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Interpolation by Convex Quadratic Splines*

By David F. McAllister and John A. Roulier

Abstract. Algorithms are presented for computing a quadratic spline interpolant with

variable knots which preserves the monotonicity and convexity of the data. It is also

shown that such a spline may not exist for fixed knots.

1. Introduction.   Interpolation to convex data by a convex polynomial spline

has been investigated by Passow and Roulier in [6].  McAllister, Passow, and Roulier

[5] present an efficient computational algorithm for such interpolation.   In both of

these papers, the knots of the spline are the interpolation points.   It is shown in [6]

that the degree of the various piecewise polynomials may be forced to be arbitrarily

high by a suitable choice of data points.   The purpose of this paper is to show that in

convex interpolation with such splines, this undesirable property can occur for any

choice of fixed knots.   On the other hand, we will present an algorithm for interpola-

tion by convex quadratic splines with knots at the interpolation points and at most

one additional properly chosen knot between each interpolation point.

We note that elimination of undesirable oscillations (without increasing the degree

of the polynomial interpolant), by the addition of knots, is studied in de Boor [1,

Chapter 16], and in Dube ([2] and [3]).  Their methods are essentially different from

those presented here.

We also note that our algorithm will only add knots when required, that is, when

the data bends very sharply.   In this case the resulting curve though differentiable will

look very much like a curve with corners.  This, of course, is due to the fact that any

differentiable shape preserving function interpolating this data would behave in this way.

2. Notation and Preliminary Concepts.   Let A = [x0, xx, . . . , xN} be a fixed

set of real numbers with x¡ < x¡+,, /' = 0, . . . , N - 1.   For /' < n the set of splines

of degree n and deficiency n - j on A is denoted by S'n(A).  Thus,/G S'n(A) if and

only if/G C'[x0, xN] and /is an algebraic polynomial of degree n or less on

[xi_x,xi] for; = 1,2, . . . ,N.

Let y0, yx, . . . , yN be real numbers and define the slopes S¡ by

(2.1) S, = (y¡- ;>,_ ,)/(*, - x,_,)   for i = 1, 2.N.

Then, the data {(*,-, .y,)}^L0 are said to be nondecreasing if y0 <yx < ■ • • <yN and

nonconcave if Sx < S2 < • • • < SN.  If no equality exists in these two cases, we say

that the data are increasing ox convex, respectively.

The following definition is a special case of a definition given in [5] and [6].
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INTERPOLATION BY CONVEX QUADRATIC SPLINES 1155

Definition 2.1. Suppose the data {(*,-, v,)}£L0 are nondecreasing and nonconcave.

Let 3c,. = xt_, + Axt/2 where Ax¡ = x¡ - x¡_ x fox i = 1,2, . . . , N.   A set of num-

bers {ti}]¡Lí is said to be ^admissible if the piecewise linear function L(x) generated

by the points (x0,y0), (xx, tx), (x2, t2), . . . , (xN, tN), (xN,yN) passes through the

points (jc,-,.y,), i = I, . . . ,N — I, and is nondecreasing and nonconcave.

The following theorem is a special case of the theorem of Passow and Roulier [6].

Theorem 2.1.   Given nondecreasing, nonconcave data {(*,-, .y,)}£L0 there exists

a quadratic spline f (i.e., /G S\(A)) satisfying

(2.2) /(*,-) = v,.   for i = 0,1,..., N,

(2.3) f'(x)>0     on[x0,xN],

and

(2.4) f'(x) is nondecreasing on [x0, xN]

if, and only if, there exists a set of Vi-admissible points {t¡ }f= x for these data.

(It is actually shown in [6] that if such a set of '¿-admissible points exists then

for any positive integer m there is/G S^fA) satisfying (2.2), (2.3) and (2.4).  We

will restrict ourselves to ^(A).)  Furthermore, if such ^-admissible points exist, then

such an / can be constructed as follows:

Let L be the piecewise linear function described in definition (2.1).  For / =

1, 2, . . . , N define

(2 5)      q'(X) = (AT? [L(X'-1)(X< *X)2 + 2L(J<)(* -**-i)(*' ~X)
+ L(xi)(x-xi_x)2].

