Bayesian Inference on Structural Impulse Response Functions

Mikkel Plagborg-Møller*

October 3, 2018

Abstract: I propose to estimate structural impulse responses from macroeconomic time series by doing Bayesian inference on the Structural Vector Moving Average representation of the data. This approach has two advantages over Structural Vector Autoregressions. First, it imposes prior information directly on the impulse responses in a flexible and transparent manner. Second, it can handle noninvertible impulse response functions, which are often encountered in applications. Rapid simulation of the posterior distribution of the impulse responses is possible using an algorithm that exploits the Whittle likelihood. The impulse responses are partially identified, and I derive the frequentist asymptotics of the Bayesian procedure to show which features of the prior information are updated by the data. The procedure is used to estimate the effects of technological news shocks on the U.S. business cycle.

Keywords: Bayesian inference, Hamiltonian Monte Carlo, impulse response function, news shock, nonfundamental, noninvertible, partial identification, structural vector autoregression, structural vector moving average, Whittle likelihood.

1 Introduction

Since Sims (1980), Structural Vector Autoregression (SVAR) analysis has been the most popular method for estimating the impulse response functions (IRFs) of observed macro

*Department of Economics, Princeton University. Email: mikkelpm@princeton.edu. The paper is based on Chapter 1 of my PhD dissertation at Harvard University. I am grateful for comments from Isaiah Andrews, Regis Barnichon, Varanya Chaubey, Gabriel Chodorow-Reich, Herman van Dijk, Liran Einav, Peter Ganong, Ben Hébert, Christian Matthes, Pepe Montiel Olea, Jim Savage, Elie Tamer, Harald Uhlig, five anonymous referees, and seminar participants at several venues. I thank Eric Sims for sharing his news shock code and Marco Lippi for providing a key part of the proof of Proposition 3. I am indebted to Gary Chamberlain, Gita Gopinath, Anna Mikusheva, Neil Shephard, and Jim Stock for their help and guidance.
variables to unobserved shocks without imposing a specific equilibrium model structure. Since the IRFs are only partially identified in the standard SVAR model, researchers often exploit prior information to estimate unknown features of the IRFs. Despite its popularity, the SVAR model has two well-known drawbacks. First, existing inference methods only exploit certain types of prior information, such as zero or sign restrictions, and these methods tend to implicitly impose unacknowledged restrictions. Second, the SVAR model does not allow for noninvertible IRFs. These can arise when the econometrician does not observe all variables in economic agents’ information sets, as in models with news or noise shocks. If the structural shocks were observed, we could estimate IRFs using Local Projections as in Jordà (2005), but here I follow the standard assumption that shocks are not directly observed.

I propose a new method for estimating structural IRFs: Bayesian inference on the Structural Vector Moving Average (SVMA) representation of the data. The parameters of this model are the IRFs, so prior information can be imposed by placing a flexible Bayesian prior distribution directly on the parameters of economic interest. The SVMA approach thus overcomes the two drawbacks of SVAR analysis. First, researchers can flexibly and transparently exploit all types of prior information about IRFs. Second, the SVMA model does not restrict the IRFs to be invertible a priori, so the model can be applied to a wider range of empirical questions than the SVAR model. To take the SVMA model to the data, I develop a posterior simulation algorithm that uses the Whittle likelihood approximation to speed up computations. As the IRFs are partially identified, I derive the frequentist asymptotic limit of the posterior distribution to show which features of the prior are dominated by the data.

The first key advantage of the SVMA model is that prior information about IRFs – the parameters of economic interest – can be imposed in a direct, flexible, and transparent manner. In standard SVAR analysis the mapping between parameters and IRFs is indirect, and the IRFs are estimated by imposing zero or sign restrictions on short- or long-run impulse responses. In the SVMA model the parameters are the IRFs, so all types of prior information/restrictions on IRFs may be exploited by placing a prior distribution on the parameters. While many prior choices are feasible, I propose a multivariate Gaussian prior that facilitates graphical prior elicitation. In particular, researchers can exploit valuable prior information about the shapes and smoothness of IRFs.

The second key advantage of the SVMA model is that, unlike SVARs, it does not restrict IRFs to be invertible a priori, which broadens the applicability of the method. The IRFs are said to be invertible if the current shocks can be recovered as linear functions of current and past – but not future – data. As shown in the literature, noninvertible IRFs arise in many
interesting applications when the econometrician does not observe all variables in the economic agents’ information sets, such as in macro models with news shocks or noisy signals. A long-standing problem for standard SVAR methods is that they cannot consistently estimate noninvertible IRFs because the SVAR model implicitly assumes invertibility. Proposed fixes in the SVAR literature either exploit restrictive model assumptions or proxy variables for the shocks, which are not always available. In contrast, the SVMA model is generally applicable since its parametrization does not impose invertibility on the IRFs \textit{a priori}.

The SVMA approach is most attractive when the number of variables/shocks is small, and a preliminary structural model is available to guide prior elicitation for most of the IRFs. It is both an advantage and a challenge of the SVMA approach in this paper that the method requires a joint prior distribution on all IRFs. On the one hand, the SVMA approach is up front about its prior assumptions about IRFs, whereas the full prior on IRFs is typically not explicated in SVAR studies (for example, it is difficult to intuit what the restriction to invertible IRFs means graphically). On the other hand, prior elicitation for high-dimensional IRFs at all horizons of interest demands hard thought by the researcher. Since identification relies on distinguishing between shocks \textit{a priori}, there is a limit to how diffuse the prior can be and still yield useful posterior inference. In the empirical application I use a Dynamic Stochastic General Equilibrium (DSGE) model to guide the choice of prior, an idea considered in a VAR context by Ingram & Whiteman (1994) and Del Negro & Schorfheide (2004).\footnote{SVMA analysis is especially challenging with variables that do not appear in usual DSGE models, or when the researcher only has prior information about a subset of the shocks.}

To conduct posterior inference about the IRFs, I develop a posterior simulation algorithm that exploits the Whittle (1953) likelihood approximation. Inference in the SVMA model is challenging due to the flexible parametrization, which explains the literature’s preoccupation with the computationally convenient SVAR alternative. The computational challenges of the SVMA model are solved by simulating from the posterior using Hamiltonian Monte Carlo (HMC), a Markov Chain Monte Carlo method that is well-suited to high-dimensional models. HMC evaluates the likelihood and score 100,000s of times in realistic applications. Approximating the exact likelihood with the Whittle likelihood drastically reduces computation time because the Whittle score function can be computed highly efficiently. The

\footnote{Unlike Del Negro & Schorfheide, I do not explicitly specify a prior for the deep DSGE parameters, which is then updated by the data; in fact, I deviate from the DSGE model when specifying part of the prior, illustrating the flexibility of the approach.}
resulting algorithm is fast, asymptotically efficient, and easy to apply, while allowing for both invertible and noninvertible IRFs.\footnote{A drawback of the Whittle likelihood is that it cannot be easily extended to allow for stochastic volatility.}

Having established a method for computing the posterior, I derive its frequentist large-sample limit to show how the data updates the prior information. Because the IRFs are partially identified, some aspects of the prior are not dominated by the data in large samples.\footnote{Consistent with Phillips (1989), I use the term “partially identified” in the sense that a nontrivial function of the parameter vector is point identified, but the full parameter vector is not.} I establish new results on the frequentist limit of the posterior distribution for a large class of partially identified models under weaker conditions than assumed by Moon & Schorfheide (2012). I then specialize the results to the SVMA model with a non-dogmatic prior, allowing for noninvertibility. When the Whittle likelihood is used, the asymptotic form of the SVMA posterior distribution does not depend on whether the true shocks are Gaussian or not. Hence, as in finite-sample Gaussian inference, the asymptotic posterior depends on the data only through the autocovariances, which in turn pin down the reduced-form (Wold) impulse responses; all other information about structural impulse responses comes from the prior.

I demonstrate the practical usefulness of the SVMA method in an empirical application that estimates the effects of technological news shocks on the U.S. business cycle. Technological news shocks – signals about future productivity increases – have received much attention in the recent macro literature. My analysis is the first to fully allow for noninvertible IRFs without dogmatically imposing a particular DSGE model. I use data on productivity, output, and the real interest rate, with the DSGE model in E. Sims (2012) serving as a guide to prior elicitation. The posterior distribution indicates that the IRFs are severely noninvertible, implying that no SVAR can deliver accurate estimates of the IRFs in this dataset.\footnote{Section 2.7 argues that the data and prior in conjunction can be informative about the probability and severity of noninvertibility.} The news shock is found to be unimportant for explaining movements in TFP and GDP, but it is an important driver of the real interest rate.

The SVMA approach facilitates imposing prior information concerning IRFs while allowing for noninvertibility, but these advantages create some drawbacks. First, prior information about IRFs in the SVMA model has implications for Granger causality relationships and structural elasticities. Users of the SVMA method should verify through simulation that the implicit prior on these quantities is reasonable. Although the majority of the empirical literature has considered prior information that explicitly concerns IRFs, the SVMA model is not as natural a starting point if the available prior information concerns other parame-
ters. Second, identification in the SVMA model is analogous to SVARs only if the IRFs are restricted to being invertible. If noninvertibility cannot be ruled out \textit{a priori}, identification is more complicated than the traditional rotational indeterminacy in SVAR models (which simply assume away noninvertibility), as is well known and further described in Section 2.4.

The SVMA estimation approach in this paper is more flexible than previous attempts in the literature, and it appears to be the first method for conducting valid inference about possibly noninvertible IRFs. Hansen & Sargent (1981) and Ito & Quah (1989) estimate SVMA models without assuming invertibility by maximizing the Whittle likelihood, but the only prior information they consider is a class of exact restrictions implied by rational expectations. Barnichon & Matthes (2018) propose a Bayesian approach to inference in SVMA models, but they consider a limited class of identification schemes and they center the prior at SVAR-implied IRFs. None of these three papers develop valid procedures for doing inference on IRFs that may be partially identified and noninvertible. Moreover, each of the three papers imposes parametric functional forms on the IRFs, which I avoid.

A few SVAR papers have attempted to exploit general types of prior information about IRFs, but these methods are less flexible than the SVMA approach. Furthermore, by assuming an underlying SVAR model, they automatically rule out noninvertible IRFs. Dwyer (1998) works with an inflexible trinomial prior on IRFs. Gordon & Boccanfuso (2001) translate a prior on IRFs into a “best-fitting” prior on SVAR parameters, but Kocięcki (2010) shows that their method neglects the Jacobian of the transformation. Kocięcki’s fix requires the transformation to be one-to-one, which limits the ability to exploit prior information about long-run responses, shapes, and smoothness. Baumeister & Hamilton (2015b), who improve on the method of Sims & Zha (1998), persuasively argue for an explicit Bayesian approach to imposing prior information. Their Bayesian SVAR method allows for a fully flexible prior on impact impulse responses, but they assume invertibility, and their prior on longer-horizon impulse responses is implicit and chosen for computational convenience.

Section 2 reviews SVARs and then discusses the SVMA model, invertibility, identification, and prior elicitation. Section 3 outlines the posterior simulation method. Section 4 empirically estimates the role of technological news shocks in the U.S. business cycle. Section 5 contains asymptotic analysis. Section 6 concludes. Applied readers may want to focus on Sections 2 to 4. Technical details and notational definitions are relegated to Appendix A.

\footnote{Standard errors in Hansen & Sargent (1981) are only valid when the prior restrictions point identify the IRFs. Barnichon & Matthes (2018) approximate the SVMA likelihood using an autoregressive formula that is explosive when the IRFs are noninvertible, causing serious numerical instability. Barnichon & Matthes focus on invertible IRFs and extend the model to allow for asymmetric and state-dependent effects of shocks.}
Proofs can be found in Appendix B. A supplementary Online Appendix and Matlab code for SVMA analysis are available on the author’s website.6

2 Model, invertibility, and prior elicitation

In this section I describe the SVMA model and my method for imposing priors on IRFs. I define the SVMA model, whose parameters are IRFs. Because the SVMA model does not restrict the IRFs to be invertible, it can be applied to more empirical settings than the SVAR approach. The lack of identification of the IRFs necessitates the use of prior information, which I impose by placing a prior distribution directly on the IRFs.

2.1 SVARs and their shortcomings

I begin with a brief review of Structural Vector Autoregressions (SVARs). The parametrization of the SVAR model makes it difficult to exploit certain types of valuable prior information about impulse responses. Moreover, SVARs are ill-suited for empirical applications in which the econometrician has less information than economic agents.

Modern dynamic macroeconomics attaches primary importance to impulse response functions (IRFs). The economy is assumed to be driven by unpredictable shocks (impulses) whose effect on observable macro aggregates is known as the propagation mechanism. Hansen & Sargent (1981) and Watson (1994, Sec. 4) argue that – in a linear setting – this impulse-propagation paradigm is captured by the Structural Vector Moving Average (SVMA) model

\[y_t = \Theta(L)\varepsilon_t, \quad \Theta(L) = \sum_{\ell=0}^{\infty} \Theta_{\ell} L^\ell, \]

where \(L \) denotes the lag operator, \(y_t = (y_{1,t}, \ldots, y_{n,t})' \) is an \(n \)-dimensional vector of observed macro variables, and the structural shocks \(\varepsilon_t = (\varepsilon_{1,t}, \ldots, \varepsilon_{n,t})' \) form a martingale difference sequence with \(E(\varepsilon_t \varepsilon_t') = \text{diag}(\sigma)^2, \sigma = (\sigma_1, \ldots, \sigma_n)' \). Most linearized discrete-time macro models can be written in SVMA form. \(\Theta_{ij,\ell} \), the \((i, j)\) element of \(\Theta_{\ell} \), is the impulse response of variable \(i \) to shock \(j \) at horizon \(\ell \) after the shock’s initial impact. The IRF \((\Theta_{ij,\ell})_{\ell \geq 0}\) is thus a key object of interest in macroeconomics (Ramey, 2016).

