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Abstract

This paper explores the estimation of a class of life-cycle discrete choice dynastic models. It provides a new

representation of the value function for these class of models. It compare a multi stage conditional choice

probability (CCP) estimator based on the new value function representation with a modified version

of the full solution maximum likelihood estimator (MLE) in a Monte Carlo study. The modified CCP

estimator performs comparably to the MLE in a finite sample but greatly reduces the computational cost.

Using the proposed estimator, we estimate a dynastic model and use the estimated model to conduct

counterfactual simulations to investigate the role Nature versus Nurture in intergenerational mobility.

We find that Nature accounts for 20 percent of the observed intergenerational immobility at the bottom

of income distribution. That means that 80 percent of mobility at the bottom of the income distribution

is explained by economic decision and economic/institutional constraints. (JEL classification: C13,

J13, J22, J62)



1 Introduction

The importance of parents’altruism toward their children and children’s altruism toward their parents has

long been recognized as an important factor underlying the economic behavior of individuals. Economic

models that incorporate these intergenerational links are normally referred to as dynastic models. Many

important economic behaviors —and hence the welfare effect of many public policies —critically depend on

whether these dynastic links are explicitly modeled. For example, several papers have documented that

(i) the distribution of wealth is more concentrated than that of labor earnings and (ii) it is characterized

by a smaller of fraction of households owning a larger fraction of total wealth over time.

There are different models of dynastic transfers explaining the persistence in wealth and income across

generations (for example, the Loury, 1981, model of transmission of human capital and the Laitner, 1992,

model of bequests); however, in these models fertility is exogenous. Barro and Becker (1988, 1989)

develop dynastic models with endogenous fertility; however, in their models endogenizing fertility leads

to a lack of persistence in earnings and wealth because wealthier households have more children and

therefore dynastic transfers do not depend on wealth and income. The data clearly show persistence

in income across generations. Subsequently, dynastic models with endogenous fertility that capture the

dynastic persistence of income and wealth have been analyzed extensively, but such models have not been

estimated mainly because of computational feasibility considerations. This paper develops an estimator

for dynastic models of dynastic transfers and estimates a model quantifying the different factors generating

the persistence of income.

Alvarez (1999) combines the main features of the above-mentioned models by incorporating the fer-

tility decision into the Laitner (1981) and Loury (1992) dynastic transfer models. While some models,

as Laitner (1981), incorporate an elaborate finite life-cycle model for adults in each generation, in other

models there is one period of childhood and one period of adulthood. The framework we study incorpo-

rates all these elements and develops a model in which altruistic parents make discrete choices of birth,

labor supply, and discrete and continuous investment choices in children. In particular, in order to ac-

commodate many models in the literature, parents choose time with children and a continuous monetary

investment in their children every year over their life-cycle. The model can also be extended to include

bequests. The model is a partial equilibrium model, and as in most dynastic models and in the basic

setup, there is one decision- maker in a household; however, we show that it can be easily extended to a
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unitary household.1

While the study of dynastic models has been widespread in the economic literature, these studies

have been largely theoretical or quantitative theory. However, the estimation of these models and the

use of these estimated models to conduct counterfactual policy analysis are nonexistent. There are two

main reasons for this gap; the first is data limitation and the second is computational feasibility. Ideally,

one would need data on the choices and characteristics of multiple generations linked across time to

estimate these dynastic models. The number of generations needed for estimation can be reduced to

two by analyzing the stationary equilibrium properties of these model. Recently data on the choices and

characteristics of at least two generations have become available in the National Longitudinal Survey of

Youth (NLSY79), Panel Study of Income Dynamics (PSID), and a number of European administrative

datasets.

There are two main estimators used in the literature to estimate dynamic discrete choice models:

full solution method using the "nested fixed point" algorithm (NFXP) (see Wolpin, 1984; Miller, 1984;

Pakes, 1986; and Rust, 1987, for early examples) and "conditional choice probability" (CCP) (see Hotz

and Miller, 1993; Altug and Miller, 1998; and Aguirregabiria, 1999) estimators that do not require the

solution to the fixed points. More recently Aguirregabiria and Mira (2002) showed that an appropri-

ately formed CCP-based estimator, "nested pseudo likelihood" (NPL), is asymptotically equivalent to

an NFXP estimator. The major limitation of the NFXP estimation procedure is that it suffers from the

curse of dimensionality (i.e., as the number of states in the state space increases, the number of compu-

tations increases at a rate faster than linear). Dynastic models add an additional loop to this estimation

procedure: a nested fixed point squared. Therefore, this estimation procedure suffers from the curse of

dimensionality squared. However, even with a CCP estimator or an NPL estimator, estimation of the

dynastic model requires dealing with further complications that are not present in single-agent dynamic

discrete choice models.

The main diffi culty is deriving the representation of the value functions of the problem. This diffi culty

is associated with the non-standard nature of the problem. A dynastic model has finite number of periods

in the life-cycle in each generation and infinitely many generations are linked by the altruistic preferences.

This framework does not fit into a finite horizon dynamic discrete choice model since in the last period,

1 In a companion paper, we extend the current framework to incorporate non-unitary households (Gayle, Golan, and
Soytas , 2014).
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there is a continuation value associated with the next generation’s problem that is linked to the current

generation by the transfers and the discount factor. Therefore, we need to find a representation for the

next generation’s continuation value if we want to treat the problem as a standard finite-period problem

and solve it by backward induction2. In this paper, we propose a new estimation procedure based on a

representation of the period value functions in terms of period primitives. In particular, we show that

an appropriately defined alternative representation of the continuation value enables us to apply a CCP

estimator to the dynastic model. The general principles used in the estimation technique are well known

in the literature3 and hence the main contribution of this paper is showing how these principles can

be combined to estimate dynastic models. In a Monte Carlo study, we demonstrate that a multi stage

CCP estimator based on the new value function representation have good small-sample properties that

compare favorably to a full solution NFXP estimator. For this comparison we use a pseudo maximum

likelihood estimator (PML) so that our results would be more comparable to those of the NFXP maximum

likelihood estimator.

We use the GMM version of the estimator developed in this paper to estimate a dynastic model of

intergenerational transmission of human capital with unitary households. The estimated model captures

well the labor supply, time with children, and fertility decisions of households. We then demonstrates

the usefulness of our framework for policy analysis. This is done by conducting counterfactual simula-

tions to investigate the role of the automatic transmission of education across generation (Nature) on

integenerational mobility at bottom of the income distribution. We find that without the Nature on the

intergenerational education production function mobility at the bottom of the income distribution would

have been 20 percent higher. That means that 80 percent of mobility at the bottom of the income distri-

bution is explained by economic decision and economic/institutional constraints. Lastly, not accounting

for the re-optimization of subsequent generations in the model, as is done in the approach outlined in

this paper, will overstate the effect of Nature on mobility by between 20 and 90 percent.

Dynastic models have been used to study numerous topics in economics. These topics include ex-

plaining the cross-sectional correlation between parental wages and fertility (see Jones, Schoonbroodt, and

2Obviously, we can always solve the problem by NFXP if we assume that the problem is stationary in the generations.
In this case, the solution to the dynamic programming problem requires solving the fixed point problem for the period value
functions. However, as one can easily anticipate, we encounter the same computational burden of full solution. Therefore
our specific interest is CCP-type estimators.

3See Hotz and Miller (1993), Hotz, Miller, Sanders and Smith (1994), Altug and Miller (1998) and Aguirregabiiria and
Miria (2002) for the seminal contributions from which these general principles are derived.
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Tertilt, 2010, for a detailed overview of this literature), the relationship between inequality and growth

(see, e.g., De la Croix and Doepke, 2003), the relationship between human capital formation and social

mobility (see Heckman and Mosso, 2014, for a survey of this literature), the relation among bequests,

saving, and the distribution of wealth and earnings (see De Nardi, 2004; Cagetti and De Nardi, 2008,

among others),4 and the optimality of different ways of funding social security. These models have been

used to shed light on the effect of education, child care subsidies, child labor regulations, and wealth and

income redistribution policies on individual welfare. Reviewing this vast and diverse literature is beyond

the scope of this paper; however, a short review of two of the literature segments will suffi ce to illustrate

the need to estimate these models and hence the wide applicability of our estimation technique.

The first segment explains the widespread negative cross-sectional correlation between parental wage

and fertility. The basic dynastic model as formulated by Barro and Becker (1989) cannot explain this

negative correlation because wealthier parents increase the number of offspring, keeping transfer levels

the same as less wealthy parents. Attempts in the literature to account for this negative correlation

range from appropriately calibrating the model parameters so that the substitution effects are larger

than the income effects, introducing the quality of children as a choice variable with an appropriate

assumption about the cost of child-rearing (Becker and Lewis, 1973; Becker and Tomes,1976; Moav

2005),5 to introducing non-homotheticity in preferences (see, e.g., Galor and Weil, 2000; Greenwood and

Seshadri, 2002; or Fernandez, Guner, and Knowles, 2005). As summarized in Alvarez (1999), depending

on the functional form assumptions of the primitives and values of the structural parameters, dynastic

models could generate the negative correlation between parental wages and fertility.6 Therefore, whether

the basic dynastic model can explain this negative cross-sectional correlation between parental wages and

fertility is an empirical question requiring careful exploration of the source of identification and estimation

(see Gayle, Golan, and Soytas, 2014; 2015, for examples of these types of analysis).

The effects of the social security system on both capital accumulation and wealth distribution have

been of great interest to economists and policy- makers for decades (see, for instance, Kotlikoff and

4For example, De Nardi (2004) model explicitly focuses on the transmission of physical and human capital from parents
to children and intergenerational links. She shows that such a model can can induce savings behavior that generates a
distribution of wealth that (i) is much more concentrated than that of labor earnings and (ii) also makes the rich keep large
amounts of assets in old age to leave bequests to their descendants.

5See Jones, Schconbroodt, and Tertilt (2010, section 5.2).
6Recently Mookherjie, Prina, and Ray (2012) demonstrated that incorporating dynamic analysis of return to human

capital can help explain the negative cross-sectional correlation between parental wages and fertility.
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Summers, 1981; Caballé and Luisa, 2003; among others). However, the optimal form of funding social

security may depend on whether or not these intergenerational links are explicitly modelled. For example,

Fuster, Imrohoroglu, and Imrohoroglu (2007) argue that when households insure members in the same

family line, privatizing social security without compensation is favored by 52% of the population. If social

security participants are fully compensated for their contributions and the transition to privatization is

financed by a combination of debt and a consumption tax, 58% experience a welfare gain. These gains and

the resulting public support for social security reform depend critically on a flexible labor market. If the

elasticity of the labor supply is low, then support for privatization disappears. Therefore, it is important to

estimate these models because policy implications often depend on the value of key structural parameters.

In Fuster, Imrohoroglu and Imrohoroglu (2007) the key structural parameter was the elasticity of labor

supply, but in other models it may be the altruism parameters themselves.

The rest of the paper is organized as follows. Section 2 presents the basic gender-less life-cycle dynastic

model with only discrete choices. Section 3 presents the generic estimator of the life-cycle model and

presents the Monte Carlo study. Section 4 extends the framework to include continuous choices and

transfers, intra-household behaviors, and gender. Section 5 presents the basic framework of our empirical

application. Section 6 presents our empirical results. Section 7 concludes, and all proofs are provided in

an appendix.

2 Theoretical Framework

The theoretical framework is developed to allow for estimation of a rich group of dynastic models and

allows us to address many relevant policy questions. This section develops a model of altruistic parents

who make transfers to their children. The transfers are discrete and can allow for (i) discrete time

investment in children and (ii) monetary investment with discrete levels. Section 4 extends this basic

framework to allow for continuous choices and transfers. This allows us to use the framework to analyze

bequests or any continuous monetary transfers by parents to their children. We incorporate two important

aspects of the problem. First, fertility is endogenous. Endogenous fertility has important implications

for intergenerational transfers and the quantity-quality trade-offs made by parents when they choose

transfers as the well as number of offspring. Second, we include a life-cycle for each generation. The

life-cycle is important to understanding fertility behavior, spacing of children, and the timing of different
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types of investments. This section analyzes a model with one gender-less decision-maker. We later extend

this framework to a unitary household.7

We build on previous dynastic models that analyze transfers and intergenerational transmission of

human capital. In some models, such as Loury (1981) and Becker and Tomes (1986), fertility is exogenous,

whereas in others, such as Becker and Barro (1988) and Barro and Becker (1989), fertility is endogenous.

The Barro-Becker framework is extended in our model by incorporating a life-cycle behavior model,

based on previous work, such as Heckman, Hotz and Walker (1985) and Hotz and Miller (1988), into

an infinite-horizon model of dynasties. Our life-cycle model includes individuals choices about time

allocation decisions, investments in children, and fertility. We formulate a partial equilibrium discrete

choice model that incorporates life-cycle considerations of individuals from each generation into the larger

framework. Adults in each generation derive utility from their own consumption, leisure, and the utility

of their adult offspring. The utility of adult offspring is determined probabilistically by the educational

outcome of childhood, which in turn is determined by parental time and monetary inputs during early

childhood, parental characteristics (such as education), and luck. Parents make decisions in each period

about fertility, labor supply, time spent with children, and monetary transfers. For simplicity, the only

intergenerational transfers are transfers of human capital, as in Loury (1981). However, the framework

can include any other choice of transfer that is discrete. We assume no borrowing or savings for simplicity.

