
Chapter 51

Optimistic Sorting and Information Theoretic Complexity

Peter McIlroy*

Abstract
Entropy considerations provide a natural esti-

mate of the number of comparisons to sort incom-
pletely shuffled data, which subsumes most previ-
ous measures of configurational complexity. Sim-
ple modifications to insertion sort and merge sort
improve their performance on such data. The
modified merge sort proves efficient both in theory
and in practice.

Introduction
The problem of sorting incompletely shuffled

data in random access memory is intuitively quite
simple. It is often easy to tell at a glance whether
some configuration is easy to sort, that is, whether
fewer than lgN! comparisons are necessary. For
instance, in updating data bases, a common tech-
nique is to sort recent additions independently, then
merge them with the previously sorted data. This
requires 0 (MlgM +N) comparisons, where M is
the number of recent additions. It is also common
to use insertion sort for checking data in which a
few elements are slightly misplaced. The question
then arises: what are useful classes of
configurations for which fewer than 0 (N&N)
comparisons are necessary?, Various competing
measures of disorder have been proposed, often
together with special sorting algorithms tuned to
those particular measures. l12v3 Until recently, meas-
ures have often described only worst case perfor-
mance, or have given overly imprecise estimates of
complexity. Recent work by Petersson and Moffat4
has to a great extent unified these measures. This
paper discusses an alternative approach using infor-
mation theoretic and combinatorial techniques.

From an information theoretic viewpoint, the
number of comparisons needed to sort a permuta-
tion is an upper bound on the Kolmogorov com-
plexity of the permutation. A sorting algorithm gen-

*Computer Science Research Group, University of California

at Berkeley, Berkeley, CA 94720.

erates a string of comparisons unique to each per-
mutation. These strings form a prefix-free encod-
ing for permutations. Since there are N 1 permuta-
tions, most permutations will require at least 1gN !
comparisons. The challenge is to determine classes
of permutations which require fewer, and to con-
struct sorting algorithms whose comparison counts
approach the information theoretic limit within
these classes.

Desirable Properties
We list some properties that a sorting algo-

rithm should have for its comparison count to
resemble Kohnogorov complexity (K-complexity).
Each desideratum reflects the length of some sim-
ple information theoretic encoding of permutations,
and has a common analog in statistical mechanics.
(The original motivation for these desiderata was
the Kolmogorov-Sinai entropy5 of statistical phy-
sics.) Most previous measures of disorder are sub-
sumed by these properties.
Define C(rc) to be the number of comparisons
needed to bring permutation R: i + Zi into order.

1. Reversal.
Let -rr: i + XN+l-i. Define a sorting algorithm to

be optimal over reversal when for any permutation
fL

c (-7c) = 0 (C (7c)).

(Here = 0 (C (rr)) represents I UC(~) + bN for
some constants a and b, and for all N .) The K-
complexity of -rr is within a small additive constant
of rc, as --‘II: can be encoded as “R = [encoding];
print 4.

2. Inversion.
Define a sorting algorithm to be optimal over

inversion when for any permutation rc,

467

468 Mc ILROY

c (n-1) = 0 (C(n)).
3. Composition.

Let p.cr be a decomposition of ‘it. Define a sorting
algorithm to be optimal over composition if

c m = 0 (C (PI) + 0 (C cm

for all decompositions of x. Later in the paper it is
shown that full optimal&y over composition is not
feasible.

These properties define relations between the
comparison counts for different permutations
without actually limiting the count for any one per-
mutation. We now restrict the comparison counts
for specific permutations.

4a Weak segmentation.
Assume that rt can be cut into S segments such

that 5 5 rrk for all j in segment i and all k in seg-
ment i+l. Let Ci be the number of comparisons to
sort segment i alone. A sorting algorithm is
optimal over weak segmentation if

C (n) = 0 (,$(Ci + lglvi)) = 0 W + t$G 1

Only ElgN; = 0 (N) comparisons are necessary to
distinguish the lengths of the S segments, as it is
possible to express Ni in 2lgNi bits.