Most researchers follow Sims (1980) and estimate structural IRFs using a SVAR model

\[A(L)y_t = H\varepsilon_t, \quad A(L) = I_n - \sum_{\ell=1}^{m} A_{\ell} L^\ell, \]

6http://scholar.princeton.edu/mikkelpm/publications/irf_bayes
where \(m \) is a finite lag length, and the matrices \(A_1, \ldots, A_m \) and \(H \) are each \(n \times n \). If the SVAR is stable, the model (2) implies that the data has an SVMA representation (1). The IRFs implied by the SVAR model are not identified from the data if the shocks are unobserved, as is usually the case. While the VAR polynomial \(A(L) \) can be recovered from a regression of \(y_t \) on its lags, the impact matrix \(H \) and shock standard deviations \(\sigma \) are not identified.\(^7\) Thus, researchers attempt to exploit weak prior information about the model parameters to estimate unknown features of the IRFs.

One drawback of the SVAR model is that its parametrization makes it difficult to exploit certain types of prior information. The IRFs \(\Theta(L) = A(L)^{-1}H \) implied by the SVAR are nonlinear functions of the parameters \((A(L), H)\), and impulse responses \(\Theta_{ij,\ell} \) at long horizons \(\ell \) are functions of the short-run autocovariances of the data. Hence, the shapes and smoothness of the model-implied IRFs depend indirectly on the SVAR parameters, which impedes the use of prior information about such features of the IRFs.\(^8\) Instead, SVAR papers impose zero or sign restrictions on short- or long-run impulse responses to sharpen identification.\(^9\)

Because of the indirect parametrization, such SVAR identification schemes are known to impose additional unintended and unacknowledged prior information about IRFs.\(^10\)

A second drawback of the SVAR model is the invertibility problem. The defining property of the SVAR model (2) is that the structural shocks \(\varepsilon_t = (\varepsilon_{1,t}, \ldots, \varepsilon_{n,t})' \) can be recovered linearly from the history \((y_t, y_{t-1}, \ldots)\) of observed data, given knowledge of \(H \) and \(\sigma \). This invertibility assumption – that future data is not required to recover the current shocks – is arbitrary and may be violated if the econometrician does not observe all variables relevant to the decisions of forward-looking economic agents, as discussed in Section 2.3 below.

2.2 SVMA model

I overcome the drawbacks of the SVAR model by doing Bayesian inference directly on the SVMA model (1). Since the parameters of this model are the IRFs themselves, prior infor-

\(^7\)Denote the reduced-form (Wold) forecast error by \(u_{t|t-1} = y_t - \text{proj}(y_t \mid y_{t-1}, y_{t-2}, \ldots) = H\varepsilon_t \), where “proj” denotes population linear projection. Let \(E(u_{t|t-1}u_{t|t-1}') = JJ' \) be the (identified) Cholesky decomposition of the forecast error covariance matrix. Then all that the second moments of the data reveal about \(H \) and \(\sigma \) is that \(H \operatorname{diag}(\sigma) = JQ \) for some unknown \(n \times n \) orthogonal matrix \(Q \) (Uhlig, 2005, Prop. A.1).

\(^8\)The shapes of the IRFs are governed by the magnitudes and imaginary parts of the roots of the VAR lag polynomial \(A(L) \), and the roots are in turn complicated functions of the lag matrices \(A_1, \ldots, A_m \).

\(^9\)Ramey (2016) and Stock & Watson (2016) review SVAR identification schemes.

\(^10\)Consider the AR(1) model \(y_t = A_1 y_{t-1} + \varepsilon_t \) with \(n = m = 1 \) and \(|A_1| < 1 \). The IRF is \(\Theta_t = A_1^t \), so the sign restriction \(\Theta_1 \geq 0 \) implicitly also restricts \(\Theta_\ell \geq 0 \) for all \(\ell \geq 2 \). Increasing the lag length \(m \) makes the model more flexible but the mapping from parameters to IRFs more complicated.
Information can be imposed directly on the objects of interest.

The SVMA model assumes the observed time series \(y_t = (y_{1,t}, \ldots, y_{n,t})' \) are driven by current and lagged values of unobserved, unpredictable shocks \(\varepsilon_t = (\varepsilon_{1,t}, \ldots, \varepsilon_{n,t})' \) (Hansen & Sargent, 1981). For simplicity, I follow the SVAR literature in assuming that the number \(n \) of shocks is known and equals the number of observed series.

Assumption 1 (SVMA model).

\[
y_t = \Theta(L)\varepsilon_t, \quad t \in \mathbb{Z}, \quad \Theta(L) = \sum_{\ell=0}^{q} \Theta_\ell L^\ell,
\]

where \(L \) is the lag operator, \(q \) is the finite MA lag length, and \(\Theta_0, \Theta_1, \ldots, \Theta_q \) are each \(n \times n \) coefficient matrices. The shocks are serially and mutually unpredictable: For each \(t \) and \(j \),

\[
E(\varepsilon_{j,t} \mid \{\varepsilon_{k,t}\}_{k \neq j}, \{\varepsilon_s\}_{-\infty < s < t}) = 0 \quad \text{and} \quad E(\varepsilon_{j,t}^2) = \sigma_j^2, \quad \text{where} \quad \sigma_j > 0.
\]

Assumption 1 imposes stationarity and linearity, as is standard in the SVAR literature. The mean-zero assumption is purely for notational convenience. For now, I assume that the moving average (MA) lag length \(q \) is finite and known. Section 2.8 discusses estimation of \(q \). To fit persistent data \(q \) must be large, which the computational strategy in Section 3 is well-suited for. The methods in this paper can be extended to the case \(q = \infty \) by imposing a parametric from on long-horizon IRFs, although I do not pursue this strategy for brevity.

The SVMA and SVAR models are related but not equivalent. If the matrix lag polynomial \(\Theta(L) \) has a one-sided inverse \(D(L) = \sum_{\ell=0}^{\infty} D_\ell L^\ell = \Theta(L)^{-1} \), the SVMA model (3) is compatible with an underlying SVAR \(D(L)y_t = \varepsilon_t \) (with lag length \(m = \infty \)). However, the fact that I do not constrain \(\Theta(L) \) to have a one-sided inverse is key to allowing for noninvertible IRFs, cf. Section 2.3.

Unlike in SVARs, the parameters of the SVMA model have direct economic interpretations as impulse responses (see also Barnichon & Matthes, 2018). Denote the \((i,j)\) element of matrix \(\Theta_t \) by \(\Theta_{ij,t} \). The index \(\ell \) will be referred to as the horizon. For each \(j \in \{1, \ldots, n\} \), choose an \(i_j \in \{1, \ldots, n\} \) and normalize the impact response of variable \(i_j \) to shock \(j \): \(\Theta_{i_j,j,0} = 1 \). Then the parameter \(\Theta_{ij,\ell} \) is the expected response at horizon \(\ell \) of variable \(i \) to shock \(j \), for a shock magnitude that raises variable \(i_j \) by one unit on impact:\(^{11}\)

\[
\Theta_{ij,\ell} = E(y_{i,t+\ell} \mid \varepsilon_{j,t} = 1) - E(y_{i,t+\ell} \mid \varepsilon_{j,t} = 0).
\]

The *impulse response function* (IRF) of variable \(i \) to shock \(j \) is the \((q+1)\)-dimensional vector

\(^{11}\)Henceforth, moments of the data and shocks are implicitly conditioned on the parameters \((\Theta, \sigma)\).
(Θ_11, Θ_10, ..., Θ_1q). In addition to the impulse response parameters Θ_1j,ℓ, the model contains the shock standard deviation parameters σ_j, which govern the overall magnitudes of the responses to one-standard-deviation impulses to ε_j,t.

The parameters are best understood through an example. Figure 1 plots a hypothetical set of impulse responses for a bivariate application with two observed time series, the federal funds rate (FFR) y_{1,t} and the output gap y_{2,t}, and two unobserved shocks, a monetary policy shock ε_{1,t} and a demand shock ε_{2,t}. I impose the normalizations i_1 = 1 and i_2 = 2, so that Θ_{21,3}, say, is the horizon-3 impulse response of the output gap to a monetary policy shock that raises the FFR by 1 unit (100 basis points) on impact. Each impulse response (the crosses in the figure) corresponds to a distinct IRF parameter Θ_{ij,ℓ}. The joint visualization of these parameters is familiar from theoretical macro modeling, facilitating prior elicitation.

Because I wish to estimate the IRFs using parametric Bayesian methods, I strengthen Assumption 1 by imposing the working assumption that the structural shocks are Gaussian.

Assumption 2 (Gaussian shocks). ε_t \overset{i.i.d.}{\sim} N(0, \text{diag}(\sigma_1^2, \ldots, \sigma_n^2)), \ t \in \mathbb{Z}.
The Gaussianity assumption places the focus on the unconditional second-order properties of the data \(y_t \), as is standard in the SVAR literature, but the assumption is not central to my analysis. Section 5 shows that if the Bayesian posterior distribution for the IRFs is computed using the Whittle likelihood in Section 3 (thus imposing Gaussianity as a working assumption), the resulting Bayesian inference is asymptotically valid (but possibly inefficient) under weak non-parametric regularity conditions on the shock distribution.

2.3 Invertibility

One advantage of the SVMA model is that it allows for noninvertible IRFs. These arise frequently in economic models in which the econometrician does not observe all variables in economic agents’ information sets.

The IRF parameters are invertible if the current shock \(\varepsilon_t \) can be recovered as a linear function of current and past – but not future – values \((y_t, y_{t-1}, \ldots)\) of the observed data, given knowledge of the parameters.\(^{12}\) In this sense, noninvertibility is caused by economically important variables being omitted from the econometrician’s information set.\(^{13}\) An invertible collection of IRFs can be rendered noninvertible by removing or adding observed variables.

Invertibility is not a compelling \textit{a priori} restriction when estimating structural IRFs, for two reasons. First, the definition of invertibility is statistically motivated and has little economic content. For example, the reasonable-looking IRFs in Figure 1 happen to be noninvertible, but minor changes to the lower left IRF in the figure render the IRFs invertible. Second, interesting macro models generate noninvertible IRFs, such as models with news shocks or noisy signals.\(^{14}\) Intuitively, upon receiving a signal about changes in policy or economic fundamentals that will occur sufficiently far into the future, economic agents change their current behavior much less than their future behavior. Thus, future – in addition to current and past – data is needed to distinguish the signal from other concurrent shocks.

By their very definition, SVARs implicitly restrict IRFs to be invertible, as discussed in Section 2.1. This fact has spawned an extensive literature on modifying standard SVAR

\(^{12}\) Precisely, the IRFs are invertible if \(\varepsilon_t \) lies in the closed linear span of \((y_t, y_{t-1}, \ldots)\). Invertible MA representations are also referred to as “fundamental” in the literature. See Hansen & Sargent (1981, 1991) and Lippi & Reichlin (1994) for extensive mathematical discussions of invertibility in SVMAs and SVARs.

\(^{14}\) See Alessi, Barigozzi & Capasso (2011, Sec. 4–6), Blanchard, L’Huillier & Lorenzoni (2013, Sec. II), Leeper et al. (2013, Sec. 2), and Beaudry & Portier (2014, Sec. 3.2).
methods. Some papers assume additional model structure,15 while others rely on the availability of proxy variables for the shocks.16 These methods only produce reliable results under additional assumptions or if the requisite data is available, whereas my SVMA approach yields valid Bayesian inference about IRFs regardless of invertibility.

The SVMA model (3) is parametrized directly in terms of IRFs and does not impose invertibility \textit{a priori} (Hansen & Sargent, 1981). Specifically, the IRFs are invertible if and only if the polynomial \(z \mapsto \det(\Theta(z)) \) has no roots inside the unit circle.17 In general, the structural shocks can be recovered from past, current, and future values of the data:18

\[
\varepsilon_t = D(L)y_t, \quad D(L) = \sum_{\ell=-\infty}^{\infty} D_{\ell}L^{\ell} = \Theta(L)^{-1}.
\]

Under Assumption 1, the structural shocks can thus be recovered from multi-step forecast errors: \(\varepsilon_t = \sum_{\ell=0}^{\infty} D_{\ell}u_{t+\ell}|_{t-1} \), where \(u_{t+\ell}|_{t-1} = y_{t+\ell} - \text{proj}(y_{t+\ell} | y_{t-1}, y_{t-2}, \ldots) \) is the econometrician’s \((\ell + 1)\)-step error. Only if the IRFs are invertible do we have \(D_{\ell} = 0 \) for \(\ell \geq 1 \), in which case \(\varepsilon_t \) is a linear function of the one-step (Wold) error \(u_{t|t-1} \), as SVARs assume.

