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Semiparametric efficiency in nonlinear LATE models

Han Hong
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Denis Nekipelov
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In this paper we study semiparametric efficiency for the estimation of a finite-
dimensional parameter defined by generalized moment conditions under the lo-
cal instrumental variable assumptions. These parameters identify treatment ef-
fects on the set of compliers under the monotonicity assumption. The distrib-
utions of covariates, the treatment dummy, and the binary instrument are not
specified in a parametric form, making the model semiparametric. We derive
the semiparametric efficiency bounds for both conditional models and uncondi-
tional models. We also develop multistep semiparametric efficient estimators that
achieve the semiparametric efficiency bound. To illustrate the efficiency gains
from using the optimal semiparametric weights, we design a Monte Carlo study. It
demonstrates that our semiparametric estimator performs well in nonlinear mod-
els.
Keywords. Semiparametric efficiency bound, local treatment effect, FTP, child
achievement, unemployment benefits.
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1. Introduction

Semiparametric efficiency is an important issue in the estimation of treatment effect
models and models with endogenous regressors; see, for example, Chernozhukov and
Hansen (2005) and Newey (1990a), among others. Under the strong ignorability assump-
tion, Hahn (1998) and Hirano, Imbens, and Ridder (2003) derived the semiparametric
efficiency bound and developed semiparametric efficient estimators for the averaged
treatment effect and the averaged treatment effect on the treated. Firpo (2003) extended
their analyses to quantile treatment effects.
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An alternative approach to address the endogeneity problem is based on the local
instrumental variable (LIV) method. The baseline model for this method has a dummy
endogenous regressor and a dummy instrument variable. Under the LIV assumption,
the instrumental variable weakly changes the endogenous regressor in one direction.
Abadie (2003) showed that the entire distributional causal effect is identified for the
complier population where the endogenous regressor changes from 0 to 1 as the instru-
mental variable changes from 0 to 1, and proposed linear and nonlinear conditional
local average treatment effects (LATE) models as an extension of Imbens and Angrist
(1994) and Angrist, Imbens, and Rubin (1996) for the case when the instrument is valid
conditional on a vector of covariates, X . In the context of quantile regression, condi-
tional LATE models were first applied in Abadie, Angrist, and Imbens (2002). In contrast
to the strong ignorability assumption, semiparametric efficiency under the LIV assump-
tion has not been subject to careful studies. An exception is Frolich (2007), who derived
the efficiency bound for the average treatment effect for compliers and showed that
the propensity score, properly defined in the LIV context, does not affect the efficiency
bound. Henderson, Millimet, Parmeter, and Wang (2006) applied the estimator for the
averaged treatment effect on compliers to a fertility analysis. We emphasize that in this
paper, we do not develop new models of treatment effects for compliers. The generality
that we consider is solely aimed at encompassing the existing conditional and uncondi-
tional models of treatment effects for compliers.

We make several theoretical contributions in this paper. First we derive the semi-
parametric efficiency bound for both unconditional and conditional versions of the
nonlinear treatment effect parameters, particularly in the context of a general nonlin-
ear conditional mean treatment effect model developed in Abadie (2003). We illustrate
the specialization of the efficiency bounds to the quantile and linear treatment effect
parameters of Abadie, Angrist, and Imbens (2002) and Abadie (2003). Our semiparamet-
ric efficiency calculations include both conditional models and unconditional models,
which characterize different treatment effect parameters. The unconditional efficiency
bounds include as a special case the mean parameter of Frolich (2007), and also include
the treatment effect on the treated compliers, which is related to the average treatment
effect of the treated (ATT) when endogeneity is absent. Our results also generalize the
efficiency calculations in Hahn (1998) and Chen, Hong, and Tarozzi (2008). Second, we
show that the semiparametric efficiency bounds for the treatment effect of treated com-
pliers are different when the propensity score is unknown, is known, or is correctly spec-
ified parametrically. We also simplify the structure of the efficiency analysis compared
to the existing literature.

In addition, we develop semiparametric estimators that achieve the theoretical ef-
ficiency bounds. Efficient estimators are developed for both conditional and uncondi-
tional models. In the conditional case, we identify a member among a class of estima-
tors admissible under the structure given in Abadie (2003) that achieves the efficiency
bound. The structure of the model allows us to make use of the binary instrument fea-
ture of a conditional moment model and to reduce the problem of finding semipara-
metric efficiency bound to the moment-based framework as in Newey (1990b), Bickel,
Klaassen, Ritov, and Wellner (1993), and Robins and Rotnitzky (1995). For unconditional
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models, we described efficient estimators for both the treatment effect of compliers and
the treatment effect of treated compliers for cases when the propensity score is un-
known, known, and parametrically specified. In general, efficiency can be achieved by
choosing the instrument functions optimally in the propensity weighting framework of
Abadie (2003) or in a conditional expectation projection framework. We demonstrate
the efficiency gain from using the optimal weights in a set of Monte Carlo experiments.