The model assumes that the educational outcome of children is revealed at the last period of parent’s

life-cycle regardless of the birth date of the children. This assumption is similar to the Barro-Becker

assumptions. In the parents’life-cycle, adult children’s behavior and choices do not affect the choices of

parents. As in Barro-Becker, the choices can only be made by the children in their own life-cycle which

starts immediately after the parents’life-cycle ends8.

In the model adults live for T periods. Each adult from generation g ∈ {0, ...∞} makes discrete

choices about labor supply (ht), time spent with children (dt), and birth (bt), in every period t = 1...T .

For labor time individuals choose no work, part-time, or full-time (ht ∈ (0, 1, 2)); for time spent with

children individuals choose none, low, or high (dt ∈ (0, 1, 2)). The birth decision is binary (bt ∈ (0, 1)).

The individual does not make any choices during childhood, when t = 0. All the discrete choices can be

7Treatment of households, with two decision-makers (with separate utility functions), marriage, and divorce, is involved
and is beyond the scope of this paper. See Gayle, Golan, and Soytas (2014) for more details on one such model.

8 In a model where adult children’s behavior and choices do affect investment in children and fertility of the parents,
solutions to the problems are significantly more complicated and it is not clear whether a solution exists.
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combined into one set of mutually exclusive discrete choice, represented as k, such that k ∈ (0, 1...17).

Let Ikt be an indicator for a particular choice k at age t; Ikt takes the value 1 if the kth choice is chosen

at age t and 0 otherwise. These indicators are defined as follows:

I0t = I{ht = 0}I{dt = 0}I{bt = 0}, I1t = I{ht = 0}I{dt = 0}I{bt = 1}, ...,

I16t = I{ht = 1}I{dt = 2}I{bt = 1}, I17t = I{ht = 2}I{dt = 2}I{bt = 1}. (1)

Since these indicators are mutually exclusive, then
∑17

k=0 Ikt = 1. We define a vector, x, to include the

time-invariant characteristics of the individual’s education, skill, and race. Incorporating this vector, we

further define the vector z to include all past discrete choices as well as time-invariant characteristics,

such that zt = ({Ik1}17k=0 , ..., {Ikt−1}
17
k=0 , x).

We assume the utility function is the same for adults in all generations. An individual receives utility

from discrete choice and from consumption of a composite good, ct. The utility from consumption and

leisure is assumed to be additively separable because the discrete choice, Ikt, is a proxy for leisure and

is additively separable from consumption. The utility from Ikt is further decomposed into two additive

components: a systematic component, denoted by u1kt(zt), and an idiosyncratic component, denoted

by εkt. The systematic component associated with each discrete choice k represents an individual’s

net instantaneous utility associated with the disutility from market work, the disutility/utility from

parental time investment, and the disutility/utility from birth. The idiosyncratic component represents

a preference shock associated with each discrete choice k that is transitory in nature. To capture this

feature of εkt, we assume that the vector (ε0t, .., ε17t) is independent and identically distributed across the

population and time and is drawn from a population with a common distribution function, Fε(ε0t, .., ε17t).

The distribution function is assumed to be absolutely continuous with respect to the Lebesgue measure

and has a continuously differentiable density.

Per-period utility from the composite consumption good is denoted u2t(ct, zt). We assume that

u2t(ct, zt) is concave in c; that is, ∂u2t(ct, zt)/∂ct > 0 and ∂2u2t(ct, zt)/∂c
2
t < 0. Implicit in this speci-

fication is the intertemporally separable utility from the consumption good, but not necessarily for the

discrete choices, since u2t is a function of zt, which is itself a function of past discrete choices but is not

a function of the lagged values of ct.
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Altruistic preferences are introduced under the same assumption as the Barro-Becker model: Parents

obtain utility from their adult offspring’s expected lifetime utility. Two separable discount factors capture

the altruistic component of the model. The first, β, is the standard rate of time preference parameter,

and the second, λN−ν , is the intergenerational discount factor, where N is the number of offspring an

individual has over her lifetime. Here λ (0 < λ < 1) should be understood as the individual’s weighting

of her offsprings’utility relative to her own utility. The individual discounts the utility of each additional

child by a factor of −ν, where 0 < ν < 1.9

We let earnings (wt) be given by the earnings function wt(zt, ht), which depends on the individual’s

time-invariant characteristics, choices that affect human capital accumulated with work experience, and

the current level of labor supply (ht). The choices and characteristics of parents are mapped onto their

offspring’s characteristics (x′) via a stochastic production function of several variables. The offspring’s

characteristics are affected by their parents’time-invariant characteristics, their parents’monetary and

time investments, and the presence and timing of siblings. These variables are mapped into the child’s

skill and educational outcome by the function M(x′|zT+1) where zT+1 includes all parental choices and

characteristics and contains information on the choices of time inputs and monetary inputs. Because zT+1

also contains information on all birth decisions, it captures the number of siblings and their ages. We

assume there are four mutually exclusive educational outcomes for offspring: less than high school (LH),

high school (HS), some college (SC), and college (Coll). Therefore, M(x′|z
T+1

) is a mapping of parental

inputs and characteristics into a probability distribution over these four outcomes.

We normalize the price of consumption to 1. Raising children requires parental time (dt) and market

expenditure. The per-period cost of expenditures for raising a child is denoted pcnt. Therefore, the

per-period budget constraint is given by

wt ≥ ct + pcnt. (2)

The sequence of optimal choice for both discrete choice and consumption is denoted as Iokt and cot ,

respectively. We can thus denote the expected lifetime utility at time t = 0 of a person with characteristics

x in generation g, excluding the dynastic component, as

UgT (x) = E0

[∑T
t=0 β

t[
∑17

k=0 I
o
kt{u1kt(zt) + εkt}+ u2t(c

o
t , zt)]|x

]
. (3)

9Note that this formulation can be written as an infinite discounted sum (over generations) of per-period utilities as in
the Barro-Becker formulation.

8



The total discounted expected lifetime utility of an adult in generation g including the dynastic component

is

Ug(x) = UgT (x) + βTλE0

[
N−ν

∑N
n=1 Ug+1,n(x′n)|x

]
, (4)

where Ug+1,n(x′n) is the expected utility of child n (n = 1, .., N) with characteristics x′n. In this model,

individuals are altruistic and derive utility from their offspring’s utility, subject to discount factors β and

λN−ν .10 This formulation is similar to the one in Barro-Becker, but it is extended to allow for differences

in gender and "types."

To simplify presentation of the model, we assume that pcnt is proportional to an individual’s current

earnings and the number of children, but we allow this proportion to depend on the state variables.

This assumption allows us to capture the differential expenditures on children made by individuals with

different incomes and characteristics. Practically, this allows us to proxy for differences in social norms

of child-rearing among different socioeconomic classes.11 Explicitly, we assume that

pcnt = αNc(zt)(N t+bt)wt(x, ht) (5)

and, incorporating the assumption that individuals cannot borrow or save12 and equation (5), the budget

constraint becomes

wt(x, ht) = ct + αNc(zt)(N t+bt)wt(x, ht). (6)

Solving for consumption from equation (6) and substituting for consumption in the utility equation, we

can rewrite the third component of the per-period utility function, specified as u2kt(zt), as a function of

just zt as follows;

u2kt(zt)=ut[wt(x, ht)− αNc(zt)(N t+bt)wt(x, ht), zt]. (7)

Note that the discrete choices now map into different levels of utility from consumption. Therefore, we can

eliminate the consumption decision as choice and write the systematic contemporary utility associated

10Note that since we add life-cycle, the regularity condition that implies that the discount factor of the children’s utilities,
βTλN−ν is between zero and 1 is satisfied for any N, as β is also between zero and one.
11 In general, individuals can choose expenditures on children, but we do not observe spending in our data used for

estimation in empirical section.
12This assumption is not important for any of the results obtained in this paper. However, it simplifies the presentation

by allowing all choices to be discrete. See Section 4 for a relaxation of the assumption at all the choices are discrete.
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with each discrete choice k as13

ukt(zt) = u1kt(zt) + u2kt(zt). (8)

Incorporating the budget constraint manipulation, we can rewrite equation (3) as

UgT (x) = E0

[∑T
t=0 β

t∑17
k=0 I

o
kt[ukt(zt) + εkt]|x

]
. (9)

Alvarez (1999) theoretically analyzes and generalizes the conditions under which dynastic models with

endogenous fertility lead to intergenerational persistence in income and wealth. Following his analysis, we

show empirically which assumptions are relaxed in our model and lead to persistence in income. The first

is constant cost per child. In our model, the per-period costs of raising a child and transferring human

capital is the cost described in equations (5) and (6), as well as the opportunity cost of time investment

in children. Time investment in children and labor market time are modeled as discrete choice with three

levels. This introduces nonlinearity. Even if we were able to capture the proportional increase in time with

children as the number of children increases, the nonlinearity in labor supply decisions implies that the

opportunity cost of time investment in children is not linear. Thus, the cost of transfer of human capital

per child is not constant. Furthermore, in contrast to standard dynastic models and those analyzed

in Alvarez (1999), we incorporate dynamic elements of the life-cycle that involve age and experience

effect. The opportunity cost of time with children therefore incorporates returns to experience, which are

nonlinear. Therefore, estimating a dynastic model with accounting for the individual demographics and

heterogeneity can be important in understanding the extent of the life-cycle dynamics and help us sort

out the importance of different mechanisms leading to persistence in outcomes across generations. The

nonlinearity involved in labor supply is realistic; parents labor market time is often not proportional to

the number of children they have, and hours in the labor market for a given wage rate are not always

flexible and depend on occupation. Furthermore, fertility decisions are made sequentially, and due to age

effects, the cost of a child varies over the life-cycle. The second condition is non-separability in preferences,

aggregation of the utilities from children, and the feasible set. In our model, the latter is relaxed; that

13 In our formulation utility from consumption and leisure is assumed to be additively separable, and hence u1kt(zt) + εkt
captures the utility of leisure corresponding to the choices of labor supply , time spent with children (dt) and the birth
decision (bt) associated with choice k in period t. In the empirical implementation we account by setting the levels of high
level of labor supply and time with children to be feasible and satisfy a time budget constraint.
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is, the separability of the feasible set across generations. This is because the opportunity costs of the

children depend on their education and labor market skills. However, education and labor market skills of

children are linked with their parents’skills and education through the production function of education.

2.1 Optimal Discrete Choice

The individual then chooses the sequence of alternatives yielding the highest utility by following the

decision rule I(zt, εt), where εt is the vector (ε0t, ..., ε17t). The optimal decision rules are given by

Io(z0, ε0) = arg max
I
EI

[
T∑
t=0

βt{
17∑
k=0

Ikt[ukt(zt) + εkt]}+ βTλN−ν
N∑
n=1

Ug+1,n(x′n)|x
]

(10)

where the expectations are taken over the future realizations of z and ε induced by Io. In any period

t < T , the individual’s maximization problem can be decomposed into two parts: the utility received at

t plus the discounted future utility from behaving optimally in the future. Therefore, we can write the

value function of the problem, which represents the expected present discounted value of lifetime utility

from following Io, given zt and εt, as

V (zt+1, εt+1) = max
I
EI

(
T∑

t′=t+1
βt
′−t

17∑
k=0

Ikt′ [ukt′(zt′) + εkt′ ] + βT−tλN−ν
N∑
n=1

Ug+1,n(x′n)|zt+1, εt+1

)
.

(11)

By Bellman’s principle of optimality, the value function can be defined recursively as

V (zt, εt) = max
I

[
17∑
k=0

Ikt {ukt(zt) + εkt + βE(V (zt+1, εt+1)|zt, Ikt = 1)}
]

=
17∑
k=0

Iokt(zt, εt)[ukt(zt) + εkt + β
∑
z′

∫
V (z′, ε)f(ε)dεF (z′|zt, Iokt = 1)], (12)

where f(ε) is the continuously differentiable density of Fε(ε0t, .., ε17t), and F (z′|zt, Ikt = 1) is a transition

function for state variables, which is conditional on choice k. In this simple version, the transitions of the

state variables are deterministic given the choices of labor market experience, time spent with children,

and number of children.

Since εt is unobserved, we further define the ex ante (or integrated) value function, V (zt), as the

continuation value of being in state zt before εt is observed by the individual. Therefore, V (zt) is given

by integrating V (zt, εt) with respect to the density of εt. Defining the probability of choice k at age t by
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pk(zt) = E[Iokt = 1|zt], the ex ante value function can be written as

V (zt) =
∑17

k=0 pk(zt)
[
ukt(zt) + Eε[εkt|Ikt = 1, zt] + β

∑
z′ V (z′)F (z′|zt, Ikt = 1)

]
(13)

This representation of the problem is a not new or is it unique to dynastic models14, but pedagogically

it shows that V (zt) is a function of the CCPs, the expected value of the preference shock, the per-period

utility, the transition function, and the ex ante continuation value. All components except the conditional

probability and the ex ante value function are primitives of the initial decision problem. By writing the

CCPs as a function of just the primitives and the ex ante value function, we can characterize the optimal

solution of the problem (i.e., the ex ante value function) as implicitly dependent on just the primitives

of the original problem.

