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 478 WICHURA

 Numerical Method

 The routines set q = p - 0.5 and compare q with 0.425. If I q X S 0.425, zp is obtained
 as

 zp = qA(0.4252- q2)/B(O.4252 - q2) = qR,(q2)

 R1(t) being a minimax rational approximation to - 1(0.5 + Vt)lVt for 0 < t < 0.4252.
 The polynomials A and B are of degree 3 for PPND7 and of degree 7 for PPND16.

 However, if I q I > 0.425, an auxiliary variable r = { - log[min(p, 1 _ p)]}l12 is first
 formed, and zp is obtained as

 zp = + C(r -1.6)/D(r - 16) _+ R2(r)

 if r < 5, and as

 zp= E(r-5)/F(r-5) ?R3(r)

 if r > 5; in each case the sign is taken to be that of q. R2(t) and R3(t) are minimax
 rational approximations to - -1(exp(- t2)) over the ranges 1.6 < t < 5 and 5 < t <
 27 respectively. For PPND7, the polynomials C and E are of degree 3, while D and
 F are of degree 2. For PPND16, C, D, E and F are of degree 7. Evaluation of the
 polynomials A-F involves the addition and multiplication only of positive values;
 this enhances the numerical stability of the routines.

 Related Algorithms

 The present algorithms are similar to algorithm PPND of AS 111 (Beasley
 and Springer, 1977). Whereas that algorithm is accurate to between seven and nine
 figures for I zp I < 3.5, its performance deteriorates in the tails of the distribution. For

 example, its accuracy drops to six figures at zp -4 (p 3 x 10- ), to five figures at
 zp =-5.5 (p % 2 x 10-8) and to four figures at zp =9.5 (p 1021). As noted
 later, PPND7 runs as fast as PPND. PPND16 is from 11 to 12 times slower than
 PPND, but produces two to four times as many significant digits. Other algorithms

 for evaluating zp are discussed in Kennedy and Gentle (1980).

 Structure

 REAL FUNCTION PPND7 (P, IFAULT)
 REAL FUNCTION PPND16 (P, IFAULT)

 Formal parameters

 P Real input: value of the lower tail area p
 IFA ULT Integer output: fault indicator

 Failure indications

 IFAULT= 1 if p 0 or p 1; IFAULT=0 otherwise.
 If IFAULT= 1, PPND7 and PPND16 return a value of zero.
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 STATISTICAL ALGORITHMS 479

 Time

 The present algorithms and PPND were evaluated on a Sun 2 (24-bit mantissa) with
 the results shown in Table 1. (Whereas 0.425 is the (first) break point in PPND7 and
 PPND16, the corresponding break point in PPND is 0.42.)

 Accuracy

 Tables 2 and 3 assess the relative error in the computed value of zp corresponding to a
 given input value for p satisfying min(p, 1 -p) > 10-316. In the a priori bounds 0 is
 the relative error in the computed value of r = {- log[min(p, 1 - p)]} 1/2, and ( bounds
 the relative error in a floating point add, multiply or divide. For a computer which
 has base b and mantissa of fixed length m, and which carries out each arithmetic
 operation internally in double precision and rounds (or chops) the result to m
 significant digits, the user may take ( = b-(m- 1)/2 (or - = b-(m- 1)). For each of the
 indicated ranges, the Monte Carlo results are based on 50 000 pseudorandom values
 of p uniformly distributed on a logit scale; p was constrained to the range (10- ",
 1 - 10- ) for PPND7 and to (10-70, 1 - 10- ) for PPND16. PPND7 was evaluated
 on a Sun 2 with b =2 and m = 24, PPND16 on an IBM 3081 withb= 16 andm= 14.

 TABLE 1

 Average time for one evaluation

 Precision Range PPND7 PPND16 PPND

 (ms) (ms) (ms)

 Single I p -0.51 <0.42 0.56 0.59
 I p - 0.51 > 0.425 0.82 0.76

 Double I p - 0.51 <0.42 1.62 0.99
 I P - 0.51,> 0.425 3.68 2.81

 TABLE 2

 Magnitude of the relative error in zp for PPND7

 Range A priori Monte Carlo
 upper bound Maximum Root mean square

 I p - 0.51 < 0.425 11.3 + 4.6 x 10-8 2.9 x 10-7 8.0 x 10-8
 Ip-0.51 >0.425 12.4+?2101 + 1.2 x 10-7 3.5 x 10-7 1.1 X 10-7

 TABLE 3

 Magnitude of the relative error in zp for PPNDJ6

 Range A priori Monte Carlo

 upper bound Maximum Root mean square

 I p-0.51 < 0.425 18O + 7.4 x 10-17 6.0 x 106 1.8 x 10-16
 Ip-0.51 >0.425 22+?2101 +2.9 x 10-7 5.8 X 10-16 1.6 x 10-16
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 480 WICHURA

 Error Propagation

 The effect of a perturbation in p can be assessed as follows. Suppose that p* = p + Ap
 with Ap small. Set Az = zp*-zp and write 0(z) for the normal density at z = zp. Then

 I Az. II Ap I
 A (Z)

 and

 [ 4D(z) Ap < 1 Ap if p < 0.5;
 Az (z)z p z2 p

 Z 1 -4 D(z) A(1 - p) 1 IA(1-p)li
 44z)z 1 , 1 -if p >O.5.

