REPLICATION FILES

"Inflation and Professional Forecast
Dynamics: An Evaluation of Stickiness,
Persistence, and Volatility"

accepted for publication by Quantitative Economics.

Authors

e Elmar Mertens, (Deutsche Bundesbank, em@elmarmertens.com,
www.elmarmertens.com)

e James M. Nason, (NC State University, jmnason@ncsu.edu,
wWww.jamesmnason.net)

Overview

This repository provides replication files for our paper and its online appendices.
The replication files contains code as well as raw copes of our input data as
obtained from their original sources described further below. The repository is
hosted at https://github.com/elmarmertens/MertensNasonQEstickyinformation/
which also provides a working-paper version of our paper and its appendices.

Our code consists of programs written for Matlab, and FORTRAN. The main
computations are done in FORTRAN, Matlab code has been used to process
results, create charts, and prepare the data inputs. We also provide bash scripts
and GNU makefiles to compile and execute parts of the code. Except for the
Matlab scripts, our instructions below refer to commands to be issued on a linux



(or macOS) command line with the working directory set to the folder within which
the corresponding script has been placed. The Matlab scripts are to be executed
from a Matlab command line or the Matlab GUI.

The code has been run in different environments with essentially identical results:
Intel FORTRAN (incl. MKL) version 19.0 on macOS Mojave and Catalina as well as
ubuntu linux (Version 18.04). (During the development of the project, the code has
also been run, with success, on Intel FORTRAN 18, as well as 19.1.). In addition, for
pre- and post-processing data and results we used scripts running on Matlab
versions 2018a/b as well as 2019a/b and 2020a. Our FORTRAN codes uses
OpenMP for parallelizations; typically we used 16 workers. (Note that some of our
codes, notably the particle smoothers and MDD computations, employ separate
random number streams for each worker. Varying the number of workers thus
results in differences in random numbers generated during the computations.)

The repository contains the following directories.

e main : particle learning filters and smoothers for the state space models
described in the paper and its appendices

dataconstruction : raw data files and Matlab scripts to compile the data set
into input files used in main

e ucsv : particle learning filter applied to the Stock and Watson (2007, JMCB)
UCSV model to produce results shown in Section R.6 of our online results
appendix

e montecarlo : code to simulate data and the application of the particle
learning filter as discussed in Section R.8 of our online results appendix

e matlabbox : Matlab helper routines, available via github from Elmar Mertens
at https://github.com/elmarmertens/em-matlabbox (The Matlab scripts
described below modify the Matlab path to include the contents of this
toolbox directory.)

e fortranbox : a set of auxiliary FORTRAN modules, available via github from
Elmar Mertens at https://github.com/elmarmertens/em-fortranbox (The



makefiles employed below automatically refer to this toolbox directory.)

The remainder of this README describes the contents of each directory (except
for the toolboxes).

Data

The folder dataconstruction contains the raw data, as obtained from the
websites of the Federal Reserve Banks of Philadelphia and St. Louis, and Matlab
scripts that transform the raw data into input files for our computational routines.
The data set used in our paper includes measures of realized inflation and SPF
forecasts based on the GDP/GNP deflator; the data set is denoted "GDPD". Our
online results appendix provides robustness checks based on CPl inflation. The
folder dataconstruction contains material to reproduce both data sets.

For the GDPD data set, we obtained the following Excel files from the Federal
Reserve Bank of Philadelphia:

e Average ("mean") SPF expectations for the GDP/GNP deflator available at
https://www.phil.frb.org/research-and-data/real-time-center/survey-of-
professional-forecasters/data-files/files/Mean_PGDP_Level.xls

e Second-revision data on quarterly growth rates in the GNP/GDP deflator
available at https://www.philadelphiafed.org/-/media/research-and-data/real-
time-center/real-time-data/data-files/files/xIsx/p_first_second_third.xlsx?la=en

The GDPD data was downloaded on February 16, 2019. The Matlab script

cambridgeDataGDPD.m transforms the data contained in the above-mentioned
Excel files as needed for our paper, and prepares input files for the computational
routines in the main folder described further below. The input files are:

e cambridge2018GDPD.yData.txt containing a matrix of quarterly observations
on realized inflation, the SPF nowcast and forecasts for 1,2,3,4 quarters ahead