As is standard in the dynamic discrete choice literature, we define the conditional value function,

υk(zt), as the present discounted value (net of εt) of choosing k and behaving optimally from period t

onward:

υk(zt) = ukt(zt) + β
∑

z′ V (z′)F (z′|zt, Ikt = 1). (14)

The conditional value function is the key component to the CCPs. Equation (10) can now be rewritten

using the individual’s optimal decision rule at t to solve

Io(zt, εt) = arg max
I

∑17
k=0 Ikt[υk(zt) + εkt]. (15)

Therefore, the probability of observing choice k, conditional on zt, is pk(zt) and is found by integrating

overt εt in the decision rule in equation (15):

pk(zt) =

∫
Io(zt, εt)fε(εt)dεt =

∫ [∏
k 6=k′ 1{υk(zt)− υk′(zt) ≥ εtk′ − εkt}

]
fε(εt)dεt. (16)

Therefore, pk(zt) is now entirely a function the primitives of the model (i.e., ukt(zt), β, F (zt+1|zt, Ikt = 1),

and fε(εt)) and the ex ante value function. Hence substituting equation (16) into equation (13) gives an

implicit equation defining the ex ante value function as a function of only the primitives of the model.

14See for example Aguirregabiria and Mira (2002).
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3 A Generic Estimator of the Life-Cycle Dynastic Discrete Choice

Model

We use a partial solution, multi stage estimation procedure to accommodate the non-standard features

of the model. By assuming stationarity across generations and discrete state space in the dynamic

programming problem, we obtain an analytical representation of the value function. The alternative

value function depends on the CCPs, the transition function of the state variable, and the structural

parameters of the model. In the first stage, we estimate the CCPs and the transition function. The

second stage forms either moment conditions or likelihood functions to estimate the remaining structural

parameters using a PML or a GMM, respectively. For each iteration in the estimation procedure the

CCP is used to generate a value representation to form the terminal value in the life-cycle problem, which

can then be solved by backward induction to obtain the life-cycle valuation functions.

3.1 An Alternative Representation of the Problem

The alternative representation of the continuation value of the intergenerational problem is developed

below. The Hotz and Miller estimation technique for standard single-agent problems is adapted to the

dynastic problem using the following representation. Define NT (zT ) to be the number of total number of

children at the end of the life-cycle given state variable zT . In addition, we recursively define a transition

function F ok (zt′ |zt) for the one-period-ahead t′ − t :

F ok (zt′ |zt) =

 F (zt′ |zt, Ikt = 1) for t′ − t = 1∑17
r=0

∑
zt′−1

pr(zt′−1)F (zt′ |zt′−1, Irt′−1 = 1)F ok (zt′−1|zt) for t′ − t > 1,

This function is a recursive formulation that determines the future probability of a future state zt′

conditional on current state zt and a current choice k.

Proposition 1 There exists an alternative representation for the ex ante conditional value function at

time t that is a function of just the primitives of the problem and the CCPs:

υk(zt) = ukt(zt) +
∑T

t′=t+1 β
t′−t∑17

s=0

∑
zt′
ps(zt′)[ust′(zt′) + Eε(εst′ |Ist′ = 1, zt′)]F

o
k (zt′ |zt) (17)

+λβT−t
∑

zT
NT (zT )−ν

∑NT
n=1

∑
x V (x′)

∑KT
s=0M

n
k (x′|zT )ps(zT )F ok (zT |zt),
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Where the intergenerational transition function for the nth child born in a parent’s life-cycle, Mn
k (x′|zT ) =

M(x′|zT ), is conditional on a choice IkT = 1.

The representation of Proposition 1 highlights the main contribution of this paper. There are three

components in equation (17). The first two are normally found in the finite horizon discrete choice

dynamic programing model, and are standard in stationary dynamic discrete choice models. The last

components is the dynastic component that is non-standard. There are two points worth noting. The

first is that without further restrictions, the third component of equation (17), does not have the finite-

state-dependence property, which normally simplifies the estimation life-cycle discrete choice models. See

Altug and Miller (1998), Gayle and Miller (2004), Arcidiacono and Miller (2011, 2015), Gayle and Golan

(2012), and Gayle (2015) for discussion and use of the finite-state-dependence property. Second, an

alternative used in literature which estimates or calibrates dynastic models15 is to replace the dynastic

component in equation (17) with a reduced form approximation, and then treat the model as a finite

horizon model with a reduced form terminal value function. This reduced form approximation, however,

is not in general policy invariant. Therefore, we pursue an alternative strategy which builds on the ideas

in Aguirregabira and Mira (2002, 2007) and Pesendorfer and Schmidt-Dengler (2008).

Let ek(p, z) represent the expected preference shocks conditional on choice k being optimal in state

z. The expected preference shocks are written in this notation to convey the shock as a function of the

CCPs (see Hotz and Miller, 1993). For example, in the type 1 extreme value case, ek(p, z) is given by

γ − ln[pk(z)], where γ is Euler’s constant. From the representation in Proposition 1 we can define the ex

ante conditional lifetime utility at period t, excluding the dynastic component as

Uk(zt) = ukt(zt) +
T∑

t′=t+1
βt
′−t

17∑
s=0

∑
zt′
ps(zt′)[ust′(zt′) + es(p, zt′)]F

o
k (zt′ |zt).

Because Uk(zt) is a function of just the primitives of the problem and the CCPs, we can write an

alternative representation for the ex ante value function at time t:

V (zt) =
17∑
k=0

pk(zt)[Uk(zt) + ek(p, zt) + λβT−t
∑
zT

NT (zT )−ν
NT∑
n=1

∑
x
V (x′)

KT∑
s=0

Mn
k (x′|zT )ps(zT )F ok (zT |zt)].

(18)

Equation (18) is satisfied at every state vector zt. The problem is stationary over generations, so

15See for example Rios-Rull and Sanchez-Marcos (2002).
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zt = x at period t = 0 because there is no history of decisions in the state space, and hence the initial

state space has finite support on the integers {1, ..., X}. We define the optimal lifetime intergenerational

transition function as Mo
k (x′|x) =

∑
zT

∑NT (zT )
n=1

∑KT
s=0 ps(zT )Mn

k (x′|zT )F ok(zT |x). The matrix Mo
k can be

interpreted as the probability that an average descendant of the individual with characteristic x′, given

that his parents have characteristics x, chooses decision k in the first period and behaves optimally from

period 1 to T of the parent’s life-cycle. Now, we can express the components of equation (18) in vector

or matrix form:

V0 =



V (1)

.

.

.

V (X)


, U(k) =



Uk(1)

.

.

.

Uk(X)


, E(k) =



ek(p, 1)

.

.

.

ek(p,X)


, P (k) =



pk(1)

.

.

.

pk(X)


,

ιX =



1

.

.

.

1


Xx1

, and Mo(k) =



Mo
k (1|1) ... Mo

k (X|1)

.

.

.

Mo
k (1|X) ... Mo

k (X|X)


Using these components the vector of the ex ante value function can be expressed as

V0 =
∑K

k=0 P (k)⊗ [U(k) + E(k) + λβTN−νk ⊗Mo(k)V0] (19)

where ⊗ refers to element-by-element multiplication and Nk(x)=
∑

zT
NT (zT )F ok(zT |x), and the vector

Nk = (NkT (1), , ..,NkT (X))′. Rearranging the terms and solving for V0, we obtain

V0 = [IX − λβT
∑17

k=0{P (k)ι′X} ⊗ (N−νk ⊗Mo(k))]−1
∑17

k=0 P (k)[U(k) + E(k)], (20)

where IX denotes the X×X identity matrix. Equation (20) is based on the dominant diagonal property,

which implies that the matrix IX−λβT
∑17

k=0{P (k)ι′X}⊗(N−νk ⊗Mo(k)) is invertible. The representation
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is obtained by combining known results16 from discrete choice estimation of stationary infinite-horizon

problems with the finite horizon properties of the dynastic life-cycle model.

3.2 Estimation

We parameterized the period utility by a vector θ2, ukt(zt, θ2); the period transition on the observed

states is parameterized by a vector θ3, F (zt|zt−1, IkT = 1, θ3); the intergenerational transitions on per-

manent characteristics is parameterized by a vector θ4, Mn(x′|zT+1, θ4); and the earnings function is

characterized by a vector θ5, wt(x, ht, θ5). Therefore, the conditional value functions, decision rules, and

choice probabilities now also depend on θ ≡ (θ2, θ3, θ4, θ5, β, λ, ν). Standard estimates of dynamic dis-

crete choice models involve forming the likelihood functions from the CCPs derived in equation (16).

This involves solving the value function for each iteration of the likelihood function. The method used

to solve the value function depends on the nature of the optimization problems and normally falls into

one of two cases

(i) Finite-horizon problems: The problem has an end date (as in a standard life-cycle problem); hence

future value function is obtained by backwards induction.

(ii) Stationary infinite-horizon problem: The valuation is obtained by a contraction mapping.

A dynastic discrete choice model in unusual because it involves both a finite-horizon problem and an

infinite-horizon problem. Solving both problems for each iteration of the likelihood function is compu-

tationally infeasible for all but the simplest of models. We avoid solving the stationary infinite-horizon

problem in estimation by replacing the terminal value in the life-cycle problem with equation (20). This

converts the problem into a finite-horizon problem that can be solved by backward recursion since the

flow utility function is

υk(zT ) = ukT (zT ) + λNT (zT )−ν
∑

x′ V (x′)
∑NT

n=1M
n
k (x′|zT ). (21)

16See Aguirregabira and Mira (2002, 2007) and Pesendorfer and Schmidt-Dengler (2008) for the use and derivation of
this inversion in context of stationary infinite horizon problems.
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Since ukT (zT ) is parameterized by θ2, the transition Mn
k (x′|zT ) is known since it can be estimated from

the data. Observing Fε(ε0t, .., ε17t) and calculating V (x′) via equation (20),17 we can calculate the ex

ante value function at T using V (zT ) =
∑17

k=0

∫
I0kI(zT , εT )[υk(zT ) + εkT ]fε(εT )dεT . The conditional

value function for T − 1 is given by υk(zT−1) = ukT−1(zT−1) + β
∑

zT
V (zT )F (zT |zT−1, IkT = 1). This is

continued backward given υk(zT−1) to form value function at T − 2, and so on.

The backward induction procedure outlined above shows that only Mn
k (x′|zT ) in equations (21) and

(20) depends on the next generation’s outcome. Thus, we can estimate the intergenerational problem with

only two generations of data, as is the case in the standard stationary discrete choice models (see Rust,

1987, for example). To estimate the intergenerational problem we let Idtg, zdtg, and εdtg, respectively,

indicate the choice, observed state, and unobserved state at age t in the generation g of dynasty d.

Forming the CCPs for each individual in the first observed generation of dynasty d at all ages t yields

the components necessary for estimation. Estimation proceeds in two steps.

Step 1: In the first step we estimate the CCP, transition, and earnings functions necessary to com-

pute the inversion in equation (20). The expectation of observed choices conditional on the observed

state variable gives an empirical analog to the CCPs at the true parameter values of the problem, θo1,

allowing us to estimate the CCPs; we denote this estimate by ̂pk(zdt1). We also estimate θ3, θ4, and θ5,

which parameterize the transition and earnings functions F (zt|zt−1, IkT = 1, θ3), Mn(x′|zT+1, θ4), and

wt(x, ht, θ5) respectively in this step.

Step 2: The second step can be estimated two ways, the first is a PML (as used in Aguirregabira and

Mira (2002)) and the second is a GMM (as used in the original Hotz and Miller (1993)). We can use a

PML method and not a pure maximum likelihood estimator because part of the likelihood function is

concentrated out using the data. With D dynasties, the PML estimates of θ0 = (θ2, β, λ, ν) are obtained

via

θ̂0PML = arg max
θ0

(∑D
dt1=1

∑T
t=0

∑17
k Idt1 ln[pk(zdt1; θ0, θ̂3, θ̂4, θ̂5)]

)
, (22)

17This manipulation is possible because the alternative value function in equation (20) is a function of only the parameters
of the model and the CCP. Since the CCP can be estimated directly from the data, backward recursion becomes possible
because the decision in the last period, T, is similar to a static problem when the value of children is replaced with equation
(20).
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where pk(zdt1; θ0, θ̂3, θ̂4, θ̂5) is the CCP defined in equation (16) with the conditional value function

replaced with υk(zdt1, θ0, θ̂3, θ̂4, θ̂5), which is calculated by backward recursion using the estimated choice

probabilities and the transition functions outlined in Step 1.

An alternative second-step GMM estimator is formed using the inversion found in Hotz and Miller

(1993). Under the assumption that ε is distributed independently and identically as type I extreme

values, then the Hotz and Miller inversion implies that

log
(
pk(zdt1; θ0, θ̂3, θ̂4, θ̂5)/pK(zdt1; θ0, θ̂3, θ̂4, θ̂53)

)
= υk(zdt1, θ0, θ̂3, θ̂4, θ̂5)− υK(zdt1, θ0, θ̂3, θ̂4, θ̂5) (23)

for any normalized choiceK.We can use ̂pk(zdt1), estimated from Step 1, to form an empirical counterpart

to equation (23) and estimate the parameters of our model. The moment conditions can be obtained

from the difference in the conditional valuation functions calculated for choice k and the base choice 0.