As an illustration, consider a univariate SVMA model with \(n = q = 1 \):

\[
y_t = \varepsilon_t + \Theta_1\varepsilon_{t-1}, \quad \Theta_1 \in \mathbb{R}, \quad E(\varepsilon_t^2) = \sigma^2.
\]

If \(|\Theta_1| \leq 1 \), the IRF \(\Theta = (1, \Theta_1) \) is invertible: The shock has the SVAR representation \(\varepsilon_t = \sum_{\ell=0}^{\infty} (-\Theta_1)^{\ell}y_{t-\ell} \), so it can be recovered using current and past values of the data. In contrast, if \(|\Theta_1| > 1 \), no SVAR representation for \(\varepsilon_t \) exists: \(\varepsilon_t = -\sum_{\ell=1}^{\infty} (-\Theta_1)^{-\ell}y_{t+\ell} \), so future values of the data are required to recover the current structural shock. The latter case is consistent with the SVMA model (5) but inconsistent with any SVAR model (2).19

15Lippi & Reichlin (1994) and Klaeffing (2003) characterize the range of noninvertible IRFs consistent with a given estimated SVAR, while Mertens & Ravn (2010) and Forni, Gambetti, Lippi & Sala (2017) select a single such IRF using additional model restrictions. Lamme & Saikkonen (2013) develop asymptotic theory for a modified VAR model that allows for noninvertibility, but they do not consider structural estimation.

16Sims & Zha (2006), Fève & Jidoud (2012), Sims (2012), Beaudry & Portier (2014, Sec. 3.2), and Beaudry, Fève, Guay & Portier (2015) argue that noninvertibility need not cause large biases in SVAR estimation if forward-looking variables are available. Forni et al. (2009) and Forni et al. (2014) use information from large panel data sets to ameliorate the omitted variables problem; based on the same idea, Giannone & Reichlin (2006) and Forni & Gambetti (2014) propose tests of invertibility.

17That is, if and only if \(\Theta(L)^{-1} \) is a one-sided lag polynomial, so that the SVAR representation \(\Theta(L)^{-1}y_t = \varepsilon_t \) obtains (Brockwell & Davis, 1991, Thm. 11.3.2, and Remark 1, p. 128).

18See Brockwell & Davis (1991, Thm. 3.1.3) and Lippi & Reichlin (1994, p. 312). \(D(L) = \Theta(L)^{-1} \) may not be well-defined in the knife-edge case where some roots of \(z \mapsto \det(\Theta(z)) \) lie precisely on the unit circle.

19If \(|\Theta_1| > 1 \), an SVAR (with \(m = \infty \)) applied to the time series (5) estimates the incorrect invertible IRF \((1, 1/\Theta_1) \) and (Wold) “shock” \(u_{t|t-1} = \varepsilon_t + (1 - \Theta_1^0) \sum_{\ell=1}^{\infty} (-\Theta_1)^{-\ell}\varepsilon_{t-\ell} \).
Bayesian analysis of the SVMA model can be carried out without reference to the invertibility of the IRFs. The formula for the Gaussian SVMA likelihood function is the same in either case, and standard state-space methods can be used to estimate the structural shocks, cf. Sections 3 and 4 and Hansen & Sargent (1981). This contrasts sharply with SVAR analysis, where special tools are needed to handle noninvertible specifications.

2.4 Identification

The IRFs in the SVMA model are only partially identified, as in SVAR analysis. The lack of identification arises because the model treats all shocks symmetrically and because noninvertible IRFs are not ruled out *a priori*.

Any two sets of IRFs that give rise to the same autocovariance function (ACF) are observationally equivalent, assuming Gaussian shocks. Under Assumption 1, the matrix ACF of the time series \(\{y_t\} \) is given by

\[
\Gamma(k) = E(y_{t+k}y'_t) = \begin{cases}
\sum_{\ell=0}^{q-k} \Theta_{\ell+k} \text{diag}(\sigma)^2 \Theta'_{\ell} & \text{if } 0 \leq k \leq q, \\
0 & \text{if } k > q.
\end{cases}
\] (6)

Under Assumptions 1 and 2, the ACF completely determines the distribution of the observed mean-zero strictly stationary Gaussian time series \(y_t \). The identified set \(S \) for the IRF parameters \(\Theta = (\Theta_0, \Theta_1, \ldots, \Theta_q) \) and shock standard deviation parameters \(\sigma = (\sigma_1, \ldots, \sigma_n)' \) is then a function of the ACF:

\[
S(\Gamma) = \left\{ \left(\tilde{\Theta}_0, \ldots, \tilde{\Theta}_q \right) \in \Xi_\Theta, \sigma \in \Xi_\sigma : \sum_{\ell=0}^{q-k} \tilde{\Theta}_{\ell+k} \text{diag}(\tilde{\sigma})^2 \tilde{\Theta}'_{\ell} = \Gamma(k), 0 \leq k \leq q \right\},
\]

where \(\Xi_\Theta = \{(\tilde{\Theta}_0, \ldots, \tilde{\Theta}_q) \in \mathbb{R}^{n \times n(q+1)} : \tilde{\Theta}_{i,j,0} = 1, 1 \leq j \leq n \} \) is the parameter space for \(\Theta \), and \(\Xi_\sigma = \{ (\tilde{\sigma}_1, \ldots, \tilde{\sigma}_n)' \in \mathbb{R}^n : \tilde{\sigma}_j > 0, 1 \leq j \leq n \} \) is the parameter space for \(\sigma \).

The identified set for the SVMA parameters is large in economic terms. Appendix A.2 provides a constructive characterization of \(S(\Gamma) \), building on Hansen & Sargent (1981) and Lippi & Reichlin (1994). I summarize the main insights here. The identified set contains uncountably many parameter configurations if the number \(n \) of shocks exceeds 1. The lack

20If the shocks \(\varepsilon_t \) were known to have a non-Gaussian distribution, the identified set would change due to the additional information provided by higher-order moments of the data, cf. Section 5.2.

21The identification problem is not easily cast in the framework of interval identification, as \(S(\Gamma) \) is of strictly lower dimension than the parameter space \(\Xi_\Theta \times \Xi_\sigma \). Still, expression (6) for \(\text{diag}(\Gamma(0)) \) implies that the identified set for scaled impulse responses \(\Psi_{ij,\ell} = \Theta_{ij,\ell} \sigma_j \) is bounded.
of identification is not just a technical curiosity but is of primary importance to economic conclusions. For example, as in SVARs, for any observed ACF $\Gamma(\cdot)$, any horizon ℓ, any shock j, and any variable $i \neq i_j$, there exist IRFs in the identified set $\mathcal{S}(\Gamma)$ with $\Theta_{ij,\ell} = 0$.

One reason for under-identification, also present in SVARs (cf. Section 2.1), is that the assumptions so far treat the n shocks symmetrically: Without further restrictions, the model and data do not distinguish the first shock from the second shock, say. Precisely, the two parameter configurations (Θ, σ) and $(\tilde{\Theta}, \tilde{\sigma})$ lie in the same identified set if there exists an orthogonal $n \times n$ matrix Q such that $\tilde{\Theta} \text{diag}(\tilde{\sigma})Q = \Theta \text{diag}(\sigma)$. If the IRFs were known to be invertible, identification in the SVMA model would thus be exactly analogous to SVAR identification: The identified set would equal all rotations of the reduced-form (Wold) IRFs.

The second source of under-identification is that the SVMA model, unlike SVARs, does not arbitrarily restrict the IRFs to be invertible. For any noninvertible set of IRFs there always exists an observationally equivalent invertible set of IRFs (if $n > 1$, there exist several). If $nq > 1$, there are also several other observationally equivalent noninvertible IRFs. If, say, we imposed exclusion restrictions on the elements of Θ_0 to exactly identify the orthogonal matrix Q in the previous paragraph, the identified set would be finite but its size would be of order 2^{nq}.

Figure 2 illustrates the identification problem due to noninvertibility for a univariate model with $n = 1$ and $q = 4$: $y_t = \varepsilon_t + \sum_{\ell=1}^{4} \Theta_\ell \varepsilon_{t-\ell}, \Theta_\ell \in \mathbb{R}, E(\varepsilon_t^2) = \sigma^2$. The ACF in the left panel of the figure is consistent with the four IRFs shown in the right panel. The invertible IRF (thick line) is the one that would be estimated by a SVAR (with lag length $m = \infty$). Yet there exist three other IRFs that have very different economic implications but are equally consistent with the observed ACF. If $n > 1$, the identification problem is even more severe, as described in Appendix A.2. Hence, to learn anything useful about unknown features of the IRFs, researchers must exploit available prior information.

22Because of the discrete nature of the second source of under-identification, it appears difficult to directly apply the set identification methods of Giacomini & Kitagawa (2015) and Gafarov, Meier & Montiel Olea (2018) to the SVMA model. This is an interesting topic for future research.

23Similarly, in the case $n = q = 1$, the parameters (Θ_1, σ) yield the same ACF as the parameters $(\tilde{\Theta}_1, \tilde{\sigma})$, where $\tilde{\Theta}_1 = 1/\Theta_1$ and $\tilde{\sigma} = \sigma \Theta_1$. If $|\Theta_1| \leq 1$, an SVAR would estimate the invertible IRF $(1, \Theta_1)$ for which most of the variation in y_t is due to the current shock ε_t. But the data would be equally consistent with the noninvertible IRF $(1, \tilde{\Theta}_1)$ for which y_t is mostly driven by the previous shock ε_{t-1}.
Figure 2: Example of IRFs that generate the same ACF, based on a univariate SVMA model with $n = 1$ and $q = 4$. The right panel shows the four IRFs that generate the particular ACF in the left panel; associated shock standard deviations are shown in the figure legend.

2.5 Prior specification and elicitation

In addition to handling noninvertible IRFs, the other key advantage of the SVMA model is its natural parametrization, which allows prior information to be imposed directly on the IRFs. I here propose a transparent procedure for imposing all types of prior information about IRFs in a unified way.

Types and sources of prior information. To impose prior information, the researcher must have some knowledge about the identity and effects of the unobserved shocks. As in SVAR analysis, the researcher postulates that, say, the first shock $\epsilon_{1,t}$ is a monetary policy shock, the second shock $\epsilon_{2,t}$ is a demand shock, etc. Then prior information about the effects of the shocks, i.e., the IRFs, is imposed.

Because the SVMA model is parametrized in terms of IRFs, it is possible to exploit many types of prior information in an integrated manner. Researchers commonly exploit zero, sign, and magnitude restrictions on IRFs, as further discussed in Section 2.6. Researchers may also have beliefs about the shapes and smoothness of IRFs, due to the presence of adjustment costs, implementation lags, or information frictions. The empirical application in Section 4 demonstrates one way of constructing a prior using a DSGE model as a guide, without imposing the model’s cross-equation restrictions dogmatically.
Bayesian approach. Bayesian inference is a unified way to exploit all types of prior information about the IRFs Θ. I place an informative, flexible prior distribution on the SVMA model parameters, i.e., the IRFs Θ and shock standard deviations σ. Since there is no known flexible conjugate prior for MA models, I use simulation methods to conduct posterior inference about the structural parameters, as described in Section 3.

The first role of the prior is to attach weights to parameter values that are observationally equivalent based on the data but distinguishable based on prior information. The information in the prior and the data is synthesized in the posterior density, which is proportional to the product of the prior density and the likelihood function. As discussed in Section 2.4, the likelihood function does not have a unique maximum due to partial identification. The SVMA analysis thus depends crucially on the prior information imposed, just as SVAR analysis depends on the identification scheme. The frequentist asymptotics in Section 5 show formally that only some features of the prior information can be updated and falsified by the data. This is unavoidable due to the lack of identification (Poirier, 1998), but it does underscore the need for a transparent prior elicitation procedure.

The second role of the prior is to discipline the flexible IRF parametrization. SVMA IRFs are high-dimensional objects, so prior information about their magnitudes, shapes, or smoothness is necessary to avoid overfitting. In comparison, finite-order SVARs achieve dimension reduction by parametrizing the IRFs, implying that long-run responses are functions of short-run autocorrelations in the data.

Gaussian prior. While many priors are possible, I first discuss a multivariate Gaussian prior distribution that is easy to visualize. However, I stress that neither the overall SVMA approach nor the numerical methods in this paper rely on Gaussianity of the prior. I describe other possible prior choices below.

The multivariate Gaussian prior distribution on the impulse responses is given by

$$
\Theta_{ij,\ell} \sim N(\mu_{ij,\ell}, \tau_{ij,\ell}^2), \quad 0 \leq \ell \leq q,
$$

$$
\text{Corr}(\Theta_{ij,\ell+k}, \Theta_{ij,\ell}) = \rho_{ij}^k, \quad 0 \leq \ell \leq \ell + k \leq q,
$$

for each (i, j). This correlation structure means that the prior smoothness of IRF (i, j) is governed by ρ_{ij}, as illustrated below. For simplicity, the IRFs $(\Theta_{ij,0}, \Theta_{ij,1}, \ldots, \Theta_{ij,q})$ are a priori independent across (i, j) pairs. The normalized impulse responses have $\mu_{ij,0} = 1$ and $\tau_{ij,0} = 0$ for each j. The shock standard deviations $\sigma_1, \ldots, \sigma_n$ are a priori mutually
Figure 3: A choice of prior means (thick lines) and 90% prior confidence bands (shaded) for the four IRFs (Θ) in the bivariate example in Figure 1.

independent and independent of the IRFs, with prior marginal distribution

\[\log \sigma_j \sim N(\mu_j, (\tau_j^2)^2) \]

for each \(j \). In practice, the prior variances \((\tau_j^2)^2\) for the log shock standard deviations can be chosen to be a large number.\(^{24}\) Prior independence between IRFs may not be attractive in applications with plausible theoretical cross-variable restrictions (e.g., a Taylor rule). In such cases, Section 2.6 shows how to impose dogmatic or non-dogmatic linear restrictions, which induce nonzero prior correlations across different IRFs.