(including the nowcast, these are H=5 SPF predictions). The matrix provided
by the data file has T=201 rows and H+1=6 columns. Missing values are
denoted as zeros. (Following the timing assumption described in the paper,
SPF predictions collected in the middle of a given quarter are treated as
forecasts made at the end of the previous quarter.)

e cambridge2018GDPD.yNaN.txt providesa T x (H+1) matrix of zero and
ones; an entry of 1 indicates a missing observation in the yData file
described above and zero otherwise.

e cambridge2018GDPD.dates.txt provides a date vector in Matlab format used
for the creation of charts when post-processing the estimation results.

For the CPI data set, we obtained the following files from the Federal Reserve
Banks of Philadelphia and St. Louis:

e Average ("mean") SPF expectations for CPI inflation available as Excel file
from teh Federal Reserve Bank of Philadelphia at
https://www.philadelphiafed.org/-/media/research-and-data/real-time-
center/survey-of-professional-forecasters/data-files/files/mean_cpi_level.xlsx?
la=en

e Atextfilein csv format of final-vintage headline CPI level data available from
the FRED databse at the Federal Reserve Bank of St. Louis at
https://fred.stlouisfed.org/series/CPIAUCSL

The CPI data was downloaded on February 17, 2019. The Matlab script

cambridgeDataCPI.m transforms the data as needed and prepares input files for
the computational routines in the main folder. The input files are named
analogously to the case of the GDPD data set with file names referring to "CPI" in
lieu of "GDPD."



Particle learning filters and smoothers

The folder main contains FORTRAN code to apply particle-learning filters and
smoothers to estimate the four state space models considered in our paper. The
folder contains copies of the ASCII data files that were created by the code
contained in dataconstruction as described above. In addition, the main folder
provides Matlab scripts for post-processing the results, as well as Bash scripts
and GNU makefiles to compile and launch the FORTRAN drivers.

The four state space models differ in whether the parameters theta (persistence
of the inflation gap) and lambda (sticky-information weight) are considered to be
constant or time-varying; see also Table 1 of the paper. For each model, there is a
separate FORTRAN driver file called cambridgeSIthetaXXXlambdaYYY.f90 with
the expressions CONST or TVP used in place of XXX and YYY depending on the
model. For example, for model MO, where theta is constant and lambda time-
varying, the driver file is called cambridgeSIthetaCONSTlambdaTVP.f90 and so
on.

To compile and execute each driver, use make run THIS=XXX with XXX replaced
by the name of the driver file (omitting the .f90 suffix). Compilation and
execution of the code will be based on default values encoded in the makefile
that can be changed there (or via the command line when invoking make ). To
replicate all model estimates as reported in the paper for the GDPD dataset, use
the bash script processmodels.sh , which also illustrates the use of command
line arguments when calling make . The script processmodelsCPI.sh performs
the corresponding computations for the CPI data set. Both scripts,
processmodels.sh and processmodelsCPI.sh , also produce output for versions
of the state space models that omit a noise component from the inflation process,
as described in Section R.2.2 of the online results appendix.

For the computation of marginal data densities (MDD), as reported in Table 5 of
the paper, and Tables R.3, R.4 and R.5 of the online results appendix, we used 250



repetitions of each particle-learnign filter (further details described in the paper).
For better computational efficiency, these estimates are performed by separate
driver files, that parallelize the computations across the repeated runs of the
particle filter, rather than across the particles of each filter. These driver files are
named cambridgeSIthetaXXXlambdaYYYstderr.f90 with the expressions CONST
or TVP used in place of XXX and YYY depending on the model. To compile and
execute the drivers for each state space model, use the Bash scripts
processstderrs.sh (for the GDPD data set) and processstderrsCPI.sh .