The following moment conditions are produced for an individual at age t ∈ {17, ...., 55}:

ξjdt(θ0) ≡ υk(zdt1, θ0, θ̂3, θ̂4, θ̂5)− υ0(zdt1, θ0, θ̂3, θ̂4, θ̂5)− ln
[
̂pk(zdt1)/ ̂p0(zdt1)

]
. (24)

Therefore, there are 17 orthogonality conditions and thus j = 1, ..., 17. Letting ξdt(θ0) be the vector of

moment conditions at t, these vectors are defined as ξdt(θ0) = (ξ1dt(θ0), ξ2dt(θ0), ...ξ17dt(θ0))
′. Therefore,

E[ξdt(θ
o
0)|zdt] converges to 0 for every consistent estimator of true CCPs, pk(zdt1; ; θ0, θ̂3, θ̂4, θ̂5), for t ∈

{17, ..., 55}, and where θo0 is the true parameter of the model. Define ξd(θ0) ≡ (ξd1(θ0)
′, ..., ξdT (θ0)

′)′

as the vector of moment restrictions for a given individual over time and define a weight matrix as

Φ(θ0) ≡ Et[ξd(θ0)ξd(θ0)′]. Then the GMM estimate of θ0 is obtained via

θ̂02SGMM = arg min
θ0

[1/D
∑D

d=1 ξd(θ0)]
′Φ̂[1/D

∑D
d=1 ξd(θ0)]. (25)

where Φ̂ is a consistent estimator of Φ(θo).

3.3 Monte Carlo Study

To compare the dynamics of the model in a numerical example and to examine the performance of the

estimation, we use a simple human capital investment model with intergenerational transfers that has

18



the structure of the two-period model in Section 1. We generate simulated data from the model for given

parameter values, compare the dynamics, and estimate the model parameters for the generated dataset.

We estimate the parameters using the NFXP and PML estimators described above. The estimations are

repeated for both algorithms for different specifications of the model in terms of sample size (i.e., for

1000, 10000, 20000, 40000). The number of the structural parameters estimated, including the discount

factors, is 3.

NFXP estimation of life-cycle dynastic models is possible only in the simplest dynastic structure.

Hence for the Monte Carlo study we choose a simple model which can be estimated by both NFXP

and PML. To the best of our knowledge, there is no empirical application of life-cycle dynastic model

which is estimated by NFXP. Instead, all the empirical application of life-cycle dynastic model specify

the terminal value at the end of an individual’s life-cycle as a reduced-form function of the state variable.

Dynastic models estimated in this fashion are not suitable for conducting counterfactual policy analysis.

For illustration purpose, we start with the model in which the per-period utility function, uk(zt), has

a linear form. In each period, t ∈ {0, 1}, the individual chooses whether to invest or not, Ik ∈ {0, 1}. We

assume that individuals can have at most one child, N ≤ 1. The receive utilities associated with each

choice are given by

uk(zt) =

 zt if k = 0

(1− θ)zt if k = 1


where Fε(εt) is the choice-specific, unobservable part of the utility; it is assumed to be independently

distributed type 1 extreme value.

In the environment in this example the individual begins the life-cycle with a particular set of character

traits denoted by zt ∈ (0.5, 0.6, 0.7, 0.8, 0.9). Note that at t = 0 the individual has not made any

choices yet, so the vector z0 depends fully on initial characteristics x. The value of z1 is given by the
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transformation function Fk(zt|zt−1) that given by the transition matrix:

F0(zt|zt−1) =



0.85 0.13 0.02 0 0

0.04 0.85 0.09 0.02 0

0.01 0.04 0.85 0.09 0.01

0 0.01 0.05 0.85 0.09

0 0 0 0 1


and

F1(zt|zt−1) =



1 0 0 0 0

0.1 0.9 0 0 0

0.13 0.27 0.6 0 0

0.01 0.11 0.28 0.6 0

0 0.04 0.13 0.23 0.6


.

The individual’s traits in the next period are determined by the probabilities in the corresponding row,

where each row corresponds to one of the initial values z0 ∈ (0.5,0.6,0.7,0.8,0.9), and each column rep-

resents character traits in the next period, z1 ∈ (0.5,0.6,0.7,0.8,0.9). The transition is such that an

individual with character traits z0 = 0.5 who chooses not to have a child such that the choice vector

I0 = 0 will have characteristics z1 = 0.5 with a probability of 0.85. In this simplified model, the next

generation’s initial characteristics z′0 depend only on the sum of the financial investment decisions in the

life-cycle.

The educational outcome of the offspring is determined by the intergenerational transition function:

M(z′0 | zT+1) =


1 0 0 0 0

0 0.1 0.4 0.4 0.1

0 0 0.04 0.06 0.9

 ,

where zT+1 can take values in {0,1,2}. The next generation’s starting character traits are determined by

the probabilities given in the row, where each row corresponds to one of the values of zT+1 ∈ (0, 1, 2)

and the first row represents investment level zT+1 = 0. If the individual invests nothing, then the next

generation will have the lowest consumption value with complete certainty. The transition is such that
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an individual who opts to invest twice in the life-cycle has a probability of 0.9 that the next generation

will start his life-cycle with the characteristics z′0 = 0.9.

We simulated the model for a given value of the parameters of the model, (θ2, β, λ) = (0.25, 0.8, 0.95),

where θ is the structural parameter of interest that gives the marginal cost of investment, and λ and β

are the generational and time discount factors, respectively. We solve the dynamic problem for datasets

of 1000, 10000, 20000, 40000 individual dynasties and repeat the simulation 100 times. For the CCP

estimation, the initial consistent estimates are estimated nonparametrically using the generated sample.

Next, we estimate the model by NFXP and PML.18 Table 1 presents the results of the estimation for

each specification. Not surprisingly, we find that the finite-sample properties of the estimators improve

monotonically with sample size. In the NFXP estimation, the mean square error (MSE) of θ drops quickly

as the sample size increases. The results for the discount factors are similar: MSEs fall as the sample

size increases. In the PML estimation, we observe a similar pattern for all estimators. We obtain similar

results from the NFXP and PML estimations. For the sample size of 1000, the PML estimate of the MSE

of θ0 is 0.00249 compared with 0.00288 from the NFXP. The PML estimate of the MSE of λ is 0.01253

compared with 0.00901, and the PML estimate of the MSE of β is 0.00396 compared with 0.00305. For

the sample sizes of 10000, 20000 and 40000, the MSEs obtained from PML estimation is lower than the

MSEs obtained from the NFXP, but the magnitudes are still very close. In terms of biases, the two

estimation algorithms are also quite similar. The major difference between the two estimation algorithms

is computational time, which varies greatly between the NFXP and PML even though we simulate a very

simple model. The average computational time for the NFXP for a sample of 1000 is 347.6 seconds, but

it is only 0.65 seconds for the PML estimation, meaning the PML was 530 times faster. For the sample

size of 40000, computation times are 509.8 and 12.6 seconds for the NFXP and PML, respectively, a ratio

of 40.4.

4 Extensions

The dynastic framework developed so far in this paper has three major drawbacks. First, parts of the

parental investment and transfers from parents to children are monetary in nature. Additionally for

18As illustrated in the estimation section, intergenerational models at the final step can be estimated either by the PML
or GMM method. For this simulation study we used the PML because it is more comparable to the full solution maximium
likelihood.
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exposition purpose we assume that there were not borrowing or saving. Monetary investment and/or

parental transfers, such as paying for college or purchasing a house for their children, are most naturally

characterized as a continuous choice. Also it is natural to introduce borrowing and saving as a continuous

choice. Second, the framework assumes that gender does not matter. However, there are significant

differences in the cost, choices, and opportunities over an individual’s lifetime that are gender specific.

Third, which is related to gender but not specific to it, is that individuals normally form households and

it take a man and a woman to reproduce, and fertility is central to the model. In this section, we consider

extensions to the basic framework that account for these three shortcomings.

4.1 Continuous Choice and Transfer

For the estimation technique developed above to be applicable to a dynastic framework two features

must be present. First, all choices must be discrete and second, all systematic state variables, at the

initial stage and in every period during the life-cycle, must have a discrete support. We replace these

assumptions with two weaker assumptions. The first is that there must be at least one discrete choice

variable. This requirement is easily satisfied as birth decision is naturally discrete. The second is that the

initial systematic state variable (i.e., endowment that an individual starts adult life with) must belong

to a finite set with discrete support. This is weaker than the original assumption and is a less restrictive

requirement; it is satisfied in a non trivial number of economic dynastic models —for example, in models

where human capital is the major intergenerational transfers and even in models of bequests once the

amount transferred is discretized. In practice, in most dynamic programing models the state space is

normally discretized. This requirement, however, relaxes the assumption that state space is discrete for

the entire lifetime and that all choice variables are discrete. While bequests and initial wealth still must

be discrete, the framework allows for any transfers and investments the parents make during their lifetime

and map into discrete initial conditions of the child, such as education, houses, or other assets that are

discrete in nature. If these assumptions are satisfied then we can modify the representation and then use

the estimation strategy for mixed discrete and continuous choice model19.

For illustration purposes, we extend our framework to include continuos choice of assets and bequests,

assuming that we observed data on the per-period assets, At, which is continuous. We assume that

19See Altug and Miller (1998), Gayle and Miller (2004), Gayle and Golan (2012), and Gayle (2015) for application of
CCPs estimators with mixed discrete and continuous choices.
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individuals beginning their life as adults with asset level A0. This level is a bequest from the parents.

The initial level of assets, j,is discrete with: A0 = [A10, .., A
J
0 ]. The budget constraint is given by

At+1 − (1 + r)At = wt(x, ht)− pcnt − ct, (26)

where r is the interest rate for borrowing and savings, and the right hand side is the household income

net of expenditures on children and consumption. A few remarks are in order. First, in order to map

the assets at age T , AT , to a discrete bequest level that individuals start their life with, A′0, we define a

transition function Pr(A′0 = Aj0|AT ). Second, there are different ways to model markets completeness or

incompleteness that will translate into different restrictions on savings and assets levels. For illustration

purposes, we will assume interior solution for all assets choices and will ignore such restrictions in this

presentation. We do not restrict the initial and terminal asset levels to be non-negative. However, the

framework can be adjusted to include all these different types of constraints.

Let us further assume that the parents’asset levels can potentially affect educational outcomes of

children: higher savings of parents increases the probability of a higher level of educational attainment

of the child20. We redefine the vector of state variable zt to capture these new assumptions, zt =

({Ik1}17k=0 , ..., {Ikt−1}
17
k=0 , A1, ..., At−1, x) with x ∈ {A0, x1, ..., x|X|}, a discrete set with finite support.

Thus x includes all the characteristics that a person in endowed with at the beginning of life. In this

application it included the initial (discrete) levels of assets inherited from the parents. As before, M(x′ |

zT+1) is the intergenerational transition probability of x conditional on a parent’s endowment, x, and the

parent’s choices over his/her lifetime. It includes the education, inherited assets and potentially skills for

example (as well as traits such as gender and race). As before, it is derived from an education production

function, M(x′|zT ), and is augmented to incorporate Pr(A′0 = Aj0|AT ), the assets transition functions.

Let Iokt and Aot be the sequence of optimal choice over the parent’s lifetime. Also, plugging the

budget constraint in the utility from consumption, we redefine the systematic part of current utility in

equation(8) as

ukt(zt, At)=u1kt(zt) + ut[wt(x, ht)− pcnt −At+1 + (1 + r)At, zt]. (27)

20Assets can be a proxy of the ability to pay for college for example. However, we allow for assets to impact educational
outcomes in order to illustrate the general nature of the extension. One can think of the continous variable as expenditure
on children if observed in the data.
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Then the lifetime expected utility excluding the dynastic component at the start of an adult’s life becomes

UgT (x) = E0

[∑T
t=0 β

t[
∑17

k=0 I
o
kt{u1kt(zt, A

o
t ) + εkt}]|x

]
. (28)

The preference shock εkt is associated with the discrete choices in period t and not the continuous choice

variables; therefore it is still indexed with k. As before, we can write the value function of the problem,

which represents the expected present discounted value of lifetime utility from following Io and Aot , given

zt and εt, as

V (zt+1, εt+1) = max
It+1,At+1

EI,A

({∑T
t′=t+1 β

t′−t∑17
k=0 Ikt′ [ukt′(zt′ , At′) + εkt′ ]

+βT−t
′
λN(zT )−ν

∑N
n=1ET [Ug+1,n(x′n)|zT ]

}
|zt+1, εt+1

)
. (29)

By Bellman’s principle of optimality, the value function can be defined recursively as

V (zt, εt) =
∑17

k=0

(
Iokt(zt, εt)[ukt(zt, A

o
t (zt)) + εkt] + β

∫ [∫
V (z′, ε)fε(ε)dε

]
dFk(z

′|zt, At)]
)
,

where fε(ε) is the continuously differentiable density of Fε(ε0t, .., ε17t), and Fk(z′|zt, At) is a transition

function for state variables that is conditional on choices Iokt = 1 and At = A0t . Note that I
o
kt(zt, εt)

is a function of zt and εt, while Aot (zt) is a function of only zt. This is a consequence of the additive

separability of the preferences shock, which will not affect the continuous choice as demonstrated below.