 In particular the absolute error in z is never more than 8/3 times as large as the
 absolute error in p for I z I < 0.36, while the relative error in z is never more than 8/3
 times as large as the relative error in min(p, 1 - p) for I z > 0.36.

 Test Data

 The following values may be used in checking whether the algorithms have been
 correctly implemented:

 ZO.2= -0.674489750196081 7,

 Zo.00 1 -3.090 232 306 167 814,

 Z10-20 =-9.262 340 089 798 408.

 Precision

 For double precision:

 (a) change REAL to DOUBLE PRECISION on both the FUNCTION statements
 and the declaration of variables;

 (b) change EO to DO in the PARAMETER statements.

 (On a machine that uses only 32 bits to represent real variables, PPND16 should be
 implemented in double precision.)

 Additional Comments

 If p is very close to unity, a serious loss of significance may be incurred in forming
 1 - p -c. In this circumstance the user should, if possible, evaluate c directly (i.e. not
 by subtracting p from unity) and evaluate zp as - zc.

 The coefficients used in algorithms PPND7 and PPND16 were taken from Wichura
 (1987), who gives similar sets of coefficients for rational approximations to (F with
 minimax errors ranging down to 1022.

 Acknowledgement
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 REAL FUNCTION PPND7 (P, IFAULT)

 C

 C ALGORITHM AS241 APPL. STATIST. (1988) VOL. 37, NO. 3

 C

 C PRODUCES THE NORMAL DEVIATE Z CORRESPONDING TO A GIVEN LOWER

 C TAIL AREA OF P; Z IS ACCURATE TO ABOUT 1 PART IN 10**7.
 C

 C THE HASH SUMS BELOW ARE THE SUMS OF THE MANTISSAS OF THE
 C COEFFICIENTS. THEY ARE INCLUDED FOR USE IN CHECKING
 C TRANSCRIPTION.

 C

 REAL ZERO, ONE, HALF, SPLIT1, SPLIT2, CONST1, CONST2,

 * A0, Al, A2, A3, Bi, B2, B3, CO, Cl, C2, C3, Dl, D2,
 * E0, El, E2, E3, Fl, F2, P, Q, R
 PARAMETER (ZERO = O.OE0, ONE = 1.OE0, HALF = ONE/2.OE0,

 * SPLIT1 = 0.425E0, SPLIT2 = 5.OE0,
 * CONST1 = 0.180625E0, CONST2 = 1.6E0)

 C

 C COEFFICIENTS FOR P CLOSE TO 1/2
 PARAMETER (AO = 3.38713 27179E0,

 * Al = 5.04342 71938E1,
 * A2 = 1.59291 13202E2,
 * A3 = 5.91093 74720E1,
 * Bl = 1.78951 69469E1,
 * B2 = 7.87577 57664E1,
 * B3 = 6.71875 63600E1)

 C HASH SUM AB 32.31845 77772

 C

 C COEFFICIENTS FOR P NEITHER CLOSE TO 1/2 NOR 0 OR 1
 PARAMETER (CO = 1.42343 72777E0,

 * Cl = 2.75681 53900E0,
 * C2 = 1.30672 84816E0,
 * C3 = 1.70238 21103E-1,
 * Dl = 7.37001 64250E-1,
 * D2 = 1.20211 32975E-1)

 C HASH SUM CD 15.76149 29821

 C

 C COEFFICIENTS FOR P NEAR 0 OR 1

 PARAMETER (EQ = 6.65790 51150E0,

 * El = 3.08122 63860E0,
 * E2 = 4.28682 94337E-1,
 * E3 = 1.73372 03997E-2,
 * Fl = 2.41978 94225E-1,
 * F2 = 1.22582 02635E-2)

 C HASH SUM EF 19.40529 10204

 C

 IFAULT = 0

 Q = P - HALF

 IF (ABS(Q) .LE. SPLIT1) THEN

 R = CONST1 - Q * Q

 PPND7 = Q * (((A3 * R + A2) * R + Al) * R + AO) /

 * (((B3 * R + B2) * R + Bl) * R + ONE)
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 482 WICHURA