4b. Strong segmentation.
Assume that the sequence of segments from 4a is

scrambled without changing their internal order.
An algorithm is optimal over strong segmentation if

Overhand shuffling, or block optimality,4*6 is a spe-
cial case of strong segmentation, where

t
Ci+SlgN= (Ni-l)+SlgN=N-S+SlgN,

,= 8 I=

since perfectly ordered sequences require only
N - 1 comparisons. (Overhand shuffling is the
familiar technique of dropping short runs of cards
from one hand into the remainder of the deck held
in the other.)

51. Repeated keys.
Assume there are S IN distinct keys. A sorting

algorithm is optimal over repeated keys if

C(n)=O(N +lg $&)=O(N +@iLg#) 1= i

where Ni is the number of elements with key i , and
lg(N!/nNi !) is simply the entropy of a

configuration with restricted keys. When S=N, this
reduces to the usual C (rc) = 0 (1gN !). Although a
configuration with repeated keys is not strictly a
permutation, it can be made so by requiring stabil-
ity. This leads to the next case.

5b. Riffle shuffles (riffles).
Riffles are the other common form of card

shuffling, where the deck is cut, and the two sec-
tions are interleaved randomly, without changing
order within a section.
Definition of an S-way riffle. A permutation rt is an
S -way riffle if rr can be constructed by dividing the
identity into S segments with lengths Ni, and inter-
leaving the segments so that each remains mono-
tonic. This is equivalent to requiring that rr-l con-
sist of S runs, within which @I, rt~l, and rt$ are
monotonic.

A sorting algorithm is optimal over riffles if

C(n)=O(N + ’ Nilg$).
T I=

This is a simple generalization of optimality for
repeated keys, which can be considered as a riffle
whose segments consist of runs of equal keys.

5c. Runs.
Assume that rt consists of S monotonic runs, with

Ni the length of run i. Runs have the same com-
plexity as riffle shuffles, and the same definition for
optimality. Optimality over runs is a corollary of
properties 5b and 2, as the inverse a permutation
consisting of runs is a riffle. Note that this is not
the usual measure of optimality over runs,t N IgS ,
which best applies only to runs of equal length.

These properties subsume most previous
measures of disorder, including Hist, Lot, and
SMS .4 The possible exception is Reg .*

LOC Z
7

max(lg 1 Xi - %-II , 1)
8,

Hist 3
ci

max(lg I rr? - ~21 I , 1)

Reg = $max(log yj?((i-t)x(TCi -ITS I }. 1)

SMS : iumber of shuffled monotone subsequences.

Hist, Lot, and SMS together subsume all other
measures of complexity.4

* ln fact, Hid, La, and Reg are usually &fined in terms of
difference at the time of insertion by insertion sort, but this
makes only 0 (h’) difference and complicates analysis. Also,
the usual definition of Reg is z(lg(t+l xi -R-, 1)); replacing

addition with multiplication supplies the necessary bits for ex-
pressing both I and 1 % - q-, 1 and better reflects information
theoretic complexity.

OPTIMISTIC SORTING AND INFORMATION THEORETIC COMPLEXITY 469

The five properties listed here form tighter
bounds on complexity than other measures, which
often are accurate only within a factor of two (Hist,
Lot, and Reg), or only describe worst case
behavior @MS). For our purposes, it will also be
necessary to distinguish strong segmentation from
the other desiderata, a distinction not made by
difference-based measures like Hist , Lot , and Reg.

Data Compression of Comparison Strings
Consider the comparison trace of any (stable)

sorting algorithm. The i tb bit represents the sense
of the i th comparison, with 0 representing 5 and 1
representing >. If the trace has fewer than 1gN !
bits, then the sorting algorithm is also a data
compression algorithm. (It may be possible to
compress the trace further after sorting is com-
plete.) In the cases of insertion sort and merge sort,
the two most common stable sorts, it is sometimes
possible to compress data on the fly, reducing the
number of comparisons. This is achieved by using
different searching strategies for making insertions
into an ordered list.