The FORTRAN drivers produce output in the form of various ASCI! files, named
with the suffix .dat . The content of these output files is converted into charts by
the following Matlab scripts:

e chartsPanelsCambridgeSIbaselinefigures.m creates all figures shown in
the paper, except for the panels of Figure 7, which are created by
chartsLambdaSmootherSIMSE.m

chartsCambridgeSImodelfigures.m creates figures for each model and
each data set as reported in the online results appendix.

e chartsMDD.m collects MDD estimates for use in tables of posterior estimates
(as described in the next bullet) and generates charts shown in Section R.2.3
of the online results appendix. The scripts stores MDD estimates in temporary
Matlab data files in .mat format for further processes by

tabulatePosteriorParams.m described below.

e chartMDDtimeseries.m creates time series plots of the log MDDs shown in
Section R.2.3 of the online results appendix as well.

e To tabulate posterior moments of parameter and MDD estimates, as shown in
Table 5 of the paper (as well as Tables R.3, R.4 and R.5 of the online results
appendix), use collectParametersCambridgeSI.m , which collects the
posterior moments from the FORTRAN output files and stores those in Matlab

.mat files, and then tabulatePosteriorParams.m .

showTermstructuresForecast.m creates charts of the term structures of



inflation forecasts as discussed in Section R.1.1 of the online results appendix.

tabulateRMSE.m creates forecast comparison tables shown in Section R.1.2
of the online results appendix.

Section R.3 of the online results appendix also considers an alternative

specifcation for the process of a time-varying sticky information weight lambda in

the M2 model. The driver file for estimating this model variant is called
cambridgeSIthetaCONST lambdaTVPnormcdf.f90 and can be compiled and

executed via the Bash script processM2normcdf.sh . To generate charts from the

estimation output, please use the Matlab script chartsCambridgeSIm2normcdf.m .

Monte Carlo simulations

The folder montecarlo contains code to perform the Monte Carlo simulations of

our estimators that are described in Section R.8 of the online results appendix. We

perform two kinds of simulations, each with a separate FORTRAN driver file:

cambridgesimSIthetaTVPlambdaTVP.f90 applies the particle learning filter of
the "M2" model (with time-varying parameters theta and lambda) to simulated
samples of data to measure the bias in estimates of latent states and
parameters as described in Section R.8.1. Instructions for compiling and
running the driver file are encoded in the GNU makefile sim.makefile . To
perform the simulations as conducted for the paper use make -f
sim.makefile run . The Matlab script showCambridgeSIsimgridBias.m
generates plots of the results, as shown in the appendix. The script assumes
that results generated by cambridgesimSIthetaTVPlambdaTVP.f90 are
stored in the the current directory; otherwise please adapt line 43 of

showCambridgeSIsimgridBias.m so that the string variable datadir points
to the appropriate directory. The script showSimdata.m can be used to plot
details of the simulated data.



e cambridgesimMDD.f90 applies the particle learning filter of the "M2" model
(with time-varying parameters theta and lambda) to simulated samples of
data to measure the MDD detection rates as described in Section R.8.2.
Instructions for compiling and running the driver file are encoded in the GNU
makefile mdd.makefile . To perform the simulations as conducted for the
paper use the bash script doMDD.sh . (The script sets the environment
variable OMP_NUM_THREADS to equal the number of parallel workers
available; please adapt this value as needed.) The Matlab script

showCambridgeSIsimgridMDD.m generates plots of the results, as shown in
the appendix. The script assumes that results generated by

cambridgesimMDD.f90 are stored in the the current directory; otherwise
please adapt line 18 of showCambridgeSIsimgridMDD.m so that the string
variable datadir points to the appropriate directory.

Section R.8.2 also describes simulations from an environment where measurement
is small. To reproduce these results, change the value of the variable noisevol@
in cambridgesimMDD.f90 by commenting out the baseline setting in line 125 of
the code and commenting in line 126. Afterwards, recompile and rerun the
simulations via doMDD. sh .

Particle-learning filter for Stock-Watson
UCSV model

The folder ucsv contains code for a particle-learning filter estimation of the
Sotck-Watson (2007, JMCB) UCSV model. The model uses only realized inflation
data as inputs. The code thus operates just on the first column of the data input
files constructed for our paper (and ignores the SPF data in subsequent columns).
The particle-learning filter of the UCSV model is encoded in the FORTRAN file

ucsvPL.f90 . To compile and execute the FORTRAN code use make run . To
inspect the results, use the Matlab script showUCSV.m .