 RETURN

 ELSE

 IF (Q .LT. 0) THEN

 R =P

 ELSE

 R = ONE - P

 ENDIF

 IF (R .LE. ZERO) THEN

 IFAULT 1

 PPND7 = ZERO

 RETURN
 ENDIF

 R = SQRT(-LOG(R))

 IF (R .LE. SPLIT2) THEN

 R = R - CONST2

 PPND7 = (((C3 * R + C2) * R + Cl) * R + C0) /

 * ((D2 * R + D1) * R + ONE)
 ELSE

 R = R - SPLIT2

 PPND7 = (((E3 * R + E2) * R + El) * R + EO) /

 * ((F2 * R + Fl) * R + ONE)
 ENDIF

 IF (Q .LT. 0) PPND7 = -PPND7

 RETURN

 ENDIF

 END

 REAL FUNCTION PPND16 (P, IFAULT)
 C

 C ALGORITHM AS241 APPL. STATIST. (1988) VOL. 37, NO. 3
 C

 C PRODUCES THE NORMAL DEVIATE Z CORRESPONDING TO A GIVEN LOWER

 C TAIL AREA OF P; Z IS ACCURATE TO ABOUT 1 PART IN 10**16.
 C

 C THE HASH SUMS BELOW ARE THE SUMS OF THE MANTISSAS OF THE

 C COEFFICIENTS. THEY ARE INCLUDED FOR USE IN CHECKING
 C TRANSCRIPTION.
 C

 REAL ZERO, ONE, HALF, SPLIT1, SPLIT2, CONST1, CONST2,

 * AO, Al, A2, A3, A4, A5, A6, A7, Bl, B2, B3, B4, B5, B6, B7,
 * CO, Cl, C2, C3, C4, C5, C6, C7, Dl, D2, D3, D4, D5, D6, D7,
 * EO, El, E2, E3, E4, E5, E6, E7, Fl, F2, F3, F4, F5, F6, F7,
 * P, Q, R

 C

 PARAMETER (ZERO = 0.OEO, ONE = 1.OEO, HALF = ONE/2.OEO,
 * SPLIT1 = 0.425E0, SPLIT2 = 5.OEO,
 * CONST1 = 0.180625E0, CONST2 = 1.6E0)

 C

 C COEFFICIENTS FOR P CLOSE TO 1/2
 PARAMETER (AO = 3.38713 28727 96366 6080E0,

 * Al = 1.33141 66789 17843 7745E2,
 * A2 = 1.97159 09503 06551 4427E3,
 * A3 = 1.37316 93765 50946 1125E4,
 * A4 = 4.59219 53931 54987 1457E4,
 * A5 = 6.72657 70927 00870 0853E4,
 * A6 = 3.34305 75583 58812 8105E4,
 * A7 = 2.50908 09287 30122 6727E3,
 * Bl = 4.23133 30701 60091 1252E1,
 * B2 = 6.87187 00749 20579 0830E2,
 * B3 = 5.39419 60214 24751 1077E3,
 * B4 = 2.12137 94301 58659 5867E4,
 * B5 = 3.93078 95800 09271 0610E4,
 * B6 = 2.87290 85735 72194 2674E4,
 * B7 = 5.22649 52788 52854 5610E3)

 C HASH SUM AB 55.88319 28806 14901 4439
 C

 C COEFFICIENTS FOR P NEITHER CLOSE TO 1/2 NOR 0 OR 1
 PARAMETER (CO = 1.42343 71107 49683 57734E0,
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 * Cl = 4.63033 78461 56545 29590E0,
 * C2 = 5.76949 72214 60691 40550E0,

 * C3 = 3.64784 83247 63204 60504E0,
 * C4 = 1.27045 82524 52368 38258E0,

 * C5 = 2.41780 72517 74506 11770E-1,
 * C6 = 2.27238 44989 26918 45833E-2,

 * C7 = 7.74545 01427 83414 07640E-4,
 * Dl = 2.05319 16266 37758 82187E0,

 * D2 = 1.67638 48301 83803 84940E0,
 * D3 = 6.89767 33498 51000 04550E-1,
 * D4 = 1.48103 97642 74800 74590E-1,
 * D5 = 1.51986 66563 61645 71966E-2,
 * D6 = 5.47593 80849 95344 94600E-4,
 * D7 = 1.05075 00716 44416 84324E-9)