Figures 3 and 4, illustrate a prototypical prior elicitation process, continuing the bivariate example from Figure 1. Figure 3 shows a choice of prior means and 90% prior confidence bands for each of the impulse responses, directly implying corresponding values for the \(\mu_{ij,\ell} \) and \(\tau_{ij,\ell}^2 \) hyperparameters. The prior distributions in the figures embed many different kinds of prior information. For example, the IRF of the FFR to a positive demand shock is believed to be hump-shaped with high probability, and the IRF of the output gap to a contractionary

\(^{24}\)Because the elements of \(\sigma \) scale the ACF, which is identified, the data will typically be quite informative about the standard deviations of the shocks, provided that the prior on the IRFs is sufficiently informative.
Figure 4: Prior draws of the IRF of the FFR to a demand shock in the bivariate example in Figure 1, for different prior smoothness parameters ρ_{12}. Bright lines are four draws from the multivariate Gaussian prior distribution (7), with the mean and variance parameters in the top right panel of Figure 3 and $\rho_{12} \in \{0.3, 0.9, 0.99\}$.

Monetary policy shock is believed to be negative at horizons 2–8 with high probability. Yet the prior expresses substantial uncertainty about several of the impulse responses.

Having elicited the prior means and variances, the smoothness hyperparameters ρ_{ij} may be chosen by trial-and-error simulations. For example, for each of the three hyperparameter choices $\rho_{12} \in \{0.3, 0.9, 0.99\}$, Figure 4 depicts four draws of the IRF of the FFR to a demand shock ($i = 1$, $j = 2$). The $\rho_{12} = 0.3$ draws are much more jagged than the $\rho_{12} = 0.9$ draws. The $\rho_{12} = 0.99$ draws are so smooth that different draws essentially correspond to random level shifts of the prior mean impulse responses. Because “smoothness” is a difficult notion to quantify (Shiller, 1973), the choice of smoothness hyperparameters ρ_{ij} is ultimately subjective and context-dependent, and extensive graphical trial-and-error simulation is advisable. For IRFs of slow-moving variables such as GDP growth, I suggest $\rho_{ij} = 0.9$ as a starting point in quarterly data. However, a lower choice such as $\rho_{ij} = 0.3$ may be appropriate for IRFs that are likely to be spiky, e.g., the response of an asset price to news.

It is advisable to check that the chosen prior on IRFs and shock standard deviations implies a reasonable prior on the ACF of the data (in particular, a reasonable degree of persistence). The prior on the ACF can be obtained by simulation through the formula (6).

Other priors. The Gaussian prior distribution is flexible and easy to visualize but other prior choices are feasible as well. My inference procedure does not rely on Gaussianity of the prior, as the simulation method in Section 3 only requires that the log prior density and its gradient are computable. Hence, it is straightforward to impose a different prior correlation structure than (7), or to impose heavy-tailed or asymmetric prior distributions.
2.6 Comparison with SVAR methods

I now show that standard SVAR identifying restrictions can be transparently imposed through specific prior choices in the SVMA model, if desired.\footnote{The online appendix to Barnichon & Matthes (2018) discusses dogmatic SVMA identification restrictions.}

The most popular identifying restrictions in the literature are exclusion (i.e., zero) restrictions on short-run (i.e., impact) impulse responses: $\Theta_{ij,0} = 0$ for certain pairs (i, j). These short-run exclusion restrictions include so-called “recursive” or “Cholesky” orderings, in which the Θ_0 matrix is assumed triangular. Exclusion restrictions on impulse responses (at horizon 0 or higher) can be incorporated in the SVMA framework by simply setting the corresponding $\Theta_{ij,\ell}$ parameters equal to zero and dropping them from the parameter vector.

Another popular type of identifying restrictions are exclusion restrictions on long-run (i.e., cumulative) impulse responses: $\sum_{\ell=0}^{q} \Theta_{ij,\ell} = 0$ for certain pairs (i, j). Long-run exclusion restrictions can be accommodated in the SVMA model by restricting $\Theta_{ij,q} = -\sum_{\ell=0}^{q-1} \Theta_{ij,\ell}$ when evaluating the likelihood and the score. Short- or long-run exclusion restrictions are special cases of linear restrictions on the IRF parameters, e.g., $C \text{vec}(\Theta) = d$, where C and d are known. Such restrictions may arise from structural cross-equation relationships such as a Taylor rule. Linear restrictions can be imposed in the posterior sampling by parametrizing the relevant linear subspace.

The preceding discussion dealt with dogmatic prior restrictions that impose exclusion restrictions with 100% prior certainty, but in many cases non-dogmatic restrictions are more credible (Drèze & Richard, 1983). A prior belief that the impulse response $\Theta_{ij,\ell}$ is close to zero with high probability is imposed by choosing prior mean $\mu_{ij,\ell} = 0$ along with a small value for the prior variance $\tau_{ij,\ell}^2$ (see the notation in Section 2.5). To impose a prior belief that the long-run response $\sum_{\ell=0}^{q} \Theta_{ij,\ell}$ is close to zero with high probability, we may first elicit a Gaussian prior for the first q impulse responses $(\Theta_{ij,0}, \ldots, \Theta_{ij,q-1})$, and then specify $\Theta_{ij,q} = -\sum_{\ell=0}^{q-1} \Theta_{ij,\ell} + \nu_{ij}$, where ν_{ij} is mean-zero Gaussian noise with a small variance.

Many SVAR papers exploit sign restrictions on impulse responses (Uhlig, 2005): $\Theta_{ij,\ell} \geq 0$ or $\Theta_{ij,\ell} \leq 0$ for certain triplets (i, j, ℓ). Dogmatic sign restrictions can be imposed in the SVMA framework by restricting the IRF parameter space Ξ_Θ to the subspace where the inequality constraints hold (e.g., using reparametrization; see also Neal, 2011, Sec. 5.1). The prior distribution for the impulse responses in question can be chosen to be diffuse on the relevant subspace, if desired (e.g., truncated normal with large variance).\footnote{Giacomini & Kitagawa (2015) develop a robust Bayes SVAR approach that imposes dogmatic exclusion and sign restrictions without imposing any other identifying restrictions. My SVMA approach instead seeks...}
However, researchers often have more prior information about impulse responses than just their signs, and this can be exploited in the SVMA approach. For example, extremely large values for some impulse responses can often be ruled out \textit{a priori}.27 The Gaussian prior in Section 2.5 is capable of expressing a strong but non-dogmatic prior belief that certain impulse responses have certain signs, while expressing disbelief in extreme values. In some applications, a heavy-tailed or skewed prior distribution may be more appropriate.

The SVMA approach can exploit the identifying power of external instruments. An external instrument is an observed variable z_t that is correlated with one of the structural shocks but uncorrelated with the other shocks (Stock & Watson, 2008, 2012; Mertens & Ravn, 2013). Such an instrument can be incorporated in the analysis by adding z_t to the vector y_t of observed variables. Suppose we add it as the first element ($i = 1$), and that z_t is an instrument for the first structural shock ($j = 1$). The properties of the external instrument then imply that we have a strong prior belief that $\Theta_{1j,0}$ is (close to) zero for $j = 2, 3, \ldots, n$. We may also have reason to believe that $\Theta_{1j,\ell} \approx 0$ for $\ell \geq 1$.

Finally, the SVMA IRFs can be restricted to be invertible, if desired, by rejecting posterior draws outside the invertible region \{\(\Theta: \det(\sum_{\ell=0}^{q} \Theta_{\ell}z^{\ell}) \neq 0 \ \forall \ z \in \mathbb{C} \ \text{s.t.} \ |z| < 1\}28.

2.7 Bayesian inference about invertibility

Given an informative prior on certain features of the IRFs, the data can be informative about the invertibility of the IRFs. As discussed in Section 2.4, it is impossible to test for invertibility in the SVMA model without exploiting any prior information at all. However, in the Bayesian approach to SVMA estimation with an informative prior, the data will generally update the prior probability of invertibility. Thus, the data is informative about invertibility if used in combination with substantive economic prior information about the IRFs. I emphasize, though, that inference about invertibility is necessarily sensitive to large changes in the prior, due to the identification issue described in Section 2.4.

To illustrate, consider again the univariate MA(1) model (5), and let the data be generated by parameters $\Theta_1 = 1/4$ and $\sigma = 1$. Suppose the sample size is very large so the likelihood has two steep peaks at the points $(\Theta_1, \sigma) = (1/4, 1)$ and $(4, 1/4)$ in the identified set. Without prior information, we are unable to distinguish between these peaks and thus to allow for as many types of dogmatic and non-dogmatic prior information as possible.

27See the SVAR analyses by Kilian & Murphy (2012) and Baumeister & Hamilton (2015c).

28$\det(\Theta_0) = 0$ implies noninvertibility. Otherwise, the roots of $\det(\sum_{\ell=0}^{q} \Theta_{\ell}z^{\ell})$ equal the roots of $\det(I_n + \sum_{\ell=1}^{q} \Theta_0^{-1}\Theta_{\ell}z^{\ell})$, which equal the reciprocals of the eigenvalues of the polynomial’s companion matrix.
unable to draw conclusions about invertibility of the IRF. However, suppose we additionally possess the economic prior information that the horizon-1 impulse response must be positive but less than 2, and we thus adopt a uniform prior for Θ_1 on $[0, 2]$ (along with an independent, diffuse prior on σ). The prior probability of invertibility (i.e., $|\Theta_1| < 1$) is then 1/2, whereas the posterior probability is close to 1, since only one of the two profile likelihood peaks for Θ_1 lies in the $[0, 2]$ interval. Although contrived, this univariate example shows that the posterior probability of invertibility does not generally equal the prior probability.

The data can also be informative about more economically interpretable measures of invertibility, in conjunction with an informative IRF prior. Sims & Zha (2006), Sims (2012), and Beaudry et al. (2015) argue that invertibility should not exclusively be viewed as a binary property. In the empirical application in Section 4, I compute the posterior distribution of a continuous measure of invertibility: the R^2 in a regression of the shocks ε_t on the history (y_t, y_{t-1}, \ldots) of observed variables ($R^2 = 1$ under invertibility). In the application, the posterior distribution of this invertibility measure differs greatly from its prior.

2.8 Choice of lag length

In the absence of strong prior information about the persistence of the data, I recommend choosing the MA lag length q by Bayesian model selection or information criteria. Given the output of the posterior sampling algorithm described in the next section, Bayes factors for models with different values of q can be approximated numerically (Chib, 2001, Sec. 10). Alternatively, the Bayesian or Akaike Information Criteria (BIC/AIC) can be used to guide the choice of q. Since selecting too small a q is detrimental to valid identification, the more conservative AIC or its Bayesian variants are attractive (Vehtari & Ojanen, 2012, Sec. 5.5). As in all cases of model selection, frequentist inference after estimating q is potentially subject to bias and size distortions (Leeb & Pötscher, 2005).

3 Bayesian computation

In this section I develop an algorithm to simulate from the posterior distribution of the IRFs. Because of the flexible and high-dimensional prior distribution placed on the IRFs, standard Markov Chain Monte Carlo (MCMC) methods are cumbersome.29 I employ a Hamiltonian

29Chib & Greenberg (1994) estimate univariate reduced-form Autoregressive Moving Average models by MCMC, but their algorithm is only effective in low-dimensional problems. Chan, Eisenstat & Koop (2016, see also references therein) perform Bayesian inference in possibly high-dimensional reduced-form VARMA
Monte Carlo algorithm that uses the Whittle (1953) likelihood approximation to speed up computations. The algorithm is fast, asymptotically efficient, and easy to apply, and it allows for both invertible and noninvertible IRFs.

I first define the posterior density of the structural parameters. Let T be the sample size and $Y_T = (y'_1, y'_2, \ldots, y'_T)'$ the data vector. Denote the prior density for the SVMA parameters by $\pi_{\Theta, \sigma}(\Theta, \sigma)$. The likelihood function of the SVMA model (3) depends on the parameters (Θ, σ) only through the scaled impulse responses $\Psi = (\Psi_0, \Psi_1, \ldots, \Psi_q)$, where $\Psi_\ell = \Theta_\ell \text{diag}(\sigma)$ for $\ell = 0, 1, \ldots, q$. Let $p_{Y|\Psi}(Y_T | \Psi(\Theta, \sigma))$ denote the likelihood function, where the notation indicates that Ψ is a function of (Θ, σ). The posterior density is then

$$p_{\Theta, \sigma|Y}(\Theta, \sigma | Y_T) \propto p_{Y|\Psi}(Y_T | \Psi(\Theta, \sigma))\pi_{\Theta, \sigma}(\Theta, \sigma).$$

Hamiltonian Monte Carlo. To efficiently draw from the posterior distribution, I use a variant of MCMC known as Hamiltonian Monte Carlo (HMC). See Neal (2011) for an overview of HMC. By exploiting information contained in the gradient of the log posterior density to systematically explore the posterior distribution, HMC is known to outperform other generic MCMC methods in high-dimensional settings. In the SVMA model, the dimension of the full parameter vector is $n^2(q + 1)$, which can easily be well into the 100s in realistic applications. Nevertheless, the HMC algorithm has no trouble producing draws from the posterior of the SVMA parameters. I use the modified HMC algorithm by Hoffman & Gelman (2014), called the No-U-Turn Sampler (NUTS), which adaptively sets the HMC tuning parameters while still provably delivering draws from the posterior distribution.