Consider the complexity of inserting an ele-
ment x into an ordered list of i-l elements,
[x 1 , . ..Ji-t]. Insertion SOlt uses li comparisons,
where li is i minus the rank of x in [XI,xi-11.
The total comparison count is at most Inv (z)+N-1,
where Wnv (rc) < N2/2, is the number of nearest
neighbor swaps needed to bring 7c into order. This
can be improved in various ways. First, a binary
search uses at most Igi comparisons. This is best
conceived as insertion into a balanced tree. This
uses

C(n)<
t

Igi <N&N
I=

comparisons. However, the excellent behavior of
insertion sort for small Inv has been lost.
It can be regained by using an exponential search7
beginning at Xi-l. An exponential search compares
x first with Xi-l. Then x is compared with Xi-2,
xi-49 xi-89 increasing by powers of two until
x > Xi-j. From here, a binary search is made on the
j/2 positions between Xi-j and xi-j/z. This may be
considered as a linear search up the rightmost
branch of a balanced tree, followed by a binary
search down the tree. Figure la shows an example
of this.

4
\

a
Figure la. Insertion sort with exponential
search. Arrows demonstrate insertion
between elements i-4 and i-5. 6 = 21g5 com-
parisons are necessary.

Insertion sort with exponential search uses

C (7C) =
fi

tTMQlgk, 1) < 2N lgh7
‘-

comparisons. Compared to insertion sort, the worst
case occurs when every insertion is between ele-
ments xi-2 and Xi-s. In this case, at most
(4/3)Iflv(1r) comparisons are used. An analogous
algorithm using a more complicated data structure
can be found in Mehlhom (8).

The algorithm can be extended further by
replacing the linear search on the rightmost branch
with an exponential search. An example is shown
in Figure lb.

Figure lb. Insertion sort with double ex-
ponential search. lg5 + 21glg5 = 6 comparis-
ons are again necessary.

Insertion sort with double exponential search
uses

C(X) =
t

(lgli + max(2lglgli , 1)) < N lglv + 2N lglglv
I=

comparisons, and at most (5/3)Inv (rr) comparisons.
Further levels of extended search are described in
Bentley and Yao,7 and lead to encoding li bits in
U(li) bits, where U(h) is the universal code,
requiring the sum of positive terms in

(lgli + 1) + (lglgli + 1) +(lglglgli + 1) + ’ f ’

bits. All of these strategies reflect methods from
elementary information theory for encoding a
number li in 0 (lgli) bits.9

Theorem: Insertion sort with exponential
search (ISES) is optimal over inversion and weak
segmentation.

470 MCILROY

ProofiNotethatZiII~i-il +lforalli,andthat
insertion sort with exponential search uses at most

C(7C) I
t?

max(2lg(1 ‘ITi - i 1 + l), 1)
I-

comparisons. Since 1 7& -i I = I 7C$ - 7Ci 1 , C(7C)
is approximately C(7tl). For weak segmentation,
Ii remains the same for points on the interior of the
segments. For the first endpoint of a segment, li is
the length of the previous segment.

By searching the leftmost branch whenever
the previous insertion occurred to the left of the
root, we can still get at most (5/3)Inv@) and
NlglV + Vvlglglv comparisons. This maintains the
properties of ISES, with the addition of optimality
over reversal.

For the final modification, insert element i by
comparing it with the i-1st element of the original
permutation, and search from there.lp6 If an
exponential search is used, at most

C(7C)12
fi

max(lg1 dil ,l)IZOC(Z)
‘-

comparisons are necessary, where di is the distance
between the i -1st and i th insertions; now the quan-
tity 1 1; - Zi-11 = 1 7Ci - ‘IFi- 1 is compressed, rather
than Zi alone.4 We call this strategy insertion sort
with differential search (ISDS).

Theorem: ISDS is optimal over reversal,
weak and strong segmentation, and runs.
Proof: For the elements of run j,
maX(2lg 1 ‘Itilci-11 , 1) is at most uVjlg(N/Nj),
which occurs when elements in the run are uni-
formly spaced. Proofs for segmentation are as for
ISES above.