The ex ante value function is then

V (zt) =
∑17

k=0 pk(zt)
[
ukt(zt, A

o
t (zt)) + Eε[εkt|Ikt = 1, zt] + β

∫
V (z′)dFk(z

′|zt, At)
]
. (30)

In this form, V (zt) is now a function of the CCPs, the continuous choice decision rule, the expected

value of the preference shock, the per-period utility, the transition function, and the ex ante continuation

value. All components except the conditional probability, the continuous choice decision rule and the

ex ante value function are primitives of the initial decision problem. By writing the CCPs and the

continuous choice decision rule as a function of just the primitives and the ex ante value function, we can

characterize the optimal solution of the problem (i.e., the ex ante value function) as implicitly dependent
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on the primitives of the original problem. Let us define the conditional value function, υk(zt, At), as

υk(zt) = max
At

[
ukt(zt, At) + β

∫
V (z′)dFk(z

′|zt, At)
]
. (31)

Therefore, the probability of observing choice k, conditional on zt, pk(zt), is still given by

pk(zt) =
∫ [∏

k 6=k′ 1{υk(zt)− υk′(zt) ≥ εkt−εtk′}
]
fε(εt)dεt. (32)

However, the optimal continuous choice is found in two steps. First, find the optimal choice conditional

on Ikt = 1, which is defined as Atk(zt). This is characterized by the following Euler equation:

∂ukt(zt, At)

∂At
= −β

∂
∫
V (z′)dFk(z

′|zt, At)
∂At

. (33)

Then substitute it into the conditional valuation function:

υk(zt) =
[
ukt(zt, Atk(zt)) + β

∫
V (z′)dFk(z

′|zt, At)
]
, (34)

and find the optimal discrete choice:

Io(zt, εt) = arg max
I

∑17
k=0 Ikt[υk(zt) + εkt].

Finally, we obtain the optimal continuous choice by setting Aot (zt) = Atk(zt) if Iokt(zt, εt) = 1.

We now can find an alternative value function that is a function of only pk(zt), Atk(zt), and the

primitives of the model. We can now state a more general version of Proposition 1.

Proposition 2 There exists an alternative representation for the ex ante conditional value function at

time t that is a function of only the primitives of the problem and the CCPs as follows:

υk(zt) = ukt(zt, Atk(zt))

+
T∑

t′=t+1
βt
′−t

17∑
s=0

∫
[ps(zt′)[ust′(zt′ , At′k(zt)) + Eε(εst′ |Ist′ = 1, zt′)]dF

o
k (zt′ |zt)

+λβT−t
∫
NT (zT )−ν

NT∑
n=1

∑
x′
V (x′)

∑KT
s=0[M

n
k (x′|zT )ps(zT )]dF ok (zT |zt), (35)
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where F ok (zt′ |zt) is the t′ − t period-ahead optimal transition function, recursively defined as

F ok (zt′ |zt) =


F (zt′ |zt, Ikt = 1, Atk(zt)) for t′ − t = 1

17∑
r=0

∑
zt′−1

pr(zt′−1)F (zt′ |zt′−1, Irt′−1 = 1, At′−1k(zt′−1))F
o
k (zt′−1|zt) for t′ − t > 1,

where NT (zT ) is the number the children induced from zT , KT is the number of possible choice com-

binations available to the individual in the terminal period (in which birth is no longer feasible) and

Mn
k (x′|zT ) = M(x′|zT ) conditional on IkT = 1 for the nth child born in a parent’s life-cycle.

This representation is similar to the one in Proposition 1 except for the inclusion of Atk(zt) and the

replacement of an integral for a summation deal with the continuous state variables over the life-cycle.

The inversion —and hence the estimation —follows through as before except we now need a first-stage

consistent estimate of Atk(zt) as well. This is obtained as Atk(zt) = E[At|zt, Ikt = 1]21.

4.2 Household and Gender

We extend the basic framework to include household decisions and gender. To the best of our knowledge,

no other paper estimates dynastic models with household decisions. There are many models of house-

hold decisions; here we show how to extend the model to incorporate a unitary decisions-makers. The

framework can be extended to deal with collective household decisions: see Gayle, Golan, and Soytas

(2014) for an application of this estimation technique to a non corporative collective model of household

behavior. Let an individual’s gender, subscripted as σ, take the value of m for a male and f for a female:

σ = {f,m}. Gender is included in the vector of invariant characteristics xσ. Let K describe the num-

ber of possible combinations of actions available to each household. Individuals get married at time 0,

and for simplicity we assume there is no divorce (see Gayle, Golan, and Soytas, 2014 for an application

with marriage and divorce). Households are assumed to live for T periods and die together. Time 0 is

normalized to account for the normal age gap between married couples, which would imply that men

have a longer childhood than women. All individual variables and earnings are indexed by the gender

subscript σ. We omit the gender subscript when a variable refers to the household (both spouses). The

state variables are extended to include the gender of the offspring. Let the vector ζt indicate the gender

21We are assuming that there is no additional stochastic element in the determination of Atk(z).
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of a child born at age t, where ζt = 1 if the child is a female and ζt = 0 otherwise. The vector of state

variables is expanded to include the gender of the offspring is as follows:

zt = ({Ik1}Kk=0 , ..., {Ikt−1}
K
k=0 , ζ0, .., ζt−1, xf , xm).

We assume households invest time and money in the children in the household. The function

wσt(zt, hσt) denotes the earnings function; the only difference from the single-agent problem is that

gender is included in zt and can thus affect earnings. The total earnings is the sum of individual earn-

ings as wt(zt, ht) = w1t(zt, hft) + w2t(zt, hmt), where ht = (hft, hmt). The educational outcome of the

parents’offspring is mapped from the same parental inputs as the single-agent model: income and time

investment, number of older and younger siblings, and parental characteristics such as education, race,

and labor market skills. In this extension, gender is also included as a parental characteristic. Thus, the

production function is still denoted by M(x′|z
T+1

), where zT+1 represents the state variables at the end

of the parents’life-cycle, T .

In the household, the total per-period expenditures cannot exceed the combined income of the spouses.

The budget constraint for the household is given by

wt ≥ ct + αNc(zt)(N t+bt)wt(zt, ht). (36)

The right-hand side of equation (36) represents expenditures on personal consumption of the parents,

ct, and on children. Parents pay for the children living in their household, regardless of the biological

relationship, and do not transfer money to any biological children living outside the household.

As in the single-agent model, we can eliminate the continuous choice in the lifetime utility problem so

that households face a purely discrete choice problem. Recall that the budget constraint for the household,

assuming no borrowing or saving, is

wt(zt, ht)− αN (zt)(N t+bt)wt(zt, ht) = ct, (37)

and, as in the single-agent problem, we may substitute for consumption in u2 and obtain the following
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household utility function:

ukt(zt) = θk(zt) + ut[wt(zt, ht)(1− αN (zt)(N t+bt)), zt]. (38)

θk(zt) is the explicit functional form we assumed for the u1kt(zt) in equation (8). In this formulation

each discrete choice k corresponds to a utility level characterized by the parameter θk(zt).

For notational simplicity, let xf ∈ {f}Ff=1, xm ∈ {m}Mm=1, and Pfm be the probability that a type-f

female marries a type-m male at age 0. We can then define the expected lifetime utility for a type-(f,m)

household at age 0, excluding the dynastic component, as:

UT (f,m) = E0

[∑T
t=0 β

t∑K
k=0 I

0
kt{ukt(zt) + εkt}

]
, (39)

and the expected lifetime utility for a type-(f,m) household at age 0 as

U(f,m) = UT (f,m) + βTλE0

[
N−ν

∑N
n=1

∑F
f ′=1

∑M
m′=1 Pf ′m′Un(f ′,m′)|f,m

]
. (40)

As in the single individual version of the model, we can define the expected present discounted value

of the lifetime utility of the household at any period t as

V (zt, εt) = max
I
EI

(
T∑

s=t+1
βs−t

K∑
k=0

Iks[uks(zs) + εks] + βT−sλN−ν
N∑
n=1

F∑
f ′=1

M∑
m′=1

Pf ′m′Un(f ′,m′)|zt, εt

)
.

(41)

This can be written recursively as

V (zt, εt) =
∑K

k=0 I
o
kt(zt, εt)[ukt(zt) + εkt] + β

∑
z′
∫
V (z′, ε)fε(ε)dεF (z′|zt, Iokt = 1)],

where fε(ε) is the continuously differentiable density of Fε(ε0t, .., ε17t), F (z′|zt, Ikt = 1) is a transition

function for state variables conditional on choice k, and Iokt(zt, εt) is the optimal household decision rule.

Similar to equation (13), we can define the conditional choice household probability as pk(zt) = E[Iokt =

1|zt] and the ex ante value function as

V (zt) =
∑K

k=0 pk(zt)
[
ukt(zt) + Eε[εkt|Ikt = 1, zt] + β

∑
z′ V (z′)F (z′|zt, Ikt = 1)

]
. (42)
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The rest of the estimation carries through as in the single individual case.

The addition of the two household members to the model captures important issues of the degree of

specialization in housework and labor market work in households with different composition of education

levels between it members. The importance of which spouse spends time with the children (and the

amount of time) depends on the production function of the education of children and whether the time

of spouses are complements or substitutes. Furthermore, we capture patterns of assortative mating that

may amplify the persistence of income across generations relative to a more random matching pattern.

Since in our model there is a potential correlation of the cost of transfers to children (time input) with

both parents’characteristics, assortative mating patterns imply that if children of more educated parents

are more likely to be more educated, they are also more likely to have a more educated spouse, which

increases the family resources and their children’s educational outcomes.

5 Empirical Application

To illustrate the estimation method, we estimate the unitary household model developed in the previous

section and use it to analyze the effect of Nature versus Nurture on intergenerational mobility. We

estimate the model using a dataset compiled from the Panel Study of Income Dynamics (PSID). The

PSID provides a large panel of matched data on individuals’ labor market hours, earnings, housework

hours, marriage, and childbirth histories for overlapping cohorts and generations.

Table 2 presents the summary statistics for our sample. Column (1) summarizes the overall sample,

Column (2) shows data only for parents, and Column (3) summarizes data of their children. The first

generation is on average 7 years older than the second generation. As a consequence, a higher proportion

are married in the first generation. The male-to-female ratio is similar across generations (about 55

percent female), and this ratio is higher in our sample than in the general population because females

are more likely to maintain responsibility for children in cases of divorce. Our sample contains a higher

proportion of blacks than the general population, which is consistent with PSID survey procedures, and

the second generation has an even higher proportion of blacks than the first generation (about 29 percent

in the second and 20 percent in the first generation) because of higher fertility rates among blacks in

our sample. There are no significant differences across generations in completed years of education. The

second generation in our sample has a lower average age than the first generation, so the second generation
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also has a lower marriage rate and a lower average number of children, annual labor income, labor market

hours, housework hours, and mean time spent with children. Our second-generation sample spans the

same age range, 17 to 55, as the first sample. For the estimation, we retain only married households and

include the married individuals as of age 25 with all the individual years of observations whenever the

family is intact up to age 40. Further, to account for the time and monetary investments during the early

years of the child’s life after birth, we exclude individuals who already have a child by age 25.

5.1 Empirical Implementation

This section describes the choice set specifications and functional forms of the model that we estimate.

We assume that all individuals enter the first period of the life-cycle married. That is, they transition

into a married household immediately after becoming adults. When individuals transition into a married

household, their spouses’characteristics are drawn from the known matching function G(x−σ| xσ). The

matching function depends on the individual’s state variables —for example, it separately captures the

effect of the number of children and past actions that affect labor market experience on the spouse’s

characteristics.

We set the number of an adult’s periods in each generation to T = 30 and measure the individual’s

age where t = 0 is age 25 because at this age most individuals would have completed their education

and started their family. As discussed earlier, we assume that parents receive utility from adult children,

whose educational outcome is revealed at the last period of their life regardless of the birth date of the

children. This assumption is similar to the Barro-Becker assumptions. We avoid situations where the

outcome of an older child is revealed while parents make fertility and time investment decisions to ensure

that (i) these decisions are not affected by adult children outcomes and (ii) adult children’s behavior and

choices do not affect investment in children and fertility of the parents, in which case solutions to the

problems are significantly more complicated and it is not clear whether a solution exists.

The three levels of labor supply correspond to working 40 hours a week; individuals working fewer

than 3 hours per week are classified as not working, individuals working between 3 and 20 hours per week

are classified as working part-time, while individuals working more than 20 hours per week are classified

as working full-time. There are three levels of parental time spent with children corresponding to no time,

low time, and high time. To control for the fact that females spend significantly more time with children
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than males, we use a gender-specific categorization. We use the 50th percentile of the distribution of

parental time spent with children as the threshold for low versus high parental time with children, and

the third category is 0 time with children. This classification is done separately for males and females.

Finally, birth is a binary variable; it equals 1 if the mother gives birth in that year and 0 otherwise.

Therefore, the household choices are a combination of labor supply and time with children for males and

females in the household plus the birth decision.

Labor Market Earnings An individual’s earnings depend on the subset of his or her characteristics,

zσt. These include age, age squared, and dummy variables indicating whether the individual has completed

high school, some college, or college (or more) education interacted with age, respectively; the omitted

category is less than high school. Let ησ be the individual-specific ability, which is assumed to be

correlated with the individual-specific time-invariant observed characteristics. Earnings are assumed to

be the marginal productivity of workers and are assumed to be exogenous, linearly additive, and separable

across individuals in the economy. The earnings equations are given by

wσt = exp(δ0σzσt +
∑ρ

s=0 δ
pt
σ,s

∑
kt−s∈HPσ Ikt−sσ +

∑ρ
s=1 δ

ft
σ,s

∑
kt−s∈HFσ Ikt−sσ + ησ), (43)

where HPσ and HFσ are the set of choices for part-time and full-time work, respectively. Therefore,

the earnings equation depends on experience accumulated while working part-time or full-time and the

current level of labor supply. Thus, δptσ,s and δ
ft
σ,s capture the depreciation of the value of human capital

accumulated while working part-time or full time, respectively. In the estimation, we assume ρ = 4 given

that the effect of experience with higher lags is insignificant (Gayle and Golan, 2012; Gayle and Miller,

2004).