As with other MCMC methods, the HMC algorithm delivers parameter draws from a Markov chain whose long-run distribution is the posterior distribution. After discarding a burn-in sample, the output of the HMC algorithm is a collection of parameter draws $(\Theta^{(1)}, \sigma^{(1)}), \ldots, (\Theta^{(N)}, \sigma^{(N)})$, each of which is (very nearly) distributed according to the posterior distribution. The draws are not independent, and plots of the autocorrelation functions of the draws are useful for gauging the reduction in effective sample size relative to the ideal of i.i.d. sampling. In my experience, the proposed algorithm for the SVMA model yields autocorrelations that drop to zero after only a few lags. However, I caution that the HMC algorithm – like most Metropolis-Hastings variants – may exhibit slow convergence if a highly diffuse prior causes the posterior to be multimodal.

models, but they impose statistical parameter normalizations that preclude structural estimation of IRFs.
Likelihood, score and Whittle approximation. HMC requires that the log posterior density and its gradient can be computed quickly at any given parameter values. The gradient of the log posterior density equals the gradient of the log prior density plus the gradient of the log likelihood (the latter is henceforth referred to as the score). In most cases, such as with the Gaussian prior in Section 2.5, the log prior density and its gradient are easily computed. The log likelihood and the score are the bottlenecks. In the empirical study in the next section a full run of the HMC procedure requires 100,000s of evaluations of the likelihood and the score.

With Gaussian shocks (Assumption 2), the likelihood of the SVMA model (3) can be evaluated using the Kalman filter, but a faster alternative is to use the Whittle (1953) approximation to the likelihood of a stationary Gaussian process. See the Online Appendix for a description of the Kalman filter. Appendix A.3 shows that both the Whittle log likelihood and the Whittle score for the SVMA model can be calculated efficiently using the Fast Fourier Transform.\(^{30}\) When the MA lag length \(q\) is large, as in most applications, the Whittle likelihood is noticeably faster to compute than the exact likelihood, and massive computational savings arise from using the Whittle approximation to the score.

Numerical implementation. The HMC algorithm is easy to apply once the prior has been specified. I give further details on the Bayesian computations in the Online Appendix. As initial value for the HMC iterations I use a rough approximation to the posterior mode obtained using the characterization of the identified set in Appendix A.2. Matlab code for implementing the full inference procedure is available on my website, cf. Footnote 6. The Online Appendix illustrates the accuracy and rapid convergence of the Bayesian computations when applied to the bivariate model and prior in Figures 1 and 3, as well as to specifications in which the prior is centered far from the true parameter values.

Reweighting. The Online Appendix describes an optional reweighting step that translates the Whittle HMC draws into draws from the exact posterior \(p_{\Theta,\sigma|Y}(\Theta, \sigma \mid Y_T)\). However, the asymptotic analysis in Section 5.2 shows that, at least for moderate lag lengths \(q\), the reweighting step has negligible effect in large samples.

\(^{30}\)Hansen & Sargent (1981), Ito & Quah (1989), and Christiano & Vigfusson (2003) also employ the Whittle likelihood for SVMA models. Qu & Tkachenko (2012a,b) and Sala (2015) use the Whittle likelihood to perform approximate Bayesian inference on DSGE models, but their Random-Walk Metropolis-Hastings simulation algorithm is less efficient than HMC.
4 Application: News shocks and business cycles

I now use the SVMA method to infer the role of technological news shocks in the U.S. business cycle. Following the literature, I define a technological news shock to be a signal about future productivity increases. My prior on IRFs is informed by a conventional sticky-price DSGE model, without imposing the model restrictions dogmatically. The posterior distribution indicates that the IRFs are severely noninvertible in my specification. News shocks turn out to be relatively unimportant drivers of productivity and output growth, but more important for the real interest rate.

Technological news shocks have received great attention in the recent empirical and theoretical macro literature, but researchers have not yet reached a consensus on their importance. As explained in Section 2.3, structural macro models with news shocks often exhibit noninvertible IRFs, giving the SVMA method a distinct advantage over SVARs, as the latter assume away noninvertibility. Beaudry & Portier (2014) survey the evolving news shock literature. Recent empirically minded contributions include Benati, Chan, Eisenstat & Koop (2016), Sims (2016), Arezki, Ramey & Sheng (2017), and Chahrour & Jurado (2018).

Specification and data. I employ a SVMA model with three observed variables and three unobserved shocks: Total factor productivity (TFP) growth, real gross domestic product (GDP) growth, and the real interest rate are assumed to be driven by a productivity shock, a technological news shock, and a monetary policy shock. I use quarterly data from 1954Q3–2007Q4, yielding sample size $T = 213$. I exclude data from 2008 to the present as my analysis ignores financial shocks.

The data set is detailed in the Online Appendix. TFP growth is obtained from Fernald (2014). The real interest rate equals the effective federal funds rate minus the contemporaneous GDP deflator inflation rate. The series are detrended using the kernel smoother in Stock & Watson (2012). I pick a MA lag length of $q = 16$ quarters based on two considerations. First, the Akaike Information Criterion (computed using the Whittle likelihood) selects $q = 13$. Second, the autocorrelation of the real interest rate equals 0.17 at lag 13 but is close to zero at lag 16.

Prior. The prior on the IRFs is of the multivariate Gaussian type introduced in Section 2.5, with hyperparameters informed by a conventional sticky-price DSGE model. The DSGE model is primarily used to guide the choice of prior means, and the model restrictions are not imposed dogmatically on the SVMA IRFs. Figure 5 plots the prior means and variances.
Figure 5: Prior means (thick lines), 90% prior confidence bands (shaded), and four random draws (bright lines) from the prior for IRFs (Θ), news shock application. The impact impulse response is normalized to 1 in each IRF along the diagonal of the figure.

for the impulse responses, along with four draws from the joint prior distribution. The figure also shows the normalization that defines the scale of each shock.

The DSGE model used to inform the prior is the one developed by Sims (2012, Sec. 3). It is built around a standard New Keynesian structure with monopolistically competitive firms subject to a Calvo pricing friction, and the model adds capital accumulation, investment adjustment costs, habit formation, and interest rate smoothing. Within the DSGE model, the productivity and news shocks are, respectively, unanticipated and anticipated exogenous disturbances to the change in log TFP (cf. eq. 30–33 in Sims, 2012). The monetary policy shock is an unanticipated disturbance term in the Taylor rule (cf. eq. 35 in Sims, 2012). Detailed model assumptions and equilibrium conditions are described in Sims (2012, Sec. 3), but I repeat that I only use the DSGE model to guide the SVMA prior; the model restrictions are not imposed dogmatically.\footnote{My approach differs from IRF matching (Rotemberg & Woodford, 1997). That method identifies a SVAR using exclusion restrictions, and then chooses the structural parameters of a DSGE model so that the DSGE-implied IRFs match the estimated SVAR IRFs. In my procedure, the DSGE model non-dogmatically informs the choice of prior on IRFs, but then the data is allowed to speak through a flexible SVMA model.}
As prior means for the nine SVMA IRFs I use the corresponding IRFs implied by the log-linearized DSGE model, with one exception mentioned below.32 I use the baseline calibration of Sims (2012, Table 1), which assumes that news shocks are correctly anticipated TFP increases taking effect three quarters into the future. Because I am particularly uncertain that an anticipation horizon of three quarters is correct, I modify the prior means for the impulse responses of TFP growth to the news shock: The prior means smoothly increase and then decrease over the interval $\ell \in [0, 6]$, with a maximum value at $\ell = 3$ equal to half the DSGE-implied impulse response.

The prior variances for the IRFs are chosen by combining information from economic intuition and DSGE calibration sensitivity experiments. For example, I adjust the prior variances for the IRFs so that the DSGE-implied IRFs mostly fall within the 90\% prior bands when the anticipation horizon changes between nearby values. The 90\% prior bands for the IRFs that correspond to the news shock are chosen quite large, and they mostly contain 0. In contrast, the prior bands corresponding to the monetary policy shock are narrower, expressing a strong belief that monetary policy shocks have a small effect on TFP growth but a persistent positive effect on the real interest rate due to interest rate smoothing by the central bank. The prior band for the effect of productivity shocks on GDP growth is fairly wide, since this IRF should theoretically be sensitive to the degree of nominal rigidity.33

The prior expresses a belief that the IRFs for GDP growth and the real interest rate are smooth, while those for TFP growth are less smooth. Specifically, I set $\rho_{1j} = 0.5$ and $\rho_{2j} = \rho_{3j} = 0.9$ for $j = 1, 2, 3$. These choices are consistent with standard calibrations of DSGE models. The ability to easily impose different degrees of prior smoothness across IRFs is unique to the SVMA approach; it would be much harder to achieve in a SVAR set-up.

The prior on the shock standard deviations is very diffuse. For each shock j, the prior mean μ_j^σ of $\log(\sigma_j)$ is set to $\log(0.5)$, while the prior standard deviation τ_j^σ is set to 2.34 These values should of course depend on the units of the observed series.

Results. Given my prior, the data is informative about most of the IRFs. Figure 6 summarizes the posterior distribution of the IRFs. Figure 7 shows the posterior distribution

32The DSGE-implied IRFs for the real interest rate use the same definition of this variable as in the construction of the data series. IRFs are computed using Dynare 4.4.3 (Adjemian et al., 2011).

33As suggested by a referee, the Online Appendix shows that posterior inference is quite robust to doubling the prior standard deviation of the IRFs of the real interest rate to the technology and monetary policy shocks.

34Unreported simulations show that the prior 5th and 95th percentiles of the FEVD (cf. (8)) are very close to 0 and 1, respectively, for almost all (i, j, ℓ) combinations.
Figure 6: Summary of posterior IRF (Θ) draws, news shock application. The plots show prior 90% confidence bands (shaded), posterior means (crosses), and posterior 5–95 percentile intervals (vertical bars).

The posterior means for several IRFs differ substantially from the prior means, and the posterior 90% intervals are narrower than the prior 90% bands. The effects of productivity and monetary policy shocks on TFP and GDP growth are especially precisely estimated. From the perspective of the prior beliefs, it is surprising to learn that the impact effect of productivity shocks on GDP growth is quite large, and the effect of monetary policy shocks

35The variances in the fraction are computed under the assumption that the shocks are serially and mutually independent. In the literature the FEVD is defined by conditioning on \((y_{t-1}, y_{t-2}, \ldots)\) instead of \((\epsilon_{t-1}, \epsilon_{t-2}, \ldots)\). This distinction matters when the IRFs are noninvertible. Baumeister & Hamilton (2015a) conduct inference on the FEVD in a Bayesian SVAR, assuming invertibility.
on the real interest rate is not very persistent. The monetary policy shock has non-neutral (negative) effects on the level of GDP in the long run, even though the prior distribution for the cumulative response is centered around zero, cf. the Online Appendix.

The news shock is not an important driver of TFP and GDP growth but is important for explaining real interest rate movements. The IRF of TFP growth to the news shock indicates that future productivity increases are anticipated only one quarter ahead, and the increase is mostly reversed in the following quarters. According to the posterior, the long-run response of the level of TFP to a news shock is unlikely to be substantially positive, implying that economic agents seldom correctly anticipate shifts in medium-run productivity levels. The news shock contributes little to the forecast error variance for TFP and GDP growth at all horizons. The monetary policy shock is only slightly more important for explaining GDP growth, while the productivity shock is much more important by these measures. However, the monetary policy shock is important for explaining short-run movements in the real interest rate, while the news shock dominates longer-run movements in this series.

The posterior distribution indicates that the IRFs are severely noninvertible in economic terms. Section 2.7 argued that the data can be informative about invertibility if used in conjunction with an informative prior on IRFs. In Figure 8 I report a continuous measure of
invertibility suggested by Watson (1994, p. 2901) and Sims & Zha (2006, p. 243). For each posterior parameter draw I compute the R^2 in a population regression of each shock $\varepsilon_{j,t}$ on current and 50 lags of data $(y_t, y_{t-1}, \ldots, y_{t-50})$, assuming i.i.d. Gaussian shocks.\footnote{Given the parameters, I run the Kalman filter in the Online Appendix forward for 51 periods on data that is identically zero (due to Gaussianity, conditional variances do not depend on realized data values). This yields a final updated state prediction variance matrix $\text{Var}(\text{diag}(\sigma)^{-1}\varepsilon_{51} \mid y_{51}, \ldots, y_{1})$ whose diagonal elements equal 1 minus the desired population R^2 values at the given parameters.} This R^2 value should be essentially 1 for all shocks if the IRFs are invertible, by definition. Instead, Figure 8 shows a high posterior probability that the news shock R^2 is below 0.3, despite the prior putting most weight on values near 1.\footnote{Essentially no posterior IRF draws are exactly invertible: the prior probability is 0.06%.} The Online Appendix demonstrates that the noninvertibility is economically significant: The posterior distribution of the invertible IRFs that are closest (in a certain precise sense) to the actual IRFs is very different from the posterior distribution in Figure 6.

