multiplier and modulus. For example, if my is 231 − 1 and mz

1 Dwyer and Williams (2000) provide more details about congruential generators and com-
puter code for faster generators than those suggested by Press et al. (1992, pp. 274–285), Knuth
(1998) and others.
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is 231−19, each about 2:15×109, the combination generator is approximately
equivalent to a generator with a modulus of about 4:61× 1018.

2.2. Length of full cycle

The length of a full cycle, or the period, of a congruential generator is a
mathematical property that can be determined analytically. For multiplicative
congruential generators, the best possible full cycle of the diKerence equation
equals the modulus less one, m− 1, and the values are on [1; m− 1]. (Knuth
1998, pp. 10–23). Most combinations of values of the multiplier a and the
modulus m do not generate sequences with the maximum possible period.
Prime moduli and some multipliers can produce full cycles.
One common modulus is 231−1, the largest signed integer representable in

a register on many machines and in many languages. The maximum possible
period of a multiplicative generator with this modulus is 231−2, or about 2.15
billion. A couple of billion pseudorandom numbers is not adequate for many
applications in economics and Jnance, a deJciency only worsened if one
agrees with L’Ecuyer and Hellekalek (1998), who suggest using sequences
no more than the square root of a full cycle. Uses of pseudorandom numbers
are likely to become increasingly demanding, and indeed, one recent study
of stochastic volatilities (Kim et al., 1998) uses almost a full cycle of a con-
gruential generator. It is easy to generate a full cycle. It takes about 1:03 min
on a Pentium 800 to generate a full cycle of a multiplicative generator with
a modulus of 231 − 1.

A combined generator can have a dramatically longer period than either of
the constituent multiplicative generators. The period of a combination gen-
erator based on two generators with prime moduli on the order of 231 can
have a period of about 2:31 × 1018 (L’Ecuyer, 1988, p. 744). If necessary,
a generator with an even longer period is a combined congruential generator
with more than one lag in the basic diKerence equation (1) (L’Ecuyer, 1996).

2.3. The lattice structure of congruential generators

No matter how long or short their periods, congruential generators are
deterministic diKerence equations and phase diagrams can be used to examine
their behavior. The points produced by a congruential generator in two or
more dimensions lie on hyperplanes. The distance between these hyperplanes
varies with the multiplier, which means that some multipliers are better than
others.
These insights are used in the spectral test for congruential generators

(Knuth, 1998, pp. 93–118; Fishman, 1996, pp. 611–628; Dwyer and Williams,
2000), which Jnds the maximum distance in any direction between the hy-
perplanes for a given multiplier. This distance is summarized in a test value
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Table 1

Best combination generators

First Second Spectral test

Multiplier Modulus Multiplier Modulus Value Dimension

10064 2147483543 64155 2147483629 0.77742 8
43049 2147483629 16493 2147483563 0.77201 4
204893 2147483579 19206 2147483563 0.76941 7
54863 2147483543 46772 2147483629 0.76473 7
65670 2147483647 44095 2147483587 0.76161 8
44241 2147483647 243976 2147483579 0.76136 6
30036 2147483563 98072 2147483549 0.76126 8
29465 2147483629 17107 2147483549 0.76106 8
2645 2147483647 61160 2147483549 0.76096 4
29155 2147483629 41284 2147483579 0.75903 8

that indicates closer hyperplanes when the test value is higher. We have run
spectral tests to determine good multipliers for the combined generator. We
require that multipliers be approximately factorable (Schrage, 1979) for com-
putational reasons, which limits the multipliers considered.
Given two moduli, we performed a random search over full-period multi-

pliers. We examined moduli that are the seven greatest prime numbers less
than 231. There are too many possible combination multipliers for an exhaus-
tive search given available computational power, and there is no regularity in
the relationship between spectral-test values and the multipliers. We sampled
20 million or more combinations of multipliers for each set of moduli.
Table 1 presents the spectral test results for the 10 best combination gen-

erators. The table presents the multipliers and their associated moduli. The
test results are the values of the spectral test and the dimension at which
the test attains that value. The dimension is informative because the spectral
value is the lowest value attained in an examination of several dimensions,
in our case eight, and the dimension is the dimension at which that spectral
test value is attained.
Our generators are better, at least in up to eight dimensions, than combina-

tion generators previously available. Our spectral test results for the parameter
values suggested in L’Ecuyer (1988) is 0.39, in L’Ecuyer (1997) is 0.70, and
in Knuth (1998, Table 1, line 24 and p. 108) is 0.27. 2

2 L’Ecuyer (1999a) calculates spectral values for multiplicative congruential generators in 8,
16 and 32 dimensions. L’Ecuyer (1999b) calculates spectral values for combined multiplicative
congruential generators with more than one lag in these same dimensions.
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2.4. Properties of subsets

It is important to test subsets of pseudorandom numbers for apparent de-
viations from the desired distribution. We ran the set of tests from Knuth
(1998) as implemented in Dwyer and Williams (1996) as well as the set of
Diehard tests (McCullough, 1999). Our tests include tests for the consistency
of the pseudorandom numbers with the underlying distribution, tests for se-
rial correlation of normally distributed pseudorandom numbers, runs tests and
more specialized tests. The best combined generators based on the spectral
test easily pass these tests on subsets of various lengths.
Not all readily available generators are adequate. For example, the genera-

tors included in the libraries with the Microsoft C++ version 4.2 and Borland
C++ version 4.5 compilers do not pass the tests on subsets of numbers. We
conclude that these readily available generators have serious deJciencies. 3

The generator in Gauss version 3.2.38 is a multiplicative congruential gen-
erator with a modulus of 231 − 1, which has a maximum cycle length of
only 231 − 2.

3. Conclusion

We conclude that the combination generator with our best multipliers is
useful for serious computations. The computer code available with this pa-
per will work in any environment that has 32-bit signed integers, and a full
cycle from the portable combination generator is orders of magnitude longer
than simple congruential generators’ cycle. We use the spectral test of the
entire sequence of pseudorandom numbers from a combination generator to
pick combination generators. In applications, pseudorandom generators pro-
duce subsets of these full sequences that are used as if they were drawn from
some distribution function. Tests on subsets of the pseudorandom numbers do
not turn up any problems with the best combination generators. As a bonus,
other work shows that the suggested algorithm is reasonably quick relative
to alternatives (Dwyer and Williams, 2000).
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