Using 21g 1 7Ci *i-i 1 comparisons to make
insertion i is the same estimate of complexity
achieved by encoding nearest neighbor differences
in 21g 1 nilEi- 1 bits.

ISDS lacks optimality over inversion and
composition.

Observation: No sorting algorithm can
achieve optimality over composition while main-
taining optimal&y over both runs and strong seg-
mentation without analysis of the comparison trace.
Let p be a permutation consisting of S equal runs,
and CJ be an overhand shuffle. Optimality over
composition would require
C (p-a) = 0 (NlgS + C (0)). The composition will
consist of S pieces corresponding to the S runs of
p. Each piece is a miniature of the overhand
shuffle, with segments shorter by a factor of S.
0 (C (o)-1gS) = 0 (C (6)) comparisons will be

necessary to sort any one of these pieces. If each
piece is sorted independently, a total of
0 (SC (0) + NlgS) comparisons will be made. To
achieve full optimality over composition, the
configurations of some of the pieces must be sorted
by extrapolation from the others. This requires
analysis of the comparison trace.

However, insertion sort is optimal over com-
position for a limited class of permutations. Let
npk be a decomposition of p into permutations
that require optimality only over runs, inversion,
and weak segmentation for efficient sorting. Define
an algorithm to be optimal over weak composition
if

c (P) = 0 qc (Pr))

Theorem: Insertion sort with differential
search is optimal over weak composition.
Proof (sketch): composition of m runs with n runs
leads to 0 (mn) runs, and so requires
0 (N (lgm+lgn)) comparisons. Weak segmentation
never changes relative positions by more than a
fixed amount, and
lg(1 Iti+&- 1 + C) I lg 1 IEi*i-t 1 + 1gC. Since
ISDS is not optimal over inversion, there are no
further cases.

Further recursive iteration of exponential
search7 leads to an insertion sort with differential
search requiring at most

C(n)s & u(l G*i-II) I-
comparisons, which corresponds to encoding
nearest neighbor differences using their universal
encodings. This too is optimal over runs, strong
segmentation, and weak composition.

Merge Sort
To get optimal@ over inversion we must

also require

C(~)=O(N+I=lgln;l-~~~I)=O(N+Hist(n))
f:

comparisons. If this is achieved while maintaining
optimality over weak composition, all desiderata
except full optimality over composition will be
satisfied. With a simple modification, merge sort
comes close.

Let lists A =[AI,A~;.. A,] and
B = [B1, B,] be two adjacent lists to be merged
(called hereafter “merge lists”), and assume
A1 > Bl. In this case element AI must be inserted
into list B. The usual technique here is a linear

OPTIMISTIC SORTING AND INFORMATION THEORETIC COMPLEXITY 471

search of length Ii for insertion i. Again
“compress” 1; bits into max(2lgli. 1) bits, using
the same method of an exponential search followed
by a binary search. We name this algorithm merge
sort with exponential search (MSES). The worst
case again occurs for insertions after element two,
where 4 comparisons are needed, rather than 3 as in
traditional merge sort. This yields a worst case of
(4/3)NlgN comparisons. For “random” data,
where insertions occur after position j with fre-
quency 2-j. the expected number of comparisons is
=l.O8N(lgN - 1). A variant of this algorithm was
first described in (6), where natural merge sort was
used to minimize recopying.

Theorem: Merge sort with exponential
search is optimal over reversal, inversion, weak
composition, runs, riffles, and weak segmentation.
It is suboptimal for strong segmentation, where it
requires an additional
0 (S lgNlg(N/S)) = 0 (S 1gNlglgN) comparisons.
(A proof is sketched in the appendix.)