Additional results. In the Online Appendix I plot the posterior distribution of the structural shocks, check prior sensitivity and model validity, discuss related empirical papers, and verify that my method accurately recovers true IRFs on simulated data.
5 Asymptotic theory

To gain insight into how the data updates the prior information, I derive the asymptotic limit of the Bayesian posterior distribution from a frequentist point of view. I first derive a general result on the frequentist asymptotics of Bayes procedures for a large class of partially identified models. Specializing to the SVMA model, I show that when the Whittle likelihood is used, the limiting form of the posterior distribution does not depend on whether the shocks are truly Gaussian. Hence, asymptotically, the role of the data is to pin down the true autocovariances, whereas all other information about IRFs comes from the prior.

5.1 General result for partially identified models

In this subsection I present a general result on the frequentist asymptotic limit of the Bayesian posterior distribution in partially identified models. Due to identification failure, the analysis is nonstandard, as the data does not dominate all aspects of the prior in large samples.

Consider a general model for which the data vector Y_T is independent of the parameter of interest θ, conditional on a second parameter Γ\footnote{T denotes the sample size, but the model does not have to be a time series model.}. In other words, the likelihood function of the data Y_T only depends on θ through Γ. This property holds for models with a partially identified parameter θ, as explained in Poirier (1998). Because I will restrict attention to models in which the parameter Γ is identified, I refer to Γ as the reduced-form parameter, while θ is called the structural parameter. The parameter spaces for Γ and θ are denoted Ξ_Γ and Ξ_θ, respectively, and these are assumed to be finite-dimensional Euclidean.

As an illustration, consider the SVMA model with data vector $Y_T = (y_1', \ldots, y_T')'$. Let $\Gamma = (\Gamma(0), \ldots, \Gamma(q))$ be the ACF of the observed time series, and let θ denote a single IRF, for example the IRF of the first variable to the first shock, i.e., $\theta = (\Theta_{11,0}, \ldots, \Theta_{11,q})'$. I explain below why I focus on a single IRF. Since the distribution of the stationary Gaussian process y_t only depends on θ through the ACF Γ, we have $Y_T \perp \theta \mid \Gamma$.

In any model satisfying $Y_T \perp \theta \mid \Gamma$, the prior information about θ conditional on Γ is not updated by the data Y_T, but the data is informative about Γ. Let $P_{\theta \mid Y} (\cdot \mid Y_T)$ denote the posterior probability measure for θ given data Y_T, and let $P_{\Gamma \mid Y} (\cdot \mid Y_T)$ denote the posterior measure for Γ. For any $\tilde{\Gamma} \in \Xi_\Gamma$, let $\Pi_{\theta \mid \Gamma} (\cdot \mid \tilde{\Gamma})$ denote the conditional prior measure for θ
given Γ, evaluated at $\Gamma = \hat{\Gamma}$. As in Moon & Schorfheide (2012, Sec. 3), decompose

$$P_{\theta|Y}(A \mid Y_T) = \int_{\Xi} \Pi_{\theta|\Gamma}(A \mid \Gamma) P_{\Gamma|Y}(d\Gamma \mid Y_T)$$

(9)

for any measurable set $A \subset \Xi_\theta$. Let Γ_0 denote the true value of Γ. If the reduced-form parameter Γ_0 is identified, the posterior $P_{\Gamma|Y}(\cdot \mid Y_T)$ for Γ will typically concentrate around Γ_0 in large samples, so that the posterior for θ is well approximated by $P_{\theta|Y}(\cdot \mid Y_T) \approx \Pi_{\theta|\Gamma}(\cdot \mid \Gamma_0)$, the conditional prior for θ given Γ at the true Γ_0.

The following lemma formalizes the intuition about the asymptotic limit of the posterior distribution for θ. Define the L_1 norm $\|P\|_{L_1} = \sup_{|h| \leq 1} \int h(x)P(dx)$ on the space of signed measures, where P is any signed measure and the supremum is over all scalar real-valued Borel measurable functions $h(\cdot)$ bounded in absolute value by 1.\footnote{The L_1 distance $\|P_1 - P_2\|_{L_1}$ equals twice the total variation distance (TVD) between probability measures P_1 and P_2. Convergence in TVD implies convergence of Bayes point estimators under certain side conditions. In all results and proofs in this paper, the L_1 norm may be replaced by any (fixed) weaker norm for which the supremum is taken over a \textit{subset} of measurable functions satisfying $|h(\cdot)| \leq 1$, e.g., the space of bounded Lipschitz functions.}

Lemma 1. Let the posterior measure $P_{\theta|Y}(\cdot \mid Y_T)$ satisfy the decomposition (9). All stochastic limits below are taken under the true probability measure of the data. Assume:

(i) The map $\Gamma \mapsto \Pi_{\theta|\Gamma}(\theta \mid \Gamma)$ is continuous at Γ_0 with respect to the L_1 norm $\|\cdot\|_{L_1}$.\footnote{Denote the underlying probability sample space by Ω, and let \mathcal{B}_θ be the Borel sigma-algebra on Ξ_θ. Formally, assumption (i) requires the existence of a function $\varsigma : \mathcal{B}_\theta \times \Xi_\Gamma \rightarrow [0, 1]$ such that $\{\varsigma(B, \Gamma(o))\}_{B \in \mathcal{B}_\theta, o \in \Omega}$ is a version of the regular conditional probability measure of θ given Γ, and such that $\|\varsigma(\cdot, \Gamma_k) - \varsigma(\cdot, \Gamma_0)\|_{L_1} \rightarrow 0$ as $k \rightarrow \infty$ for any sequence $\{\Gamma_k\}_{k \geq 1}$ satisfying $\Gamma_k \rightarrow \Gamma_0$ and $\Gamma_k \in \Xi_\Gamma$.}

(ii) For any neighborhood \mathcal{U} of Γ_0 in Ξ_Γ, $P_{\Gamma|Y}(\mathcal{U} \mid Y_T) \overset{p}{\rightarrow} 1$ as $T \rightarrow \infty$.

Then as $T \rightarrow \infty$,

$$\|P_{\theta|Y}(\cdot \mid Y_T) - \Pi_{\theta|\Gamma}(\cdot \mid \Gamma_0)\|_{L_1} \overset{p}{\rightarrow} 0.$$

If furthermore $\hat{\Gamma}$ is a consistent estimator of Γ_0, i.e., $\hat{\Gamma} \overset{p}{\rightarrow} \Gamma_0$, then

$$\|P_{\theta|Y}(\cdot \mid Y_T) - \Pi_{\theta|\Gamma}(\cdot \mid \hat{\Gamma})\|_{L_1} \overset{p}{\rightarrow} 0.$$

In addition to stating the explicit asymptotic form of the posterior distribution, Lemma 1 yields three main insights. First, the posterior for θ given the data does not collapse to a point asymptotically, a consequence of the lack of identification. Second, the sampling uncertainty about the true reduced-form parameter Γ_0, which is identified in the sense of assumption...
(ii), is asymptotically negligible relative to the uncertainty about \(\theta \) given knowledge of \(\Gamma_0 \). Third, in large samples, the way the data disciplines the prior information on \(\theta \) is through the consistent estimator \(\hat{\Gamma} \) of \(\Gamma_0 \).

Lemma 1 gives weaker and simpler conditions for result (ii) in Theorem 1 of Moon & Schorfheide (2012). Lipschitz continuity in \(\Gamma \) of the conditional prior measure \(\Pi_{\theta|\Gamma}(. \mid \Gamma) \) (their Assumption 2) is weakened to continuity, and the high-level assumption of asymptotic normality of the posterior for \(\Gamma \) (their Assumption 1) is weakened to posterior consistency.

Assumption (i) invokes continuity with respect to \(\Gamma \) of the conditional prior of \(\theta \) given \(\Gamma \). This assumption is satisfied in many models with partially identified parameters, if \(\theta \) is chosen appropriately. The assumption is unlikely to be satisfied in other contexts. For example, if \(\theta \) were identified because there existed a function mapping \(\Gamma \) to \(\theta \), and \(\Gamma \) were identified, then assumption (i) could not be satisfied. More generally, assumption (i) will typically not be satisfied if the identified set for \(\theta \) is a lower-dimensional subspace of \(\Xi_\theta \).

Assumption (ii) invokes posterior consistency for \(\Gamma_0 \), i.e., the posterior for the reduced-form parameter \(\Gamma \) must concentrate on small neighborhoods of the true value \(\Gamma_0 \) in large samples. While assumption (i) is a condition on the prior, assumption (ii) may be viewed as a condition on the likelihood of the model, although assumption (ii) does require that the true reduced-form parameter \(\Gamma_0 \) is in the support of the marginal prior distribution for \(\Gamma \). As long as the reduced-form parameter \(\Gamma_0 \) is identified, posterior consistency holds under weak regularity conditions, as discussed in the next subsection and the Online Appendix.

As the proof of Lemma 1 shows, the likelihood function used to calculate the posterior measure does not have to be correctly specified. That is, if \(\hat{\Gamma} \mapsto p_{Y|\Gamma}(Y_T \mid \hat{\Gamma}) \) denotes the likelihood function for \(\Gamma \) used to compute the posterior \(P_{\Gamma|Y}(\cdot \mid Y_T) \), then \(p_{Y|\Gamma}(Y_T \mid \Gamma_0) \) need not be the true density of the data. As long as \(P_{\Gamma|Y}(\cdot \mid Y_T) \) is a probability measure that satisfies the consistency assumption (ii), where the convergence in probability occurs under the true probability measure of the data, then the conclusion of the lemma follows.

5.2 Limiting posterior distribution in the SVMA model

I now specialize the general result from the previous subsection to the SVMA model with a non-dogmatic prior, assuming that the Whittle likelihood is used for Bayesian inference. I show that the limiting form of the posterior does not depend on whether the shocks are Gaussian or whether the IRFs are invertible. Asymptotically, the role of the data is to pin

\(41 \)See Remarks 2 and 3, pp. 768–770, in Moon & Schorfheide (2012).
down the true autocovariances of the data, which in turn pins down the reduced-form (Wold) IRFs, while all other information about the structural IRFs comes from the prior.

An important caveat on the results in this subsection is that the MA lag length q is considered fixed as the sample size T tends to infinity. In applications where q is large relative to T, i.e., when the data is very persistent, these asymptotics may not be a good guide to the finite-sample behavior of the posterior. Nevertheless, the fixed-q asymptotics do shed light on the interplay between the SVMA model, the prior, and the data.42

\textbf{Set-up and main result.} To map the SVMA model into the general framework, let θ denote the IRFs and shock standard deviation corresponding to the first shock, and let Γ denote the ACF of the data: $\theta = (\{\Theta_{i,1,\ell}\}_{1 \leq i \leq n, 0 \leq \ell \leq q}, \sigma_1)$ and $\Gamma = (\Gamma(0), \ldots, \Gamma(k))$. I now apply Lemma 1 to the SVMA model, which gives a simple description of the limiting form of the Whittle posterior $P_{\theta|Y}^W(\cdot | Y_T)$ for all the structural parameters pertaining to the first shock. This analysis of course applies to each of the other shocks.

I choose θ to be the IRFs and shock standard deviation corresponding to a single shock in order to satisfy the prior continuity assumption in Lemma 1. In the SVMA model,

$$\Gamma(k) = \sigma_1^2 \sum_{\ell=0}^{q-k} \Theta_{1,1,\ell+k} \Theta'_{1,1,\ell} + \sigma_j^2 \sum_{\ell=0}^{q-k} \Theta_{j,1,\ell+k} \Theta'_{j,1,\ell}, \quad k = 0, 1, \ldots, q,$$

(10)

where $\Theta_{j,\ell} = (\Theta_{j,1,\ell}, \ldots, \Theta_{n,j,\ell})'$. If $\theta = (\{\Theta_{i,1,\ell}\}_{1 \leq i \leq n, 0 \leq \ell \leq q}, \sigma_1)$ and there are two or more shocks ($n \geq 2$), then the above equations for $k = 0, 1, \ldots, q$ are of the form $\Gamma = G(\theta) + U$, where $G(\cdot)$ is a matrix-valued function and U is a function only of structural parameters pertaining to shocks $j \geq 2$. θ and U are \textit{a priori} independent provided that the n^2 IRFs and n shock standard deviations are \textit{a priori} mutually independent (for example, the multivariate Gaussian prior in Section 2.5 imposes such independence). In this case, the reduced-form parameter Γ equals a function of the structural parameter θ plus \textit{a priori} independent “noise” U. If the prior on the IRFs is non-dogmatic so that U has full support, we can expect the conditional prior distribution of θ given Γ to be continuous in Γ.43

On the other hand, the conditional prior distribution for θ given Γ would not be continuous in Γ if I had picked θ to be all IRFs and shock standard deviations. If $\theta = (\Theta, \sigma)$, then Γ would equal a deterministic function of θ, cf. (10), and so continuity of the conditional prior $P_{\theta|\Gamma}(\cdot | \Gamma)$ would not obtain. Hence, Lemma 1 is not useful for deriving the limit of

42I conjecture that my results can be extended to the asymptotic embedding $q = q(T) = O(T^\nu)$, for appropriate $\nu > 0$ and under additional nonparametric conditions.

43This paragraph is inspired by Remark 3, pp. 769–770, in Moon & Schorfheide (2012).
the joint posterior of all structural parameters of the SVMA model.