Production function of children We assume that race is transmitted automatically to children and

rule out interracial marriages and fertility. This is done because of insuffi cient interracial births in our

sample to study this problem. Therefore, parental home hours when the child is young affect the future

educational outcome of the child, which is denoted by Ed′σ
22, and innate ability, η′σ, both of which affect

the child’s earnings (see equation (43)).The state vector for the child in the first period of the life-cycle

22Level of education, Edσ, is a discrete random variable in the model where it can take 4 different values: less than high
school (LHS), high school (HS), some college (SC), and college (COL).
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is determined by the intergenerational state transition function M(x′|zT+1); specifically, we assume that

M(x′|zT+1) =
[
Pr(η′σ | Ed′σ), 1

]
Pr(Ed′σ | zT+1). (44)

Thus, we assume that the parental inputs and characteristics (parental education and fixed effects) de-

termine educational outcomes according to the probability distribution Pr(Ed′σ | zT+1). In our empirical

specification, the state vector of inputs, zT+1, contains the parental characteristics, the cumulative in-

vestment variables (low time and high time with children) of each parent up to period T , the permanent

income of each parent, and the number of a child’s siblings. In the data, we observe only total time

devoted to children each period; thus, we assign each child age 5 or younger in the household the average

time investment, assuming all young children in the household receive the same time input. Parental

characteristics include the education of the father and mother, their individual-specific effects, and race.

Once the education level is determined, it is assumed that the ability η′σ is determined according to

the probability distribution Pr(η′σ | Ed′σ). The above form of the transition allows us to estimate the

equations separately for the production function of children given as the first two probabilities and the

marriage market matching given as the last term.

Contemporaneous utility We assume that the per-period utility from consumption is linear; there-

fore, equation (38), the utility for a single parent from consumption and children (after substituting the

budget constraint), becomes

ukt(zt) = θk(zt) + αwt(zt, ht)− ααN (zt)(N t+bt), (45)

where θk(zt) are the coeffi cients associated with each combination of time allocation choice, thus capturing

the differences in the value of nonpecuniary benefits/costs associated with the different activities. The

vector of decisions includes birth; thus, we allow the utility associated with different time allocations to

depend on whether or not there is a birth. As discussed earlier, this utility captures not only the level of

leisure but also the nonpecuniary costs/benefits associated with the different activities. For example, we

do not rule out that time spent with children may be valued and that the nonpecuniary costs/benefits

depend on birth events and levels of labor supply.
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We assume no borrowing and saving, one consumption good with price normalized to 1, and risk

neutrality. The first term represents the utility from a parent’s own consumption. The second term,

however, represents the net utility/costs from having young children in the household. In general, given

our assumptions, we can use a budget constraint to derive the coeffi cients on income and number of

children and a separate, nonpecuniary utility from children and monetary costs. However, since we do

not have data on consumption or expenditures on children, the coeffi cients on the number of children

also capture nonpecuniary utility from children and cannot be identified separately from the monetary

costs of raising children. The interaction of income with the number of children and education captures

differences in the costs of raising children by the socioeconomic status of the parents. By assuming

a linear utility function, we abstract from risk aversion and insurance considerations that may affect

investment in children, fertility, as well as the labor supply. For families, we ignore the insurance aspects

of marriage and divorce. While these issues are potentially important, we abstract from them and focus

on transmission of human capital. The no borrowing and savings assumption is extreme and allows us to

test (i) whether income is important in the production function of education of children and (ii) whether

the timing of income is important.

6 Empirical Results

This section presents results of estimation and analysis of the structural model. First, we present estimates

from Step 1 of our estimation procedure. Second, we present estimates from Step 2 of the estimation,

which is estimated using the Hotz et al. (1994) extension of the Hotz and Miller (1993) estimator23. Third,

we present results that assess how well our model fits the data. Finally, we present the counterfactual

values of each type of household, which also can be interpreted as the return to parental investment in

children; the value function of the children includes the value of their education, earnings, as well as the

spouse they married and his or her income.

23We use the Hotz et al. (1994) estimator instead of the original Hotz and Miller (1993) estimator because the forward
simulation used in the former significantly reduces the computational burden involved in computing the life-cycle component
of the dynastic model.
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6.1 First-Stage estimation

The first-stage estimation include estimates of the earnings equation, the unobserved skills function,

the intergenerational education production function, and the marriage assignment functions. All these

functions are fundamental parameters of our model and are estimated outside the estimation of the

preferences, discount factors, and the net costs of raising children. The first-stage estimates also include

equilibrium objects such as the CCPs. Below we present estimates on the main earnings equation, the

unobserved skills function, and the intergenerational education production function. The estimates of

the marriage assignment functions and the CCPs are included in a supplementary appendix.

Earnings equation and unobserved skills Table 3 presents the estimates of the earnings equation

and the function of unobserved (to the econometrician) individual skill (see also Gayle, Golan, and Soytas,

2014). The top panel of the first column shows that the age-earnings profile is significantly steeper for

higher levels of completed education; the slope of the age-log-earnings profile for a college graduate is

about 3 times that of an individual with less than a high school education. However, the largest gap is for

college graduates; the age-log-earnings profile for a college graduate is about twice that of an individual

with only some college. These results confirm that there are significant returns to parental time investment

in children in terms of the labor market because parental investment significantly increases the likelihood

of higher education outcomes, which significantly increases lifetime labor market earnings.

The bottom panel of the first column and the second column of Table 3 show that male full-time

workers earn 2.6 times more than part-time male workers and female full-time workers earn 2.3 times

more than females part-time workers (see also Gayle, Golan, and Soytas (2014)). It also shows that

there are significant returns to past full-time employment for both genders; however, females have higher

returns to full-time labor market experience than males. The same is not true for part-time labor market

experience; males’earnings are lower if they worked part-time in the past, while there are positive returns

to the most recent female part-time experience. However, part-time experiences 2 and 3 years in the past

are associated with lower earnings for females; these rates of earnings reduction are, however, lower

than those for males. These results are similar to those in Gayle and Golan (2012) and perhaps reflect

statistical discrimination in the labor market in which past labor market history affects employers’beliefs
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about workers’ labor market attachment in the presence of hiring costs.24 These results imply there

are significant costs in the labor market in terms of the loss of human capital from spending time with

children, if spending more time with children comes at the expense of working more in the labor market.

These costs may be smaller for females than males because part-time work reduces compensation less for

females than for males. If a female works part-time for 3 years, for example, she loses significantly less

human capital than a male working part-time for 3 years instead of full-time. This difference may give

rise to females specializing in child care; this specialization comes from the labor market and production

function of a child’s outcome, as is the current wisdom.

The unobserved skill (to the econometrician) is assumed to be a parametric function of the strictly

exogenous time-invariant components of the individual variables. This assumption is used in other papers

(e.g., MaCurdy, 1981; Chamberlain, 1986; Nijman and Verbeek, 1992; Zabel, 1992; Newey, 1994; Altug

and Miller, 1998; and Gayle and Viauroux, 2007). It allows us to introduce unobserved heterogeneity to

the model while still maintaining the assumption on the discreteness of the state space of the dynamic

programming problem needed to estimate the structural parameters from the dynastic model. Also

because the unobserved is estimated in the first step and hence is data in the subsequence steps this does

not introduce the standard initial condition problem. The Hausman test statistic shows that we cannot

reject this correlated fixed effect specification. Column (3) of Table 4 presents the estimate of skills as

a function of unobserved characteristics; it shows that blacks and females have lower unobserved skills

than whites and males. This could capture labor market discrimination. Education increases the level of

skills but it increases at a decreasing rate with the level of completed education. The rates of increase for

blacks and females with some college and a college degree are higher than those of their white and male

counterparts. This pattern is reversed for blacks and females with a high school diploma. Notice that

skills are another transmission mechanism through which parental time investment affects labor market

earnings in addition to education.

Intergenerational education production function A well-known problem with the estimation of

production functions is the simultaneity of the inputs (time spent with children and income). As is clear

from the structural model, the intergenerational education production function suffers from a similar

problem. However, because the output of the intergenerational education production (i.e., completed

24These results are also consistent with part-time jobs difffering more than full-time jobs for males than for females.
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education level) is determined across generations while the inputs, such as parental time investment, are

determined over the life-cycle of each generation, we can treat these inputs as predetermined and use

instruments from within the system to estimate the production function.

Table 4 presents results of a three-stage least squares estimation of the system of individual educational

outcomes; the estimates of the two other stages are in the supplementary appendix. The system includes

the linear probabilities of the education outcomes, Pr(Ed′σ | zT+1), as well as the labor supply, income,

and time spent with children equations. The estimation uses the mother’s and father’s labor market

hours over the first 5 years of the child’s life as well as linear and quadratic terms of the mother’s and

father’s age on the child’s fifth birthday as instruments. The estimation results show that controlling for

all inputs, a child whose mother has a college education has a higher probability of obtaining at least

some college education and a significantly lower probability of not graduating from high school relative

to a child with a less educated mother; while the probability of graduating from college is also larger, it is

not statistically significant. If a child’s father, however, has some college or a college education, the child

has a higher probability of graduating from college. This is consistent with the findings of Rios-Rull and

Sanchez-Marcus (2002).

We measure parental time investment as the sum of the parental time investment over the first 5

years of the child’s life. The total time investment (i.e., the sum of the per-period investment of the

first 5 years of a child’s life) is a variable that ranges between 0 and 10 because low yearly parental

investment is coded as 1 and high yearly parental investment is code as 2. The results in Table 5 show

that while a mother’s time investment significantly increases the probability of a child graduating from

college or having some college, a father’s time investment significantly increases the probability of the

child graduating from high school or having some college. These estimates suggest that while a mother’s

time investment increases the probability of a high educational outcome, a father’s time investment

truncates low educational outcome. However, the time investment of both parents is productive in terms

of their children’s education outcomes. It is important to note that mothers’and fathers’hours spent with

children are at different margins, with mothers spending significantly more hours than fathers. Thus, the

magnitudes of the discrete levels of time investment of mothers and fathers are not directly comparable

since low and high investment of time differs across genders.
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6.2 Second-Stage estimation

This section presents estimates of the intergenerational and intertemporal discount factors, the preference

parameters, and child care cost parameters. Table 6 presents the discount factors. It shows that the

intergenerational discount factor, λ, is 0.795. This implies that in the second-to-last period of the parent’s

life, a parental valuation of their child’s utility is 79.5% of their own utility. The estimated value is in the

same range of values obtained in the literature calibrating dynastic model (Rios-Rull and Sanchez-Marcos,

2002; Greenwood, Guner, and Knowles, 2003). However, these models do not include the life-cycle. The

estimated discount factor, β, is 0.81. The discount factor is smaller than typical calibrated values;

however, the few papers that have estimated it find similar values (e.g., Arcidiacono, Sieg, and Sloan,

2006, find it to be 0.8).25 Lastly, the discount factor associated with the number children, υ, is 0.25

which implies that the marginal increase in value from the second child is 0.68 and from the third child is

0.60. Identification of the discounts factors are nontrivial in dynamic discrete models. Here we have three

discount factors to identify instead of one as in the standard discrete choice models. However, note that

past home hours, when the children are young, affect only the transition functions and not the current

utility, so we have the common exclusion restrictions used to identify dynamic discrete choice models

(Magnac and Thesmar, 2002; Fang and Wang, 2015). Then the identification of the intergenerational

discounts factors follows by a direct application of the proof of Proposition 2 in Fang and Wang (2015)

to our setting.

Table 5 also presents the marginal utility of income, which is positive and increasing with the number

of children except for a household with a college graduate wife and a husband with at least a high school

education. Also, a husband’s education decreases the marginal utility of income for families with children.

The marginal utility of income for families with children is also lower for black families.

The right panel of Table 5 presents our estimates of the disutility/utility from various combination

of household choices. As is usual in discrete choice models, these are estimated relative to an outside

choice, which is both spouses not (i) working, (ii) giving birth, or (iii) spending any time with young

children. We also use an additive specification in which the costs of birth, work and time with children are

additively separable. First, every labor supply choice of the household carries with it a disutility relative

to the reference choice except for households in which both spouses work full-time (which statistically is

25We are not aware of dynastic models in which the time discount factor is estimated.
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no different from disutility/utility reference) and when the wife does not work and the husband works

full-time. In the data, if both spouses spend low time with children and there is no birth, then both

spouses are equally likely to be observed working full-time than not working —hence the equal utility

for both sets of choices. Second, there are no distinct patterns to utility from time with children; these

estimates are highly nonlinear, perhaps reflecting that it is a mixture of leisure and disutility. However,

giving birth provides a positive utility. This implies that, although parents get utility from the quality

of their children, they also get some instantaneous utility from a birth.