We note that q¡ is the 2nd degree Bernstein polynomial of L on [x¡_ x, x¡].  We define

/G S\(A) satisfying (2.2), (2.3), and (2.4) by

fix) = q,(x)    on [*,._ 1,xi],i= 1,2, . . . ,N.

We now describe a special case of an algorithm developed by McAllister, Passow,

and Roulier [5] which gives necessary and sufficient conditions for the existence of

such ^-admissible points.

The lh-algorithm.   Define m0 = 0 and MQ = Sx.  Now for / = 1, 2, . . . , N - 1

define

m,. = 25,. - M¡_ j    and   M,. = min(5,.+ ,, 25,. - m,._j).

The following then is a special case of a theorem in [5].

Theorem 2.2.   Given nondecreasing, nonconcave data (x¡,y¡), i = 0, 1, . . . , N,

(2.6) there exist Vi-admissible points for these data

if and only if

(2.7) the ^-algorithm can be completed with m,. < 5,+ j for i = 1,2,. . . ,N- I.

If (2.7) holds, then the construction of a piecewise linear function L as described

above can be accomplished using mN_x ax\dMN_x.  We simply take tN to be any

point which lies between
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1156 david f. McAllister and john a. roulier

x    — x       '
aN=yN-i +mN-i(xN -xN_1) = yN_i +mN_xl

and

bN=yN_x +MN_x(xN-xN_x)=yN_x +MN_X

The numbers tN_x, tN_2, . . . , tx are then uniquely determined by the choice of tN.

We note furthermore that if mN_x = MN_X < SN, then the interpolator quadratic

spline satisfying (2.2), (2.3), and (2.4) is unique.

3.   Fixed Knots.   In the previous section, the numbers x¡, i = 0, 1, . . . , N,

were the abscissas of data points, and the mesh A was the collection of all such

abscissas.   In this section x¡, i = 0, I, . . . , N, will stand for the abscissas of data

points, but A will now be an arbitrary finite collection of real numbers which will be

the knots of the piecewise polynomials.  We will show that, given any mesh A, any

four such x{, i = 0, 1, 2, 3, and any n, there exists a set of four increasing convex

data points with these x¡ as abscissas such that no / G Sn(A) can interpolate the data

and be convex and increasing.

Theorem 3.1.   Let the integer « > 1, real numbers x0 < xx < x2 < x3 and

mesh A be given.   There exist numbers y0, yx, y2, y3 such that the data (x¡, y¡),

i — 0, 1,2, 3, are increasing and convex and such that no /G 5^(A) satisfies

(3.1) fixi)=yi   for i = 0,1,2,3,

and

(3.2) f is convex and increasing on [x0,x3].

The following lemma will be helpful in the proof of Theorem 3.1: Let A be

the mesh described above. We may assume without loss of generality that x¡ G A,

/' = 0, 1, 2, 3.   Let

I = xxiax{x\xG Aaxidx <xx]   and   u = xxún{x\x e A and x > xx}.

By II • lla6 we mean the supremum norm on the interval [a, b].  That is, if/G

C[a, b], then

ll/llat6=sup{|/(x)|;xe[fl> b]}.

Lemma 3.1. Let the mesh A be given and assume that (x¡,yt), i = 0, 1,2, 3,

are convex and increasing.   Iff G Sn(A) satisfies (3.1) and (3.2), then

S2
(3.3) n2 >-.

(x2 -xx)(S3 -S2)/(u-xx)+(xx -x0)Sx/(xx -I)

where the numbers 5,- are defined in (2.1), that is,

5,- = (y, -y^^/iXf - x¡_x)   for i =1,2,3.

Proof.   Observe that on [/, xx] we have
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0<f(x)-yo<y1-yo    and /(*)-
y i +y0

<
y\ -y0

Thus, by Markov's inequality (see [4, p. 40]) applied to f(x) - (yx + y0)/2 we have,

for e = xx -I,

nfii    <hZl± 2   gi(*i-*o)
»/»/.x,  <-—»2 =-

Since / is convex and increasing, we have

(3.4)
(x, -x0)   ,

Sx<f'(xx)<S1K \   °V.