Optimality over strong segmentation would
require an analysis of the comparison trace, as
strong segmentation, or overhand shuffling, leads to
correlations between different merge passes. How-
ever, within the class where MSES is optimal,
further improvement is possible.* Using natural
merge improves the behavior over runs by up to
N-l comparisons. However, this comes at the
expense of about SN comparisons for random data.
More consistent improvement comes from making
a hybrid of exponential search and linear search
(MSLS) merge sorts. This can be done with no
memory of the comparison trace, simply switching
to linear search when a short run occurs between
insertions, and to exponential search when a long
run occurs. An effective heuristic is to use linear
search until a run of length 7 occurs, and to return
to linear search when a run of length 1 occurs. The
worst case versus MSES occurs for alternating seg-
ments of lengths near 30 and length 1, where the
hybrid uses 3j2 times as many comparisons. (This
can occur for carefully constructed overhand
shuffles.) The worst case behavior versus MSLS
remains (4/3)N 1gN. However, the average number
of comparisons on random data is less than 1.003
times greater than MSLS. The behavior on runs and
riffles is also close to the information theoretic
limit, at

Analogous hybridization of natural and pairwise
first passes makes a similar improvement in the
0 (N) term for runs.

Figures 2a-c show the performance of MSES
and the MSES/MSLS hybrid for some of the cases
discussed previously. Figures 2a and 2c were gen-
erated by composition of IL-way and 3-way riffles
and runs. The MSEVMSLS hybrid requires up to
.6N extra comparisons for compositions of unbal-
anced riffles. Figure 2b was generated by extract-
ing a run of length N -MS, scrambling it, and
riffling it back.

H =(N-LMS)+ lg((LMS)!)+
2((N-LMS)lg(NI(N-LIMS)) + LMS lg(N /MS))

This demonstrates the behavior for shuffled mono-
tonic sequences with unbalanced lengths. In all
cases,N = 218.

runs, N (l+logS)-(S (l+loge))

0 5 10 15
logs

Figure 2a. Performance in comparisons of hybrid
MSES/MSLS for runs and riffles. The tick-mark
at right shows the information theoretic limit for
random data, log(N !).

3

1.0031g Nl >TpT +0(N).

* Similar improvement of insertion sort is also possible.

472 MCILROY

0 5 10 15 20
LMS

Figure 2b. Performance on Longest Monotonic
Subsequence (LMS). Comparison counts for
MSES, MSLS, the hybrid, and the hybrid with na-
tural merging are shown. The steeper of the two
hybrid curves is motied natural merge. The in-
formation theoretic limit is shown for comparis-
on.

A 4 Ib 1; :
2logS

Figure 2c. Performance of hybrid on shuffled
monotone sequences. The three curves result
from different orders of composition of logs runs
with logs riffles.

Performance
We have shown that merge sort with

exponential search, and its hybrid with MSLS, have
comparison counts near the information theoretic
limit for a large class of permutations. We have
shown that further improvement, to find other
classes of low-complexity permutations, would be
impractical, as analysis of the comparison trace
would be required. (This is a time-intensive propo-
sition!) Whether MSES is in fact practical, that is
whether it actually reduces the time spent sorting,

can only be found by experiment.
In tests on the Sun SPARC station, on ran-

dom data, hybrid MSES/MSLS is at most 1%
slower (in CPU time, not just comparisons) than
MSLS alone. We’ll not get in to what might
comprise “real” data here. However, for sorting
lines of C code, the text of this paper, and
PostScript, the MSES/MSLS hybrid used between
lg(N !)-2.5N and lg(N !)-SN comparisons, and
between 10% and 30% less time than MSLS alone.
On this paper sorted as words (as for a spelling
checker), the hybrid used about lg(N!)-.5N, or
about .951g(N !) comparisons. Hybrid
MSES/MSLS is competitive with Quicksort, even
on random data Versus BSD UMX* system qsort,
the hybrid is faster for all data. Versus the fastest
readily available qsort, lo the hybrid is 25% slower
on mndom integers; for random strings, time differ-
ences are negligible.

Discussion
We have defined several intuitively reason-

able properties corresponding to various classes of
presortedness. For these classes, we have made
accurate estimates of information theoretic com-
plexity. For a large and important subset of this
class, merge sort with hybrid exponential and linear
search is near-optimal. Further qualitative
improvement of merge sort, to include optima&y
over a larger class, would come at a penalty in both
time and space, and likely would prove impractical.