6.3 Model Fit

In this section, we first assess the ability of our model to reproduce the basic stylized facts by race, gender,

and marital status as summarized in Section 2. We assess how well our model predicts the choices of

labor supply, home hours with young children, and birth. Our model is over identified and passes the

standard over identifying restrictions J-test. In the estimation, the CCPs are targeted; in the model fit

analysis, we simulate a sample of individuals and determine whether the individuals in our simulated

sample behave like the individuals in our data. In some regards, this exercise is equivalent to a graphical

summary of our model’s over identification test.

Table 6 presents the model’s fit. The model matches the labor supply patterns between gender and

across race well. While it also matches the variation across race and gender for parental time with

children, the levels are not similar in all cases. In examining the birth decisions, the model produces the

differences in birth rates across households of different race, but it underpredicts the fecundity of whites

by about a half. This lower birth rate is partly rationalized by the lower time with children predicted

by the model. Nevertheless, our empirical model specification is very parsimonious: We do not include

race, education, or marital status in the preference parameters for the disutility/utility of the different

choices. In addition, the only unobserved heterogeneity is estimated from the earnings equations. Still,

the model performs well in replicating the data based primarily on the economic interactions embodied

in it.
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6.4 The Effect of Nature versus Nurture on Intergenerational Mobility

One of the major benefit of our approach is the ability to do full blown counterfactual analysis. An

alternative approach which has been used in empirical structural models to incorporate intergenera-

tional/altruistic concerns is to modify the standard dynamics structural estimation methods by intro-

ducing an approximation for the value parents place on their children’s adults outcome as a function of

some state variables, normally the educational outcome or test scores (See example Bernal (2008), Brown

and Flinn (2011), and Del Boca, Flinn, and Wiswall (2013) among others.). The main advantage of this

alternate approach is that the estimation is easier and standard techniques in the literature can be used.

The major disadvantage is that welfare /counterfactual analysis is subject to the Lucas’s Critique. That

is, in a counterfactual environment the value parents place on their children quality changes in two ways,

the value of the state variables and the functional form of the mapping between the state variables and

the utility derived from those state variables. The is made obvious by an examination of equations (18)

and (20). This alternative approach does not allow the functional form of the mapping to change.

From equation (18) and (20), one can see that our framework can nested this alternative approach,

since the approximation used in the alternative approach is equivalent to conducting a welfare/counterfactual

analysis holding fixed the CCPs and transition used in the calculation of the value of a child. To illustrate

the bias induced by ignoring the fact that the children themselves will re-optimized when we change the

economic environment we asked the counterfactual question of how much of the mobility across genera-

tion is due to the automatic transmission education across generation as oppose to differences in parent

investment between parents of different educational background. To do this we eliminate the automatic

transition of education in production function26. We report the results from two models. Model (1) is

the model estimated in above. Model (2) is a model in which the discount factors (β and λ) are set to

values commonly used in the literature (β = 0.90 and λ = 0.95) and all other parameters estimated.

Table 6 presents the summary of labor supply, time investment, and birth rate by gender and race

for the data, baseline models and counterfactual simulations. It shows that if we eliminate the portion of

parental education that is transmitted automatically across generation then parents will re-optimize and

change labor supply, time investment, and fertility behaviors. Therefore, a pure statistical decomposition

would be inappropriate for answer the question of how much mobility would change if there were no

26Operationally we set the effect on education in the intergenerational production function equal to that of high school
graduate irrespective of the mother’s and father’s education level.
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automatic (Nature) transmission of education from parents to children. The columns NN1 presents

the counterfactual estimates of our model and NN1′ the estimation results of the approximated model;

similarly, NN2 presents the results of the counterfactual from our model with (β = 0.90 and λ = 0.95) and

NN2′ the results of the counterfactual of the approximated model. The columns NN1′ and NN2′ show

that not taking into account that the all subsequent generations will also re-optimize induces significant

bias with the bias being greater the larger the discount factors.

To obtain a number that summarize the impact on mobility, Figure 1 presents the probability that a

children born in a family in the bottom 20 percent of the family income distribution will end up a family

in with family income above the median of the next generation family income distribution. It shows that

in the baseline model, i.e. model1, that only 30 percent of children born in the bottom 20 percent will

end up with families earning above the median. However, if the automatic transition of education was

eliminated that probability would increase by about 20 percent to about 40 percent. However, we not

account for the fact that subsequent generation will re-optimize we would over estimate it impact by

about 25 percent. Model (2) shows the similar qualitative patterns but shows that the overestimate of

the impact of ’Nature’on mobility could be as high as 90 percent. Which illustrate the gain from using

the approach outline in this paper.

7 Conclusion

This paper provides a new representation of the value function for discrete choice dynastic models that

partially overcomes the curse of dimensionality of dynastic models by exploiting properties of the sta-

tionary decision rules. The representation can be used in multi-stage CCP estimators to estimate a rich

class of dynastic models including investment in children’s human capital, monetary transfers, unitary

households, endogenous fertility, and a life-cycle within each generation. Under certain conditions, we

show that the framework can also accommodate continuous choice variables. The paper extends methods

used in the literature for the estimation of single-agent non-dynastic models to the dynastic setting. The

paper compares the performance of a multi-stage CCP estimator based on the new value function rep-

resentation with a modified version of the full solution MLE using simulations and finds that estimates

are close to the nested fixed point estimates as the sample increases but the computation time is reduced

substantially.
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The paper then provides an application of a unitary household model in which households choose labor

supply, time with children, and fertility; human capital is transmitted across generations by monetary and

time investments of the parents. We then used the estimate model to conduct counterfactual simulations,

investigating the role of the automatic transmission of education across generations (Nature effect) in

accounting for the intergenerational immobility at the bottom of the income distribution. We find that

without the Nature effect in the intergenerational education production function mobility at the bottom of

the income distribution would have been 20 percent higher. Finally, not accounting for the re-optimization

of sequent generations in the model, as is done in the approach outlined in this paper, will overstate the

effect of the nature effect on mobility by between 20 and 90 percent.

A Appendix

Proof of Proposition 1. Recall the conditional value function in equation (14):

υk(zt) = ukt(zt) + β
∑
zt+1

V (zt+1)F (zt+1|zt, Ikt = 1) (46)

We begin by noting that

V (zt+1) =
17∑
s=0

ps(zt+1)

[
ust+1(zt+1) + Eε(εst+1|Ist+1 = 1, zt+1) + β

∑
zt+2

V (zt+2)F (zt+2|zt+1, Ist+1 = 1)

]
.

(47)
Combining equations (46) and (47) gives:

υk(zt) = ukt(zt) + β
∑

zt+1

∑17
s=0 ps(zt+1) [ust+1(zt+1) + Eε(εst+1|Ist+1 = 1, zt+1)]F (zt+1|zt, Ikt = 1)

+β2
∑

zt+1

∑17
s=0 ps(zt+1)

[∑
zt+2

V (zt+2)F (zt+2|zt+1, Ist+1 = 1)
]
F (zt+1|zt, Ikt = 1). (48)

Similarly,

V (zt+2) =
17∑
r=0

pr(zt+2)

[
urt+2(zt+2) + Eε(εrt+2|Irt+2 = 1, zt+2) + β

∑
z+3

V (zt+3)F (zt+3|zt+2, Irt+2 = 1)

]
.

(49)
Substituting equation (49) into equation (48) gives

υk(zt) = ukt(zt) + β
∑

zt+1

∑17
s=0 ps(zt+1) [ust+1(zt+1) + Eε(εst+1|Ist+1 = 1, zt+1)]F (zt+1|zt, Ikt = 1)

+β2
∑

zt+1

∑17
s=0 ps(zt+1)

∑
zt+2

∑17
r=0 pr(zt+2) [urt+2(zt+2) + Eε(εrt+2|Irt+2 = 1, zt+2)]

×F (zt+2|zt+1, Ist+1 = 1)F (zt+1|zt, Ikt = 1)

+β3
∑

zt+1

∑17
s=0 ps(zt+1)

∑
zt+2

∑17
r=0 pr(zt+2)

∑
z+3 V (zt+3)F (zt+3|zt+2, Irt+2 = 1)

×F (zt+2|zt+1, Ist+1 = 1)F (zt+1|zt, Ikt = 1) (50)
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Without loss of generality (WLOG) we assume t+ 3 = T ; then

V (zT , εT ) = max
I
E
(∑17

k=0 IkT [ukT (zT ) + εkT + λNk(zT )−ν
∑Nk

n=1

∑
xn
Ug+1,n(xn)]|zT , εT

)
.

Now

V (zT ) =
∫
V (zT , εT )fε(εT )dεT

=
∫

max
I
E

(
17∑
j=0

IjT [ujT (zT ) + εjT + λNj(zT )−ν
Nj∑
n=1

∑
xn
Ug+1,n(xn)]|zT , εT

)
fε(εT )dεT

=
17∑
j=0

pj(zT )[ukT (zT ) + Eε(εjT |zT , IjT = 1)

+ λNj(zT )−ν
Nj∑
n=1

∑
xn

Ug+1,n(xn)M(x′n|zT , IjT = 1)]. (51)

We know from the value function representation that Ug+1,n(xn) = V (xn); therefore,

V (zT ) =
17∑
j=0

pj(zT )[ujT (zT ) + Eε(εjT |zT , IjT = 1] + λNj(zT )−ν
Nj∑
n=1

∑
xn

V (xn)M(xn|zT , IjT = 1)]. (52)

Substituting the above into equation (50) and rearranging gives

υk(zt) = ukt(zt) + β
∑
zt+1

17∑
s=0

ps(zt+1) [ust+1(zt+1) + Eε(εst+1|Ist+1 = 1, zt+1)]F (zt+1|zt, Ikt = 1)

+β2
∑
zt+2

17∑
r=0

pr(zt+2) [urt+2(zt+2) + Eε(εrt+2|Irt+2 = 1, zt+2)]

×
∑
zt+1

17∑
s=0

ps(zt+1)F (zt+2|zt+1, Ist+1 = 1)F (zt+1|zt, Ikt = 1)

+β3
∑
zT

17∑
j=0

pj(zT )[ujT (zT ) + Eε[εjT |zT , IjT = 1]
17∑
r=0

∑
zt+2

pr(zt+2)F (zt+3|zt+2, Irt+2 = 1)

×
17∑
s=0

∑
zt+1

ps(zt+1)F (zt+2|zt+1, Ist+1 = 1)F (zt+1|zt, Ikt = 1)

+λβ3
∑
zT

17∑
j=0

pj(zT )Nj(zT )−ν
Nj∑
n=1

∑
xn

V (x
′
n)M(x′n|zT , IjT = 1)

∑
zt+2

17∑
r=0

pr(zt+2)F (zT |zt+2, Irt+2 = 1)

×
∑
zt+1

17∑
s=0

ps(zt+1)F (zt+2|zt+1, Ist+1 = 1)F (zt+1|zt, Ikt = 1). (53)
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Using the definition of the optimal transition function, the above simplifies to

υk(zt) = ukt(zt) + β
17∑
s=0

∑
zt+1

ps(zt+1) [ust+1(zt+1) + Eε[εst+1|Ist+1 = 1, zt+1]]F
o(zt+1|zt, Ikt = 1)

+β2
17∑
s=0

∑
zt+2

ps(zt+2) [urs+2(zt+2) + Eε[εst+2|Ist+2 = 1, zt+2]]F
o(zt+2|zt, Ikt = 1)

+β3
17∑
s=0

∑
zT

ps(zT )[usT (zT ) + Eε[εsT |zT , IsT = 1]]F o(zT |zt, Ikt = 1)

+λβ3
17∑
s=0

∑
zT

ps(zT )N−νs (zT )
Ns∑
n=1

∑
xn

V (xn)M(xn|zT , IsT = 1)F o(zT |zt, Ikt = 1) (54)

The assumption that parents are infertile in the final period of their life-cycle simplifies to

υk(zt) = ukt(zt) + β
17∑
s=0

∑
zt+1

ps(zt+1) [ust+1(zt+1) + Eε[εst+1|Ist+1 = 1, zt+1]]F
o(zt+1|zt, Ikt = 1)

+β2
17∑
s=0

∑
zt+2

ps(zt+2) [urs+2(zt+2) + Eε[εst+2|Ist+2 = 1, zt+2]]F
o(zt+2|zt, Ikt = 1)

+β3
17∑
s=0

∑
zT

ps(zT )[usT (zT ) + Eε[εsT |zT , IsT = 1]]F o(zT |zt, Ikt = 1)

+λβ3
∑
zT

NT (zT )−ν
N∑
n=1

∑
xn

V (xn)
KT∑
s=0

M(xn|zT , IsT = 1)ps(zT )F o(zT |zt, Ikt = 1). (55)

Proof of Proposition 2.
This result follows immediately by combining the results in Proposition 1, with the replacement of

the summation over zt+1 with the integral over zt+1.
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Table 1: Simplified Discrete Choice Monte Carlo Simulation Results

Pseudo Maximum Likelihood Nested Fixed Point (ML)

Sample size Sample size
1,000 10,000 20,000 40,000 1,000 10,000 20,000 40,000

θ = 0.25

Mean 0.24473 0.24935 0.24886 0.24881 0.22714 0.24571 0.23320 0.24477
Std. Dev. 0.04991 0.01328 0.00915 0.00668 0.04884 0.01354 0.02135 0.01019
Bias -0.00527 -0.00065 -0.00114 -0.00119 -0.02286 -0.00429 -0.01680 -0.00523
MSE 0.00249 0.00017 0.00008 0.00005 0.00288 0.00020 0.00073 0.00013