Let /z be the straight line passing through (xx,yx) and (x2,y2), and let k he the

straight line passing through (x2,y2) and (x3,y3).  It is easy to see that

0 < h(x) -fix) < h(x) - k(x) < (x2 - xx) (53 - 52)

and

h(x)-f(x)
(x2-xx)(S3-S2)

<
(x2-xx)(S3-S2)

on [xx, u].  Hence, by Markov's inequality and the fact that h - fis a polynomial of

degree n or less on [xx, u], we have, for Ô = u - xx,

(3.5)
....     ,,„         ^(x2-xx)(S3-S2)
\\h ~f\\Xvu<-g-n2.

Now, if we combine (3.4), (3.5), and the fact that h'(xx) = 52, we have

52-
5l(*l-*o)    y^.,,, s        „„  ,   SX2 ~Xl)iSZ ~S2)

n2 < h'(x) - f'(x) <- n ,
e 6

and (3.3) follows.  This completes the proof of Lemma 3.1.  We now return to the

Proof of Theorem 3.1.  Let « be given.  Choose^Q.^j, yj.^3 so that

*,-/

4(xx -x0)n 2 '
52 = 1 +SX,

and

S3=S2+(u-xx)/4(x2 -xx)n2.

Then by (3.3), any /G Slm(A) satisfying (3.1) and (3.2) must satisfy

m2 >2n2(l +SX).

That is, m > \/2(l + Sx)n > n.  Hence, for this data no /G Sln(A) can satisfy (3.1)

and (3.2).  This establishes Theorem 3.1.

We note that Theorem 3.1 contains Theorem 3 in [6] as a special case.

4. Variable Knots and Quadratic Splines. In this section we show that for con-

vex increasing data (x¡, y¡), i = 0, 1, . . . , N, it is always possible to construct a mesh

A such that

A= {x0,xx,... ,xN} C A,

and A contains at most one additional knot between each pair x¡_, and x¡ and such
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that a quadratic spline / on A satisfies (2.2), (2.3), and (2.4).  The proof will be con-

structive in that an algorithm for choosing the new knots will be given.  In fact, we

will present an algorithm for inserting new "data" so that (2.6) holds for this

"expanded" set of data.

The following lemmas will be needed:

Lemma 4.1. Let the four data points (jc,., v,.), i - 0, 1, 2, 3, be convex and in-

creasing, and let 50 be given so that 0 < 50 < Sv   Define

(4.!) x = xx- 2(xx - x0)(Sx - S0)/(S2 - 50),

(4.2) y=y0+ soix - *o)

and assume that x0 < x < xx (in Lemma 4.2 we show that if m2 > S3, then x0 <

x<xx).

Then

(4.3) Izlo _ c .
x-x0     *°>

(4.4) A -y _ S2-S0 ¿2 + so

xx~x~       2       +¿o~      2       •

(4.5) The "expanded" data D = {(x0, y0), (x, y), (xx, yx), (x2,y2), (x3,y3)}

are convex and increasing.

(4.6) There exists a set of Yi-admissible points for D.

(4.7) The m,- and M¡ from the Vh-algorithm satisfy m¡ < M¡, 0 < i < 2.

(4.8) There is a positive number e so that for any number m satisfying

S0 - e < m < 50

there is a ^A-admissible set T for the set D such that the piecewise linear function L

associated with T (Definition 2.1) has first linear segment of slope m.

Proof.   Equations (4.3) and (4.4) are immediate consequences of (4.1) and (4.2).

Property (4.5) follows from (4.3), (4.4) and the hypotheses.  To prove (4.6) we observe

that the ^-algorithm for the "expanded" data set proceeds as follows:   (Note that we

have neither re-indexed the data nor renamed the slopes.)

m0=0<50, M0 = 5o;    and

^0  + S2 .. .   ¡S2 + S0

1 = S0 < —y—      Mi = "»*(—-—,2S0m

This gives two cases:

Case 1.

S2 +50

Mx =—5-;

S2+S0
<5„        M, =5,;   and»•2 2 NU2' ln2 -°2

m3 =S2< S3, M3 = min(53, 52 + -^
S2    S0
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INTERPOLATION BY CONVEX QUADRATIC SPLINES 1159

Case 2.

Mx = 2S0;

m2 = S2 -50 <52,     M2 = 52;   and

m3 =S2<S3, M3= min(53, 52 + 50).