Recent studies by Moffat et al” has shown
that splaysort, and other tree-based strategies, are
optimal over strong segmentation, runs/riffles and
inversion. In particular, their experiments indicate
that splaysort is Reg-optimal. However, splaysort
requires = 1.45NlgN comparisons for random data,
significantly more than the MSES/MSLS hybrid.
Merge sort with competitive search strategies is
likely to maintain two notable advantages. Its mul-
tiplicative constant near unity (~1.003NlgN) gives
expected behavior only slightly worse than MSLS
alone on random data, and a much larger set of per-
mutations where it actually uses fewer than 1gN !
comparisons. In comparison with MSLS, hybrid
MSES/MSLS has minimal computational overhead,
requiring no additional memory, about 2 additional
operations per comparison, and about 1% more
CPU time on random data. Merge sort with hybrid
exponential and linear search is thus the strategy of
choice for even slightly presorted data.

*UNIX isatrademark ofAT&T.

OPTIMISTIC SORTING AND INFORMATION THEORETIC COMPLEXITY 473

Acknowledgements
Thanks to Keith Bostic and CSRG for their

support. Also thanks to J. Bentley and R. Karp for
encouragement and criticism, to M. D. McIlroy for
editorial comment, and to J. P. Linderman for help
in testing.

Appendix
l Merge sort with exponential search (MSES) has
nearly optimal efficiency when merging two lists.

Let li be the length of the ith insertion-free
run. MSES requires

~mN%li, 1)

comparisons. Assume the positions of the i-2 and
i+2 insertions into the second list are known. If
both positions are the same, no comparisons will be
needed for “insertion” i. If they are different,
lg(li-2 + li) > lgli comparisons are needed. Thus
the complexity of merging two sequences is at least

H 2 zmax(lgli , 1).
1

Further modifications that choose between competi-
tive search strategies (such as hybrid MSES/MSLS)
will bring MSES nearer to the information theoretic
limit.

When merging a list of length N1 with one of
length N2 L N,, this translates to a worst case
behavior of

MSES ignores correlations between merge passes,
which would be required for optimality over strong
segmentation, and long-range correlations which
would be required for full optimality over composi-
tion. For the other properties, MSES is nearly
optimal, that is, they correspond to variations in the
lengths of insertion-free runs (density of inser-
tions).
l MSES is optimal over riffle shuffles.

Define Ni the length of the ith shuffled
subsequence; its elements will be consecutive after
sorting. After lg(N /Ni) passes, there will be at
most Ni runs to be joined end-to-end. In the worst
case, each run will have one element of the original
subsequence. The first &Ni passes require at most
(4/3)Ni Ig(N /Ni) comparisons for sequence i . Each
additional pass will double the length of consecu-
tive runs into which no additional insertions will be
made. This requires 0 (Ni j2-j) = 0 (Ni) com-

parisons. For future reference, we call a monotonic
sequence 17 in contiguity when the number of
merge lists containing elements of q begins to
decrease exponentially.
l MSES is optimal over runs.

When adjacent lists of length 2i are merged,
either they are both subsequences of a longer run in
the original configuration, and O(j) comparisons
are made, or they include adjacent runs from the
initial configuration, and O(s) comparisons are
necessary. The first case adds to 0 (Ni) comparis-
ons for run i over the tkst lylvi passes. the second
contributes 0 (Ni) comparisons for each additional
paSS, for a total of 0 (Ni (IgN-&Ni)). The a@u-
ment can be made more rigorous by showing that
the algorithm behaves gracefully when merging
two lists that include subsequences of adjacent
runs. It does, because adjacent runs need be
merged only once, even when they are merged
incrementally. The details are omitted, there are
about 5 special cases.

0 O(e
i lg(N /Ni) comparisons am needed to

1=
merge S monotonic sequences with lengths Ni,
independently of the order of merging. Fist recon-
sider disjoint sequences, or runs.