In the main result below, the only restrictions imposed on the underlying data generating process are the following nonparametric stationarity and weak dependence assumptions.

Assumption 3. \(\{ y_t \} \) is an \(n \)-dimensional time series satisfying the following assumptions. All limits and expectations below are taken under the true probability measure of the data.

(i) \(\{ y_t \} \) is a covariance stationary time series with mean zero.

(ii) \(\sum_{k=-\infty}^{\infty} ||\Gamma_0(k)|| < \infty \), where the true ACF is defined by \(\Gamma_0(k) = E(y_{t+k}y_t') \), \(k \in \mathbb{Z} \).

(iii) \(\inf_{\omega \in [0,\pi]} \det \left(\sum_{k=-\infty}^{\infty} e^{-ik\omega} \Gamma_0(k) \right) > 0 \).

(iv) For any fixed integer \(k \geq 0 \), \(T^{-1} \sum_{t=k+1}^{T} y_t y_{t-k}' \overset{p}{\to} \Gamma_0(k) \) as \(T \to \infty \).

The assumption imposes four weak conditions on \(\{ y_t \} \). First, the time series must be covariance stationary to ensure that the true ACF \(\Gamma_0(\cdot) \) is well-defined (as usual, the mean-zero assumption can be easily relaxed). Second, the process is assumed to be weakly dependent, in the sense that the matrix ACF is summable, implying that the spectral density is well-defined. Third, the true spectral density must be uniformly non-singular, meaning that the process has full rank, is strictly nondeterministic, and has a positive definite ACF. Fourth, I assume the weak law of large numbers applies to the sample autocovariances.

The main result states the limiting form of the Whittle posterior under general choices for the prior on IRFs and shock standard deviations. That is, I do not assume the multivariate Gaussian prior from Section 2.5. I also do not restrict the prior to the region of invertible IRFs, unlike the implicit priors used in SVAR analysis. Let \(\Pi_{\Theta,\sigma}(\cdot) \) denote any prior measure for \((\Theta,\sigma)\) on the space \(\Xi_\Theta \times \Xi_\sigma \). Through equation (6), this prior induces a joint prior measure \(\Pi_{\Theta,\sigma,\Gamma}(\cdot) \) on \((\Theta,\sigma,\Gamma)\), which in turn implies marginal prior measures \(\Pi_{\theta}(\cdot) \) and \(\Pi_{\Gamma}(\cdot) \) for \(\theta \) and \(\Gamma \) as well as the conditional prior measure \(\Pi_{\theta|\Gamma}(\cdot \mid \Gamma) \) for \(\theta \) given \(\Gamma \). Let \(P_{\theta|Y}(\cdot \mid Y_T) \) denote the Whittle posterior measure for \(\theta \) computed using the Whittle SVMA likelihood, cf. Section 3, and the prior \(\Pi_{\Theta,\sigma}(\cdot) \).

Proposition 1. Let the data \(Y_T = (y'_1, \ldots, y'_T)' \) be generated from a time series \(\{ y_t \} \) satisfying Assumption 3 (but not necessarily Assumptions 1 and 2). Assume that the prior \(\Pi_{\Theta,\sigma}(\cdot) \) for \((\Theta,\sigma)\) has full support on \(\Xi_\Theta \times \Xi_\sigma \). If the induced conditional prior \(\Pi_{\theta|\Gamma}(\cdot \mid \Gamma) \) satisfies the continuity assumption (i) of Lemma 1, then the Whittle posterior satisfies

\[
\| P_{\theta|Y}^W(\cdot \mid Y_T) - \Pi_{\theta|\Gamma}(\cdot \mid \Gamma_0) \|_{L_1} \overset{p}{\to} 0,
\]
as $T \to \infty$ under the true probability measure of the data. The above convergence also holds with Γ_0 replaced by $\hat{\Gamma} = \{\hat{\Gamma}(k)\}_{0 \leq k \leq q}$, the sample ACF.

Continuity of the conditional prior $\Pi_{\theta|\Gamma}(\cdot | \Gamma)$ is stated as a high-level assumption in Proposition 1. I conjecture that prior continuity holds for the multivariate Gaussian prior introduced in Section 2.5, for the reasons discussed below equation (10).

How the data updates the prior. According to Proposition 1, the posterior for the structural parameters θ does not collapse to a point asymptotically, but the data does pin down the true ACF Γ_0. Equivalently, the data reveals the true reduced-form IRFs and innovation variance matrix, or more precisely, reveals the Wold representation of the observed time series y_t (Hannan, 1970, Thm. 2′′, p. 158). This result is true also in finite samples for Gaussian time series; the point of Proposition 1 is to show that Bayesian inference using the Whittle likelihood asymptotically mimics finite-sample Gaussian inference in this sense. Hence, inference based on the Whittle likelihood can be viewed asymptotically as a limited information Bayesian procedure which only exploits second moments of the data. Due to the under-identification of the SVMA model, many different structural IRFs are observationally equivalent with the Wold IRFs, cf. Appendix A.2. In large samples, the prior is the only source of information able to discriminate between different structural IRFs that are consistent with the true ACF.

Proposition 1 shows to what extent the data can falsify the prior. The data indicates whether the induced prior $\Pi_{\Gamma}(\cdot)$ on the ACF is at odds with the true ACF Γ_0. For example, if the prior distribution on IRFs imposes a strong (but non-dogmatic) belief that $\{y_t\}$ is very persistent, but the actual data generating process is not persistent, the posterior will in large samples put most mass on IRFs that imply low persistence. On the other hand, if the prior on IRFs is tightly concentrated around parameters (Θ, σ) that lie in the identified set $\mathcal{S}(\Gamma_0)$, cf. Section 2.4, then the posterior also concentrates around (Θ, σ), regardless of how close (Θ, σ) are to the true parameters. The Online Appendix provides simulations that further illustrate the consequences of misspecifying the prior.

Robustness to misspecified likelihood. Proposition 1 states that the posterior measure, computed using the Whittle likelihood and thus under the working assumption of a Gaussian SVMA model, converges to $\Pi_{\theta|\Gamma}(\cdot | \Gamma_0)$ regardless of whether the Gaussian SVMA
model is correctly specified.44 The only restrictions on the true data generating process are the stationarity and weak dependence conditions in Assumption 3. Of course, the IRF parameters only have a structural economic interpretation if the basic SVMA model holds. In this case, the ACF has the form (6), so the conditional prior $\Pi_{\theta} (\cdot | \Gamma_0)$ imposes valid restrictions on the structural parameters. Thus, under Assumptions 1 and 3, the large-sample shape of the Whittle SVMA posterior provides valid information about θ even when the shocks are non-Gaussian or heteroskedastic (i.e., $E(\varepsilon^2_{j,t} | \{\varepsilon_s\}_{s<t})$ is non-constant).45

The asymptotic robustness to non-Gaussianity is a consequence of the negligible importance of the uncertainty surrounding estimation of the true ACF Γ_0. As in the general Lemma 1, the latter uncertainty gets dominated in large samples by the conditional prior uncertainty about the structural parameters θ given knowledge of Γ_0. Because the sampling distribution of any efficient estimator of Γ_0 in general depends on fourth moments of the data, it is sensitive to departures from Gaussianity, but this sensitivity does not matter for the first-order asymptotic limit of the posterior for the partially identified parameter θ.

My results do not and cannot imply that Bayesian inference based on the Gaussian SVMA model is asymptotically equivalent to optimal Bayesian inference under non-Gaussian shocks. If the SVMA likelihood were computed under the assumption that the structural shocks ε_t are i.i.d. Student-t distributed, say, then the asymptotic limit of the posterior would differ from $\Pi_{\theta} (\cdot | \Gamma_0)$. Indeed, if the shocks are known to be non-Gaussian, then higher-order cumulants of the data have identifying power, and invertibility may be testable (Lanne & Saikkonen, 2013; Gospodinov & Ng, 2015).

However, Bayesian inference based on non-Gaussian shocks is less robust than Gaussian inference. Intuitively, while the expectation of the Gaussian or Whittle (quasi) log likelihood function depends only on second moments of the data, the expectation of a non-Gaussian log likelihood function generally depends also on higher moments. Hence, Bayesian inference computed under non-Gaussian shocks is misleading asymptotically if a failure of the distributional assumptions causes misspecification of higher-order moments.

Proposition 1 also implies that the error incurred in using the Whittle approximation to the SVMA likelihood is negligible in large samples: The data pins down the true ACF asymptotically even when the Whittle approximation is used. This is true whether or not the data is generated by a Gaussian SVMA model, as long as Assumption 3 holds.

44Baumeister & Hamilton (2015b) derive an analogous result for a Bayesian SVAR model with a particular family of prior distributions and assuming invertibility.

45Assumption 1 implies Assumption 3 if the true polynomial $\Theta(z)$ does not have roots exactly on the unit circle and the shocks ε_t have enough moments.
6 Conclusion

I have proposed a Bayesian Structural Vector Moving Average approach to estimating impulse response functions. The approach has two advantages over SVAR analysis. First, prior elicitation on IRFs is flexible and transparent. Second, structural shocks are allowed to be possibly noninvertible, thus broadening the scope of semi-structural inference in applied macroeconomics. The method is most attractive in applications with a small number of variables/shocks, and where structural models can be used to guide prior elicitation.

There are several interesting potential avenues for future research. First, in applications where only a single shock is of interest, it would be helpful to devise “automatic priors” for the IRFs corresponding to the remaining shocks. Second, although the Whittle likelihood algorithm in this paper yields valid inference asymptotically even with non-Gaussian shocks, it may be useful to explicitly incorporate stochastic volatility in the likelihood to increase statistical efficiency. Third, future research should address any potential numerical issues with the Hamiltonian Monte Carlo sampling procedure that may arise in settings with many variables or with a multimodal posterior distribution (caused by a diffuse prior).

A Appendix

A.1 Notation

I_n is the $n \times n$ identity matrix. i is the imaginary unit. For a vector a, $\text{diag}(a)$ denotes the diagonal matrix with the elements of a along the diagonal in order. For a square matrix A, $\text{tr}(A)$ and $\det(A)$ are the trace and determinant, and $\text{diag}(A)$ is the vector consisting of the diagonal elements in order. For any matrix B, B' denotes the matrix transpose, \tilde{B} denotes the elementwise complex conjugate, $B^* = \tilde{B}'$ is the complex conjugate transpose, $\text{Re}(B)$ is the real part of B, $\|B\| = \sqrt{\text{tr}(B^*B)}$ is the Frobenius norm, and $\text{vec}(B)$ is the columnwise vectorization. An $n \times n$ matrix Q is unitary if $QQ^* = I_n$, and a real unitary matrix is orthogonal. Independence of random variables X and Y conditional on Z is denoted by $X \perp \perp Y \mid Z$. \mathcal{K}^c denotes the complement of a set \mathcal{K}.

A.2 Constructive characterization of the identified set

The result below applies the analysis of Lippi & Reichlin (1994) to the SVMA model; see also Hansen & Sargent (1981) and Komunjer & Ng (2011). I identify a set of IRFs $\Theta =$
(\Theta_0, \ldots, \Theta_q) with the matrix polynomial \(\Theta(z) = \sum_{\ell=0}^q \Theta_\ell z^\ell \), and I use the notation \(\Theta \) and \(\Theta(z) \) interchangeably where appropriate. The proposition states that if we start with a set of IRFs \(\Theta(z) \) in the identified set, then we can obtain all other sets of IRFs in the identified set by orthogonally rotating \(\Theta(z) \) and/or by “flipping the roots” of \(\Theta(z) \). Only a finite sequence of such operations is necessary to jump between any two elements of the identified set.

Proposition 2. Let \(\{\Gamma(k)\}_{0 \leq k \leq q} \) be an arbitrary ACF. Pick an arbitrary \((\Theta, \sigma) \in \mathcal{S}(\Gamma)\) satisfying \(\det(\Theta(0)) \neq 0 \).\(^{46}\) Define \(\Psi(z) = \Theta(z) \operatorname{diag}(\sigma) \).

Construct a matrix polynomial \(\tilde{\Psi}(z) \) in either of the following two ways:

(i) Set \(\tilde{\Psi}(z) = \Psi(z)Q \), where \(Q \) is an arbitrary orthogonal \(n \times n \) matrix.

(ii) Let \(\gamma_1, \ldots, \gamma_r \) \((r \leq nq)\) denote the roots of the polynomial \(\det(\Psi(z)) \). Pick an arbitrary positive integer \(k \leq r \). Let \(\eta \in \mathbb{C}^n \) be a vector such that \(\Psi(\gamma_k)\eta = 0 \) (such a vector exists because \(\det(\Psi(\gamma_k)) = 0 \)). Let \(Q \) be a unitary matrix whose first column is proportional to \(\eta \) (if \(\gamma_k \) is real, choose \(Q \) to be a real orthogonal matrix). All elements of the first column of the matrix polynomial \(\Psi(z)Q \) then contain the factor \((z - \gamma_k) \). In each element of the first column, replace the factor \((z - \gamma_k) \) with \((1 - \overline{\gamma_k}z) \). Call the resulting matrix polynomial \(\tilde{\Psi}(z) \). If \(\gamma_k \) is real, skip the next paragraph.