Thus, (4.6) is established.    Also, in both cases, we are guaranteed that m¡ < M(

for i = 0, 1, 2, 3 which gives (4.7).  Thus, we may choose a %-admissible set {tx, t2,

t3, r4} by choosing r4 to be any point lying between y2 + m3((x3 - x2)/2) and

y2 ~*~ M3iix3 - x2)/2).   Furthermore, if we choose r4 = y2 + m3((x3 - x2)/2), then

(4.9) t4=y2 +S2((x3-x2)/2).

Now note that the line segment joining (x0, y0) and (3c, y) and the line segment joining

(Xj, yx) and (x2, y2) intersect at a point whose x coordinate is the midpoint of the

segment [3c, xx ].   Furthermore, the y coordinate of the point where the line joining

(xx,yx) and (x2,y2) intersects the vertical line passing through (x2 + x3)/2 is r4 as

given by (4.9).  Hence, for this choice of r4, the resulting piecewise linear function L

will have the slope of its first segment equal to 50.  Since any choice of r4 in the inter-

val described above will give a different piecewise linear function L and since no such

L can have the slope of its first segment greater than 50 and since M3 > m3, (4.8) is

valid.  This completes the proof of Lemma 4.1.

Lemma 4.2. Let the four data points (x¡,y¡), 0 < i < 3, be convex and increas-

ing and let 50 be given such that 0 < 50 < Sv  If in the ^-algorithm m2 > S3, then

x as defined in (4.1) lies strictly between x0 and xx.

Proof.   By definition m2 = 252 - Mx and Mx = min{52, 25t - m0} =

min{52,251}.  If m2 > S3, then

252 -min{52, 2SX } > S3

from which it follows that Mx = 2SX and

2(52-51)>53.

But S3>S2.  Hence, S2 > 2SX ; and therefore, S2~S0> 2(SX - 50).  It follows that

x0 < 3c < xx, which establishes the lemma.

We now present the point insertion algorithm.   Let (xf, y¡), i = 0, 1,2, . . . , N,

be given convex and increasing data.

Point insertion algorithm.   Apply the ^-algorithm until

(4.10) mk> Sk + X    for some k

(note we are guaranteed that k > 2).  Consider the four points (xfc_2,>'fc_2)>

(xk_i,yk_i), (^fc>^k). (^jt+i'^fc+i)-  Apply Lemma 4.1 to these four points with

(4.11) So = (mfc-2+M*_2)/2.

Thus, we insert between ixk_2,yk_2) and (xk_x,yk_x) the point (3c, y) where 3c

and y axe from (4.1) and (4.2):
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1160 david f. McAllister and john a. roulier

(4.12) x =xk_x ~2(xk_x ~xk_2)(Sk_x -S0)/(Sk-SQ)

and

(4.13) y=yk-2 +S0(x-xk_2).

From Lemma 4.2, xk_2 < x <xk_x and^k_2 < y <yk_x-

Now renumber the points to include the point (3c, y).  Thus, the data now is

(x¡,y¡) for i = 0,1, ... ,N + I with xk_ x = 3c and yk_l — y.   Now apply the

^-algorithm to the "expanded" data until m ■ > 5+ j and proceed as before.  Note that

it is only necessary to recalculate mfc_2 and Mk_2 and continue from this point since

m,- and AT,, for j = 0, 1, . . . , k - 3 are the same as before.

Theorem 4.1.   Given a convex, increasing set of data (xí,.y,), i = 0, I, . . . ,N,

(4.14) the point insertion algorithm will terminate after a finite number M <

N of steps;

(4.15) at most one new point will be inserted between any two original data

points;

(4.16) the "expanded" data set

(*;,/,),      i = 0,l,2,...,N + M,

thus obtained, will satisfy (2.6) and (2.7).

Hence, there exists /G S\(x'0, x\, . . . , x'N+M) satisfying (2.2), (2.3), and (2.4).

Proof. The ^-algorithm will proceed until mk > Sk+ x. Let k be the smallest

index for which this occurs. Then for all 0 < / < k we have m ■ < M-. For suppose

not.   Let p be the smallest index for which m   > M .  Then p>2.  We note that

Mp ~mP =n»MSp+, -mp,Mp_x -mp_x}.