λ = 0.8

Mean 0.80425 0.79745 0.79797 0.79673 0.77538 0.78966 0.76934 0.78855
Std. Dev. 0.11241 0.03175 0.02157 0.01587 0.09211 0.03244 0.03656 0.02063
Bias 0.00425 -0.00255 -0.00203 -0.00327 -0.02462 -0.01034 -0.03066 -0.01145
M.S.E. 0.01253 0.00100 0.00046 0.00026 0.00901 0.00115 0.00226 0.00055

β = 0.95

Mean 0.94208 0.95245 0.95037 0.95136 0.93441 0.95227 0.94603 0.95027
Std. Dev. 0.06276 0.01893 0.01301 0.00934 0.05322 0.01983 0.01820 0.01236
Bias -0.00792 0.00245 0.00037 0.00136 -0.01559 0.00227 -0.00397 0.00027
MSE 0.00396 0.00036 0.00017 0.00009 0.00305 0.00039 0.00034 0.00015
Avg. Comp.
time

0.65 2.88 6.06 12.60 347.6 376.4 467.5 509.8

Note: The pseudo maximum likelihood corresponds to the estimation conducted by the new estimator using
PML and maximum likelihood (ML) estimation is by the nested fixed point (NFXP). All simulations were conducted
using the programming language GAUSS on a 2-CPU 1.66-GHz, 3-GB RAM laptop computer. The Unit of time is
seconds. The mean, empirical standard deviation, bias, and mean squared error (MSE) of each parameter estimate
are reported in the respective column for each sample size. The bias and the MSE are calculated relative to the
original data-generating value of the parameter. The data-generating value of the parameter is also reported at the
center of the summary statistics block for that parameter.
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Table 2: Summary Statistics for Full Sample

Full sample Parents Children
Variable N Mean N Mean N Mean

(1) (2) (3)

Female 115,280 0.545 86,302 0.552 28,978 0.522
Black 115,280 0.223 86,302 0.202 28,978 0.286
Married 115,280 0.381 86,302 0.465 28,978 0.131
Age (yr) 115,280 26.155 86,302 27.968 28,978 20.756

(7.699) (7.872) (3.511)
Education (years completed) 115,280 13.438 86,302 13.516 28,978 13.209

(2.103) (2.138) (1.981)
No. of children 115,280 0.616 86,302 0.766 28,978 0.167

(0.961) (1.028) (0.507)
Annual labor income ($ US 2005) 114,871 16,115 86,137 19,552 28,734 5,811

(24,622) (26,273) (14,591)
Annual labor market hours 114,899 915 86,185 1078 28,714 424

(1041) (1051) (841)
Annual housework hours 66,573 714 58,564 724 8,009 641

(578) (585) (524)
Annual time spent on children (hr) 115,249 191 86,275 234 28,974 63.584

(432) (468) (259)
Number of individuals 12,318 6,813 5,505

Note: Standard deviations are listed in parentheses. Data are from the Family-Individual File of the Michigan
Panel Study of Income Dynamics (PSID) and include individuals surveyed between 1968 and 1997. Column (1)
contains the summary statistics for the full sample; column (2) contains the summary statistics for the parents
generation; column (3) contains the summary statistics of the offspring of the parents in column (2). There are
fewer observations for annual housework hours than time spent on children because single individuals with no
children are coded as missing for housework hours but by definition are set to 0 for time spent on children.
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Table 3: Estimates of Earnings Equation: Dependent Variable: Log of Yearly Earnings

Variable Estimate Variable Estimate Variable Estimate

Demographic Variables Fixed Effect
Age squared -4.0e-4 Female x Full-time work -0.125 Black -0.154

(1.0e-5) (0.010) (0.009)
Age x LHS 0.037 Female x Full-time work (t− 1) 0.110 Female -0.484

(0.002) (0.010) (0.007)
Age x HS 0.041 Female x Full-time work (t− 2) 0.025 HS 0.136

(0.001) (0.010) (0.005)
Age x SC 0.050 Female x Full-time work (t− 3) 0.010 SC 0.122

(0.001) (0.010) (0.006)
Age x COL 0.096 Female x Full-time work (t− 4) 0.013 COL 0.044

(0.001) (0.010) (0.006)
Current and Lags of Participation Female x Part-time work (t− 1) 0.150 Black x HS -0.029
Full-time work 0.938 (0.010) (0.010)

(0.010) Female x Part-time work (t− 2) 0.060 Black x SC 0.033
Full-time work (t− 1) 0.160 (0.010) (0.008)

(0.009) Female x Part-time work (t− 3) 0.040 Black x COL 0.001
Full-time work (t− 2) 0.044 (0.010) (0.011)

(0.010) Female x Part-time work (t− 4) -0.002 Female x HS -0.054
Full-time work (t− 3) 0.025 (0.010) (0.008)

(0.010) Individual specific effects Yes Female x SC 0.049
Full-time work (t− 4) 0.040 (0.006)

(0.010) Female x COL 0.038
Part-time work (t− 1) -0.087 (0.007)

(0.010) Constant 0.167
Part-time work (t− 2) -0.077 (0.005)

(0.010)
Part-time work (t− 3) -0.070

(0.010)
Part-time work (t− 4) -0.010 Hausman Statistics 2296

(0.010) Hausman p-value 0.000
No. of Observations 134,007
No. of Individuals 14,018
R2 0.44 0.278

Note: Standard errors are listed in parentheses. LHS indicates completed education of less than high school;
HS indicates completed education of high school but not college; SC indicates completed education of some college
but not a graduate; COL indicates completed education of at least a college degree.
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Table 4: Three- Stage Least Squares Estimation of the Education Production Function

Variable
High
School Some

College

College

High school father 0.063 0.003 -0.002
(0.032) (0.052) (0.0435

Some college father 0.055 0.132 0.055
(0.023) (0.038) (0.031)

College father -0.044 0.008 0.120
(0.032) (0.051) (0.042)

High school mother 0.089 0.081 -0.019
(0.040) (0.065) (0.052)

Some college mother 0.007 -0.041 0.017
(0.030) (0.049) (0.039)

College mother 0.083 0.120 0.040
(0.036) (0.057) (0.047)

Mother’s time -0.014 0.080 0.069
(0.021) (0.034) (0.027)

Father’s time 0.031 0.100 0.026
(0.019) (0.029) (0.025)

Mother’s labor income -0.025 -0.013 0.005
(0.009) (0.014) (0.011)

Father’s Labor Income 0.001 0.001 0.002
(0.003) (0.004) (0.003)

Female -0.002 0.135 0.085
(0.017) (0.028) (0.022)

Black 0.020 0.082 0.043
(0.039) (0.063) (0.051)

No. of siblings under age 3 -0.014 -0.107 -0.043
(0.017) (0.027) (0.022)

No. of siblings between age 3 and 6 -0.029 -0.047 -0.012
(0.019) (0.030) (0.025)

Constant 0.855 -0.231 -0.359
(0.108) (0.172)] (0.140)]

Observations 1335 1335 1335

Note: Standard errors are listed in parentheses; the excluded class is less than high school. Data are from the
Family-Individual File of the Michigan Panel Study of Income Dynamics (PSID), and include individuals surveyed
between 1968 and 1997. Instruments: Mother’s and father’s labor market hours over the child’s first 8 years of life,
linear and quadratic terms of mother’s and father’s age when the child was 5 years old.
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Table 5: Structural Estimates of Discount factors and Utility Parameter

Variable Estimates Variable Estimates
Discount factors Disutility/Utility of Choices

β 0.816 Wife Husband
(0.002) Labor supply

λ 0.795 No work Part -time -0.512
(0.200) (0.005)

υ 0.248 No work Full-time 0.207
(0.168) (0.009)

Marginal Utility of Income Part-time No work -2.023
Family labor income 0.480 (0.003)

(0.004) Part-time Part-time -1.168
Children x Family labor income -0.466 (0.009)

(0.066) Part-time Full-time -0.605
Children x HS x Family labor income 1.216 (0.008)

(0.065) Full-time No work -0.408
Children x SC x Family labor income 1.279 (0.007)

(0.066) Full-time Part-time -1.24532
Children x COL x Family labor income 1.300 (0.011)

(0.065) Full-time Full-time 0.001
Children x HS spouse x Family labor income -1.017 (0.010)

(0.066) Time with children
Children x SC spouse x Family labor income -0.995 Low Medium 0.502

(0.066) (0.014)
Children x COL Sspouse x Family labor income -0.992 Low High 0.564

(0.066) (0.013)
Children x Black x Family Labor Income -0.108 Medium Low -0.169

(0.004) (0.008)
Medium Medium 0.129

(0.010)
Medium High 0.593

(0.013)
High Low -0.364

(0.007)
High Medium 0.353

(0.011)
High High -0.140

(0.012)
Birth 0.701

(0.025)
Note: Standard errors are listed in parentheses. LHS indicates completed education of less than high school;

HS indicates completed education of high school but not college; SC indicates completed education of some college
but not a graduate; COL indicates completed education of at least a college degree. The excluded choice is no
work, no time with children, and no birth for both spouses.
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Table 6: Model fit and Counterfactual

LABOR SUPPLY TIME INVESTMENT
WHITES

Wife Wife
Data Model1 NN1 NN1’ Model2 NN2 NN2’ Data Model1 NN1 NN1’Model2 NN2 NN2’

No work 0.2634 0.2599 0.3918 0.3750 0.3649 0.3730 0.2896Low 0.6363 0.8999 0.84850.8464 0.9530 0.60040.6816
Part time0.1596 0.1622 0.1416 0.1451 0.1790 0.2193 0.2219Medium 0.2257 0.0531 0.08080.0820 0.0251 0.22600.1771
Full time 0.5770 0.5779 0.4666 0.4800 0.4561 0.4076 0.4886High 0.1380 0.0470 0.07070.0716 0.0220 0.17360.1413

Husband Husband
Data Model1 NN1 NN1’ Model2 NN2 NN2’ Data Model1 NN1 NN1’Model2 NN2 NN2’

No work 0.0290 0.0250 0.0233 0.0233 0.0245 0.0145 0.0201Low 0.8237 0.9592 0.94590.9457 0.9796 0.86880.8985
Part time0.0306 0.0361 0.0336 0.0329 0.0447 0.0295 0.0295Medium 0.1008 0.0238 0.03100.0310 0.0113 0.08070.0608
Full time 0.9404 0.9390 0.9432 0.9439 0.9307 0.9560 0.9505High 0.0755 0.0170 0.02310.0232 0.0091 0.05050.0407

BLACKS
Wife Wife

Data Model1 NN1 NN1’ Model2 NN2 NN2’ Data Model1 NN1 NN1’Model2 NN2 NN2’
No work 0.1998 0.1309 0.1258 0.1232 0.3045 0.3309 0.2467Low 0.6837 0.9046 0.86780.8694 0.7840 0.65500.7460
Part time0.1002 0.2150 0.2145 0.2154 0.2449 0.2142 0.2257Medium 0.2192 0.0497 0.06900.0687 0.1210 0.19640.1371
Full time 0.7000 0.6541 0.6597 0.6614 0.4506 0.4550 0.5277High 0.0971 0.0457 0.06320.0618 0.0951 0.14860.1169

Husband Husband
Data Model1 NN1 NN1’ Model2 NN2 NN2’ Data Model1 NN1 NN1’Model2 NN2 NN2’

No work 0.0640 0.0596 0.0587 0.0575 0.0788 0.0473 0.0567Low 0.8338 0.9729 0.96380.9641 0.9299 0.91240.9320
Part time0.0423 0.0555 0.0471 0.0468 0.0553 0.0397 0.0403Medium 0.0744 0.0123 0.01580.0158 0.0326 0.04790.0336
Full time 0.8937 0.8850 0.8942 0.8957 0.8659 0.9130 0.9030High 0.0919 0.0148 0.02040.0201 0.0375 0.03970.0344

BIRTH
WHITES

Data Model1 NN1 NN1’ Model2 NN2 NN2’
No birth 0.9014 0.9551 0.9387 0.9383 0.9701 0.8148 0.8833
Birth 0.0986 0.0449 0.0613 0.0617 0.0299 0.1852 0.1167

BLACKS
Data Model1 NN1 NN1’ Model2 NN2 NN2’

No birth 0.8955 0.9249 0.9129 0.9135 0.8847 0.8349 0.8784
Birth 0.1045 0.0751 0.0871 0.0865 0.1153 0.1651 0.1216

Note:Model 1 is the baseline model with all parameters estimated. Model 2 is the model with discount factors
calibrated (β = 0.90, λ = 0.95). NNi, i = 1, 2 removes Nature from the intergenerational educational production
with full re-optimization. NNi′, i = 1, 2 removes Nature from the intergenerational educational production but
Do Not allow for re-optimization of subsequent generations.
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Figure 1: Counterfactuals and Mobility

Note:Model 1 is the baseline model with all parameters estimated. Model 2 is the model with discount factors cal-
ibrated (β = 0.90, λ = 0.95). NN(i), i = 1, 2 removes Nature from the intergenerational educational production
with full re-optimization. NN(i′), i = 1, 2 removes Nature from the intergenerational educational production but
Do Not allow for re-optimization of subsequent generations.
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