Assume that on the final merge pass
sequences (1, k) are merged with sequences
(k+l, S). Assume further that the 6rst passes
required at most

comparisons. The final pass merges
e,

Ni elements
1=

with Ni elements, requiring at most

comparisons for a total of at most 2
e

i lg(N / Ni).
I=

The same proof holds for shuffled sequences, once
they have been brought into contiguity. Shuffled
monotonic sequences must first be brought into
contiguity, requiring the same number of comparis-
ons as riffle shuffles. Then they must be merged.
Note that two sequences can be merged with each
other only once, even if different fractions are
merged on different merge passes. Thus the argu-
ment for runs merged in arbitrary order still holds.
As expected, shuffled monotone sequences are
twice as complex as the same number of riftles or
NIIS.

474 MC ILROY

This proof can be extended to composition an
arbitrary numbers of runs with a different number
of riffles, and to allow optimality over weak seg-
mentation. In all cases, sequences can be con-
sidered to have two densities.
Define n(i)zxr to avoid double subscripts.
Let X represent a monotonic sequence with ele-
mentsX(l) ..e X(1 X 1).
Define density in position for sequence X :

6.

7.

C. Levcopoulos, 0. Petersson, and S. Carls-
son, “Sublinear Merging and Natuml Mer-
gesort,” in Proc SIGAL International Sympo-
sium on Algorithms, Lecture Notes in CS,
vol. 450, Springer-Verlag, 1990.
J. Bentley and A. Yao, “An Almost Optimal
Algorithm for Unbounded Searching,” Znfor-
mation Processing Letters, vol. 5, pp. 82-87,
1976.

pr = l/c 17+(X(i))-7+X(i-1)I >

Define density in value for sequence X :

8.

pV = l/c I x(X(i))-x(X(i-1))) >

K. Mehlhom, “Sorting Presorted Files,” in
Proc. 4th GI Conference on Theoretical CS,
Lecture Notes in CS, vol. 67, Springer-
Verlag, 1979.

For S sequences X 1 1. . Xs , the complexity of
merging is

ow -* I Xal ogPp&)+kp”wclN t

Riffle shuffles are reflected in pp ; runs in py . Weak
segmentation is reflected in variations in density,
and in the positions of endpoints of subsequences.

9.

10.

11.

T. M. Cover and J. A. Thomas, Elements of
Information Theory, pp. 144-150, Wiley &
sons, 1991.

Merge sort with exponential search behaves
sub-optimally over strong segmentation because
there is a strong correlation (low relative entropy)
between the positions of insertions in different
passes. For a segment of length 1, merge sort
requires 0 (lgl) comparisons to relocate the seg-
ment boundaries on each pass, for a total of
0 (lgl lglv) comparisons. However the complexity
per segment is only lglv, or 0 (1) per pass. In the
worst case, the segment length is O(lgN), and the
comparison count is multiplied by lglglv .

J. Bentley and D. McIlroy, “Engineering a
Sort Function,” (submitted).

A. Moffat, G. Eddy, and 0. Petersson, “How
Good is Splaysort?,” in Australian Computer
Conference (Proceedings-to be published),
Feb. 1993.

References

1.

2.

3.

4.

5.

J. Mannila, “Measures of Presortedness and
Optimal Sorting Algorithms,” IEEE Trans.
Computing, vol. 34, pp. 318-325, 1985.
C. Levcopoulos and 0. Petersson, “Sorting
Shuffled Monotone Sequences,” in Proc.
2nd Scandinavian Workshop on Algorithms
& Theory, Lecture Notes in CS, vol. 447,
Springer-Verlag 1990.
S. S. Skiena, “Encroaching Lists as a Meas-
ure of Presortedness,” Bit, vol. 28, pp. 775-
784,1988.
0. Petersson and A. Moffat, “A Framework
for Adaptive Sorting,” in Proc. Scandina-
vian Workshop on Algorithms & Theory,
LNCS, Springer-Verlag, 1992.
A. J. Lichtenberg and M. A. Lieberman, Reg-
ular and Stochastic Motion, pp. 260-268,
Springer-Verlag, 1983.