If \(\gamma_k \) is not real, let \(\bar{\eta} \in \mathbb{C}^n \) be a vector such that \(\tilde{\Psi}(\overline{\gamma_k})\bar{\eta} = 0 \), and let \(\tilde{Q} \) be a unitary matrix whose first column is proportional to \(\bar{\eta} \). All elements of the first column of \(\tilde{\Psi}(z)\tilde{Q} \) then contain the factor \((z - \overline{\gamma_k}) \). In each element of the first column, replace the factor \((z - \overline{\gamma_k}) \) with \((1 - \gamma_kz) \). Call the resulting matrix polynomial \(\tilde{\Psi}(z) \). The matrix \(\tilde{\Psi}(0)\tilde{\Psi}(0)^* \) is real, symmetric, and positive definite, so let \(J \) be its \(n \times n \) Cholesky factor: \(JJ' = \tilde{\Psi}(0)\tilde{\Psi}(0)^* \). In an abuse of notation, set \(\tilde{\Psi}(z) = \tilde{\Psi}(z)\tilde{\Psi}(0)^{-1}J \), which is guaranteed to be a real matrix polynomial.

Now obtain a set of IRFs \(\tilde{\Theta} \) and shock standard deviations \(\tilde{\sigma} \) from \(\tilde{\Psi}(z) \):

(a) For each \(j = 1, \ldots, n \), if the \((i_j, j)\) element of \(\tilde{\Psi}(0) \) is negative, flip the signs of all elements in the \(j \)-th column of \(\tilde{\Psi}(z) \), and call the resulting matrix polynomial \(\tilde{\Psi}(z) \). For each \(j = 1, \ldots, n \), let \(\tilde{\sigma}_j \) denote the \((i_j, j)\) element of \(\tilde{\Psi}(0) \). Define \(\tilde{\sigma} = (\tilde{\sigma}_1, \ldots, \tilde{\sigma}_n) \) and \(\tilde{\Theta}(z) = \tilde{\Psi}(z) \operatorname{diag}(\tilde{\sigma})^{-1} \) (if the inverse exists).

Then \((\tilde{\Theta}, \tilde{\sigma}) \in \mathcal{S}(\Gamma)\), provided that all elements of \(\tilde{\sigma} \) are strictly positive.

\(^{46}\)If \(\det(\Theta_0) = 0 \), some linear combination of \(y_{1,t}, \ldots, y_{n,t} \) is perfectly predictable based on knowledge of shocks \(\varepsilon_{t-1}, \varepsilon_{t-2}, \ldots \) before time \(t \). In most applications, this event ought to receive zero prior probability.
On the other hand, if \((\hat{\Theta}, \hat{\sigma}) \in \mathcal{S}(\Gamma)\) is an arbitrary point in the identified set satisfying \(\det(\hat{\Theta}(0)) \neq 0\), then \((\hat{\Theta}, \hat{\sigma})\) can be obtained from \((\Theta, \sigma)\) as follows:

1. Start with the initial point \((\Theta, \sigma)\) and the associated polynomial \(\Psi(z)\) defined above.

2. Apply an appropriate finite sequence of the above-mentioned transformations (i) or (ii), in an appropriate order, to \(\Psi(z)\), resulting ultimately in a polynomial \(\tilde{\Psi}(z)\).

3. Apply the above-mentioned operation (a) to \(\tilde{\Psi}(z)\). The result is \((\hat{\Theta}, \hat{\sigma})\).

Remarks:

1. An initial point in the identified set can be obtained by following the procedure in Hannan (1970, pp. 64–66) and then applying transformation (a). This essentially corresponds to computing the Wold decomposition of \(\{y_t\}\) and applying appropriate normalizations (Hannan, 1970, Thm. 2”, p. 158).

2. Transformation (ii) corresponds to “flipping the root” \(\gamma_k\) of \(\det(\Psi(z))\). If \(\gamma_k\) is not real, transformation (ii) requires that we also flip the complex conjugate root \(\bar{\gamma}_k\), since this ensures that the resulting matrix polynomial will be real after a rotation.

3. If the IRF parameter space \(\Xi_\Theta\) were restricted to those IRFs that are invertible (cf. Section 2.3), then transformation (ii) would be unnecessary. In this case, the identified set for \(\Psi(z) = \Theta(z) \text{diag}(\sigma)\) can be obtained by taking any element in the set (e.g., the Wold IRFs) and applying all possible orthogonal rotations, i.e., transformation (i). This is akin to identification in SVARs, cf. Section 2.1 and Uhlig (2005, Prop. A.1).

4. The purpose of transformation (a) is to enforce the normalizations \(\Theta_{ij,0} = 1\).

A.3 Whittle likelihood and score

Let \(V(\Psi)\) be an \(nT \times nT\) symmetric block Toeplitz matrix consisting of \(T \times T\) blocks of \(n \times n\) matrices, where the \((s,t)\) block is given by \(\sum_{q=-\left(t-s\right)}^{q}\Psi_{\ell+(t-s)}\Psi_{\ell}'\) for \(t \geq s\) and the sum is taken to equal 0 when \(t > s + q\). Then the exact log likelihood function can be written

\[
\log p_{Y_t|\Psi}(Y_T \mid \Psi) = -\frac{1}{2}nT \log(2\pi) - \frac{1}{2} \log \det(V(\Psi)) - \frac{1}{2}Y_T'V(\Psi)^{-1}Y_T. \tag{11}
\]

This is what the Kalman filter described in the Online Appendix computes. For all \(k = 0, 1, 2 \ldots, T - 1\), define the Fourier frequencies \(\omega_k = 2\pi k/T\), the discrete Fourier transform
(DFT) of the data \(\tilde{y}_k = (2\pi T)^{-1/2} \sum_{t=1}^{T} e^{-i\omega_k(t-1)}y_t \), the DFT of the MA parameters \(\tilde{\Psi}_k(\Psi) = \sum_{\ell=1}^{q+1} e^{-i\omega_k(\ell-1)}\Psi_{\ell-1} \), and the SVMA spectral density matrix \(f_k(\Psi) = (2\pi)^{-1} \tilde{\Psi}_k(\Psi)\tilde{\Psi}_k(\Psi)^* \) at frequency \(\omega_k \). The Whittle (1953) approximation to the log likelihood (11) is given by

\[
\log p^W_{Y|\Psi}(Y_T \mid \Psi) = -nT \log(2\pi) - \frac{1}{2} \sum_{k=0}^{T-1} \left\{ \log \det(f_k(\Psi)) + \tilde{y}_k^* [f_k(\Psi)]^{-1} \tilde{y}_k \right\} .
\]

The approximation is obtained by substituting \(V(\Psi) \approx 2\pi \Delta F(\Psi) \Delta^* \) in (11) (Brockwell & Davis, 1991, Prop. 4.5.2). Here \(\Delta \) is an \(nT \times nT \) unitary matrix with \((s,t)\) block equal to \(T^{-1/2} e^{i\omega_{s-1}(t-1)}I_n \). \(F(\Psi) \) is a block diagonal \(nT \times nT \) matrix with \((s,s)\) block equal to \(f_s(\Psi) \). The Whittle log likelihood is computationally cheap because \(\{\tilde{y}_k, \tilde{\Psi}_k(\Psi)\}_{0 \leq k \leq T-1} \) can be computed efficiently using the Fast Fourier Transform (Hansen & Sargent, 1981, Sec. 2b; Brockwell & Davis, 1991, Ch. 10.3).

Now I derive the gradient of the Whittle log likelihood. For all \(k = 0, 1, \ldots, T-1 \), define \(C_k(\Psi) = [f_k(\Psi)]^{-1} - [f_k(\Psi)]^{-1}\tilde{y}_k \tilde{\Psi}_k[f_k(\Psi)]^{-1} \) and its Discrete Fourier Transform \(\tilde{C}_k(\Psi) = \sum_{\ell=1}^{T} e^{-i\omega_k(\ell-1)}C_{\ell-1}(\Psi) \). Finally, let \(\hat{C}_k(\Psi) = \tilde{C}_{T-k}(\Psi) \) for \(k = -1, -2, \ldots, 1 - T \).

Lemma 2.

\[
\frac{\log p^W_{Y|\Psi}(Y_T \mid \Psi)}{\partial \Psi_\ell} = -\sum_{\ell=0}^{q} \text{Re}[\hat{C}_{\ell-\ell}(\Psi)]\Psi_\ell, \quad \ell = 0, 1, \ldots, q. \tag{12}
\]

The lemma gives the score with respect to \(\Psi \). Since \(\Psi_\ell = \Theta_\ell \text{diag}(\sigma) \), the chain rule gives the score with respect to \(\Theta \) and \(\log \sigma \).

B Proofs

B.1 Proof of Lemma 1

By the triangle inequality,

\[
\|P_{\theta|Y}(\cdot \mid Y_T) - \Pi_{\theta|\Gamma}(\cdot \mid \hat{\Gamma})\|_{L_1} \leq \|\Pi_{\theta|\Gamma}(\cdot \mid \hat{\Gamma}) - \Pi_{\theta|\Gamma}(\cdot \mid \Gamma_0)\|_{L_1} + \|P_{\theta|Y}(\cdot \mid Y_T) - \Pi_{\theta|\Gamma}(\cdot \mid \Gamma_0)\|_{L_1}.
\]

If \(\hat{\Gamma} \overset{p}{\to} \Gamma_0 \), the first term above tends to 0 in probability by assumption (i) and the continuous mapping theorem. Hence, the statement of the lemma follows if I can show that the second

\footnote{As noted by Hansen & Sargent (1981, p. 32), the computation time can be halved by exploiting \(\tilde{y}_{T-k} = \tilde{y}_k \) and \(f_{T-k}(\Psi) = \tilde{f}_k(\Psi) \) for \(k = 1, 2, \ldots, T \).}

\footnote{Again, computation time can be saved by exploiting \(C_{T-k}(\Psi) = \tilde{C}_k(\Psi) \) for \(k = 1, 2, \ldots, T \).}
term above tends to 0 in probability.

Let $\epsilon > 0$ be arbitrary. By assumption (i), there exists a neighborhood U of Γ_0 in Ξ_Γ such that $\|\Pi_{\theta|\Gamma}(\cdot \mid \Gamma) - \Pi_{\theta|\Gamma}(\cdot \mid \Gamma_0)\|_{L_1} < \epsilon/2$ for all $\Gamma \in U$. By assumption (ii), $P_{\Gamma|Y}(U^c \mid Y_T) < \epsilon/4$ w.p.a. 1. The decomposition (9) then implies

$$\|P_{\theta|Y}(\cdot \mid Y_T) - \Pi_{\theta|\Gamma}(\cdot \mid \Gamma_0)\|_{L_1} = \int_U \|\Pi_{\theta|\Gamma}(\cdot \mid \Gamma) - \Pi_{\theta|\Gamma}(\cdot \mid \Gamma_0)\|_{L_1} P_{\Gamma|Y}(d\Gamma \mid Y_T) + \int_{U^c} \|\Pi_{\theta|\Gamma}(\cdot \mid \Gamma) - \Pi_{\theta|\Gamma}(\cdot \mid \Gamma_0)\|_{L_1} P_{\Gamma|Y}(d\Gamma \mid Y_T) < \epsilon/2 + 2\epsilon/4$$

w.p.a. 1. Here I use that the L_1 distance between probability measures is bounded by 2. \(\Box\)

B.2 Proof of Proposition 1

By Lemma 1, I just need to verify posterior consistency. The calculation in Eqn. 11 of Moon & Schorfheide (2012) shows that the Whittle posterior $P^W_{\theta|Y}(\cdot \mid Y_T)$ satisfies the decomposition (9), where the posterior measure $P^W_{\Gamma|Y}(\cdot \mid Y_T)$ for the autocovariance function Γ is defined in the Online Appendix. By Lemma C.1 in the Online Appendix, the latter posterior is consistent provided that Γ_0 is in the support of the induced prior $\Pi_\Gamma(\cdot)$.

Γ_0 is indeed in the support of $\Pi_\Gamma(\cdot)$, for the following reason. Let $\Gamma(\Theta, \sigma)$ denote the map (6) from structural parameters $(\Theta, \sigma) \in \Xi_\Theta \times \Xi_\sigma$ to ACFs $\Gamma \in T_{n,q}$. There exists a (non-unique) set of IRFs and shock standard deviations $(\tilde{\Theta}, \tilde{\sigma}) \in \Xi_\Theta \times \Xi_\sigma$ such that $\Gamma_0 = \Gamma(\tilde{\Theta}, \tilde{\sigma})$ (Hannan, 1970, pp. 64–66). Let U be an arbitrary neighborhood of Γ_0 in $T_{n,q}$. The map $\Gamma(\cdot, \cdot)$ is continuous, so $\Gamma^{-1}(U)$ is a neighborhood of $(\tilde{\Theta}, \tilde{\sigma})$ in $\Xi_\Theta \times \Xi_\sigma$. Because $\Pi_{\Theta,\sigma}(\cdot)$ has full support on $\Xi_\Theta \times \Xi_\sigma$, we have $\Pi_\Gamma(U) = \Pi_{\Theta,\sigma}(\Gamma^{-1}(U)) > 0$. Since the neighborhood U was arbitrary, Γ_0 lies in the support of the induced prior $\Pi_\Gamma(\cdot)$.

\(\Box\)

B.3 Proofs of Lemma 2 and Proposition 2

Please see the Online Appendix.
References

Gospodinov, N. & Ng, S. (2015). Minimum Distance Estimation of Possibly Noninvertible