 C HASH SUM CD 49.33206 50330 16102 89036

 C

 C COEFFICIENTS FOR P NEAR 0 OR 1

 PARAMETER (EQ = 6.65790 46435 01103 77720E0,
 * El = 5.46378 49111 64114 36990E0,
 * E2 = 1.78482 65399 17291 33580E0,
 * E3 = 2.96560 57182 85048 91230E-1,
 * E4 = 2.65321 89526 57612 30930E-2,
 * E5 = 1.24266 09473 88078 43860E-3,
 * E6 = 2.71155 55687 43487 57815E-5,
 * E7 = 2.01033 43992 92288 13265E-7,
 * Fl = 5.99832 20655 58879 37690E-1,
 * F2 = 1.36929 88092 27358 05310E-1,
 * F3 = 1.48753 61290 85061 48525E-2,
 * F4 = 7.86869 13114 56132 59100E-4,
 * F5 = 1.84631 83175 10054 68180E-5,
 * F6 = 1.42151 17583 16445 88870E-7,
 * F7 = 2.04426 31033 89939 78564E-15)

 C HASH SUM EF 47.52583 31754 92896 71629

 C

 IFAULT = 0

 Q = P - HALF

 IF (ABS(Q) .LE. SPLIT1) THEN
 R = CONST1 - Q * Q

 PPND16 = Q * (((((((A7 * R + A6) * R + A5) * R + A4) * R + A3)

 * * R + A2) * R + Al) * R + AO) / (((((((B7 * R + B6) * R + B5)
 * * R + B4) * R + B3) * R + B2) * R + B1) * R + ONE)

 RETURN

 ELSE

 IF (Q .LT. 0) THEN

 R= P

 ELSE

 R = ONE - P

 ENDIF

 IF (R .LE. ZERO) THEN

 IFAULT = 1

 PPND16 = ZERO

 RETURN

 ENDIF

 R = SQRT(-LOG(R))

 IF (R .LE. SPLIT2) THEN
 R = R - CONST2

 PPND16 = (((((((C7 * R + C6) * R + C5) * R + C4) * R
 * + C3) * R + C2) * R + Cl) * R + C0) / (((((((D7 * R
 * + D6) * R + D5) * R + D4) * R + D3) * R + D2) * R
 * + D1) * R + ONE)

 ELSE

 R = R - SPLIT2

 PPND16 = (((((((E7 * R + E6) * R + E5) * R + E4) * R

 * + E3) * R + E2) * R + El) * R + EO) / (((((((F7 * R
 * + F6) * R + F5) * R + F4) * R + F3) * R + F2) * R
 * + Fl) * R + ONE)

 ENDIF
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 484 SALLAS

 IF (Q .LT. 0) PPND16 = -PPND16

 RETURN

 ENDIF

 END

 Remark AS R75

 Some Remarks on Algorithm AS 1 64: Least Squares Subject to Linear Constraints

 By William M. Sallast

 IMSL, Houston, USA

 [Received July 1987. Revised March 1988]

 This paper addresses three items concerning the linear least squares algorithm with
 linear equality constraints AS 164 (Stirling, 1981). The following items will be discussed
 in sequence:

 (a) a correction to subroutine GIVENC so that rounding errors that can arise
 from incorporating linear constraints do not lead to totally incorrect results;

 (b) an addition to subroutine ALIAS so that the R matrix computed corresponds
 to a reduced model formed after all constraints have been incorporated in the
 full (unconstrained) model;

 (c) a modification to subroutine ALIAS to perform an improved check for linearly
 dependent regressors (Healy, 1968).

 First, subroutine GIVENC can return totally incorrect results because of rounding
 errors that occur when constraints are incorporated into the R matrix. The incorrect
 results occur frequently for linearly dependent constraints. Also, incorrect results can
 occur for linearly independent constraints. These problems occur regardless of the
 settings of small constants EPSO and EPS1 that are suggested for remedying these
 problems.

 The problem is that GIVENC needs to determine whether any element of a new
 constraint that is reduced by the previous constraints in R should be regarded as
 zero. For example, a new constraint that is linearly dependent on previous constraints
 is usually not zeroed out exactly due to rounding, and the remaining garbage is
 treated incorrectly as an additional linearly independent constraint. Even for linearly
 independent constraints, a small number as the leading non-zero element in a reduced
 constraint causes a totally different constraint to be incorporated in the fit. For
 example, the following two linearly independent constraints

 3.3l1 + 6.6l2+ 3.3l3+ 6.6l4= 3.3

 1.65fl1 + 3.3fl2 + 1.65fl3 + 6.6fl4 = 6.6

 are reduced using the original version of GIVENC (on a computer with a machine
 epsilon in single precision approximately equal to 10-6) to

 ,1 = 1.000 00 - 2.00000/32 - 1.000 00/3 - 2.00000/34

 #2 = 173 0151 - 0.333 33/33 - 115 343 5/34

 t Addressfor correspondence: IMSL, Park West Tower One, 2500 CityWest Boulevard, Houston, TX 77042, USA.
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