Since mp > Mp and Mp_ x - mp_ x > 0, it follows that M = S + x and, therefore,

mp > Sp+X contradicting the definition of k. Therefore, m;- < Af;- for all 0 < / < k.

Furthermore, since mk_2 <Mk_2 <5fc_j, we have

mk-2 <So <Mk-2 ^sk-v

Now insert the point (x, y) between (xk_2, ^fc_2) and ixk-i< ^k-i)» wnere 3c and y

are given by (4.12) and (4.13).  By (4.8) there is e > 0 so that for any, number m

satisfying

50 - e < m < 50

there is a ^-admissible set for the five points ixk_2, yk_2)> ix, y), ixk_l, -Vfc_i)>

ixk> yk)' (^fc+i' ^k+i)'so tnat tne piecewise linear function L associated with it has

its first linear segment of slope m.   We may assume that e is chosen small enough so

that

mk-2 <S0-e.

If we re-index the data we get (x'¡,y'¡), i = 0, I, . . . ,N + I, as above, it is now clear

that if the ^-algorithm is applied to this "expanded" data we will have

m,. <M, <5,.+ 1
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for i = 0, 1, 2, . . . , k + 2.  Thus, a new point will not be inserted before (x'k, y'k).

That is, if another new point is to be inserted it will be after (x'k, y'k) (i.e., after

(xk_x,yk_x)). This establishes (4.15) and, hence, (4.14).  Assertion (4.16) is easily

established by applying Lemmas 4.1 and 4.2.  This completes the proof.

Finally, it can be shown that for %-admissible data, by adding a single knot in the

interval [xN_x, xN], a quadratic spline / can be constructed which satisfies (2.2), (2.3),

(2.4) and f'(xN) = S for any 5 > SN.  A similar result is true for [x0, xx ] and 5 < 50.

It follows that a quadratic spline exists which interpolates and "preserves the

shape" of any finite set of data if at most one additional knot is added between any

two original data points.   Such a spline should be useful in computer aided geometric

design and other applications of computer graphics.

5.  Numerical Examples and Remarks.   The point insertion algorithm described

in Section 4 was applied to several sets of convex increasing data and in each case pro-

duced expanded data which were convex increasing and H-admissible.   We report on

three such cases because of their severe numerical properties.   All calculations were done

in double precision on an IBM 370-165.   It should be noted that the data in examples

2 and 3 are so extreme that the point insertion algorithm failed to produce ^-admissible

data using only single precision.

Table 1

Example Original Data Points Added By Point Insertion Algorithm

y¡

0

2

44

1.902439024390243£ + 00      9.51219512195!219£" - 01

0

2

4

6

8

10

12

0

2

44

88

132.1

1132.1

2132.2

1.902439024390243£ + 00      9.512195121951219F - 01

3.199999999999945£ + 00       2.689999999999883£- + 01

7.999790784036821£ + 00       1.320453920184109JF + 02

0

I

2

3

4

5

6

7

8

9

10

11

12

0

I

2

3

4

5

6

7

8

9

10

11

12

0

0.001

1.001

2.002

20.002

40.1

140.1

282

1400

2800

28000

54000

100000

9.989994997498749£ - 01 4.994997498749374£ - 04

2.999911763408285£- + 00 2.001161741349135£ + 00

4.948832239073737£- + 00 3.708109890736525Í + 01

6.917681846616026£' + 00 2.318682420167180£' + 02

8.976580020835816Í + 00 2.491816493812568£ + 03
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1162 david f. McAllister and john a. roulier

If the algorithm developed by McAllister, Passow, and Roulier [5] is applied to

these sets of data, then the degree of the piecewise polynomial in Sn(A) satisfying (2.2),

(2.3), and (2.4) will be n = 21 in example 1, n = 9560 in example 2, and n = 1000

in example 3.  Indeed, any attempt to construct and evaluate the splines using the

algorithm in [5] resulted in underflow and/or overflow when applied to examples 2

and 3.

On the other hand, if the algorithm in [5] is applied to the "expanded" data re-

sulting from the point-insertion algorithm the shape-preserving piecewise quadratic spline

can be constructed and evaluated in all three cases with no difficulty.  The above-men-

tioned examples appear in Table 1.
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