Section 2 develops the semiparametric efficiency results for the complier treatment
effect model in Abadie (2003). Section 3 develops efficient estimators that achieve the
semiparametric efficiency bound, and explicitly quantifies the amount of efficiency im-
provement over existing methods. This section also gives regularity assumptions that
validate the proposed semiparametric efficient estimator. Each of these two sections
also discusses extensions to parameters that are defined unconditionally. Section 4 re-
ports the results from a simulation exercise. Finally Section 5 concludes. The Appendix is
provided as Supplemental Material (Hong and Nekipelov (2010)): it contains the math-
ematical proofs and also an application of the efficient estimator to the Florida Transi-
tion Program which was offered as an alternative to the existing state welfare system in
Florida.

2. Semiparametric efficiency bound

2.1 Local treatment effect parameters

The local (complier) treatment effect model (see Imbens and Angrist (1994) and Abadie
(2003), for example) is defined through a random vector (Y1�Y0)

′ ∈ R
2, a vector of binary

variables (D1�D0)
′ ∈ {0�1} × {0�1}, a binary instrument Z ∈ {0�1}, and a vector of covari-

ates X ∈ X ⊂ R
k. The following assumptions are used by these authors to describe the

distributions of the variables under consideration:

Assumption 1. Almost everywhere in X ,

(i) (Y1�Y0�D1�D0)
′ ⊥Z|X ,

(ii) E[D1|X] �= E[D0|X],
(iii) Pr(Z = 1|X) ∈ (0�1),

(iv) Pr(D1 ≥D0|X)= 1.

Under these four assumptions, in particular the last assumption (monotonicity), the
data directly identify the differences between the cohort that would have been treated
for both values of the instrument (always-takers) and the cohort that would not have
been treated under any circumstances (never-takers). The combination of the always-
taker cohort and the never-taker cohort indirectly recovers the compliers, which is the
cohort that change behavior when the instrument changes. The variables in the model,
Y1,Y0,D1, andD0 are not always completely observable. Only the following transformed
variables are observed:

Y = Y1D+Y0(1 −D) and D=D0 +Z(D1 −D0)�
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Note that in this setup, covariates X can be endogenous. The binary treatment D is
endogenous by construction. On the other hand, as we will see later, the presence of the
“switching” dummyZ allows us to recover the effect of the treatment for some subpopu-
lation of the sample. In this way, provided the assumption of conditional independence
of Z, and Yi and Di (i = 0�1) given X , we can use variable Z as an instrument for the
endogenous treatment.

Due to Assumption 1(i), the conditional probabilities of the observable binary vari-
able D can be written as Pi(X) = P(D = 1|Z = i�X) = E[Di|X], i = 0�1, where the sec-
ond equalities follow from the conditional independence Assumption 1(i).

Also define Q(X)=E[Z|X]. Consequently, the conditional probability of the binary
treatment d given the instrument in terms of the probabilities of treatment dummies
can be expressed as

P(D= 1|Z = z�X = x)= F(z�x)= P1(x)z+ P0(x)(1 − z)�

Taking expectation over Z given X produces the conditional probability of d given only
X : P(x)= P1(x)Q(x)+ P0(x)(1 − Q(x))�

The objects of interest that can be identified under Assumption 1 are the distribu-
tions of the outcomes Y1 and Y0 given D1 > D0 (implying that D1 = 1 and D0 = 0): for
j = 0�1, f (yj|D1 >D0�X = x). The subpopulation for which D1 >D0 is usually referred
to as compliers, for whom random selection into treatment affects the treatment dummy
monotonically. Under the monotonicity Assumption 1(iv), the distributions of compli-
ers can be expressed in terms of the observed conditional distributions:

f∗∗(y|x�d = 1)

≡ f (y1 = y|D1 >D0�x) (1)

= P1(x)

P1(x)− P0(x)
f (y|d = 1� z = 1�x)− P0(x)

P1(x)− P0(x)
f (y|d = 1� z = 0�x)�

To see this relation, note that under the monotonicity assumption, P0(x) is the propor-
tion of always-takers (D0 =D1 = 1) conditional on x while P1(x) is the sum of always-
takers and compliers. f (y1|d = 1� z = 1�x) gives the distribution of y1 conditional on
being either an always-taker or a complier and the covariate x. f (y1|d = 1� z = 0�x)
gives the distribution of y1 conditional on being just an always-taker and x. Therefore,
P1(x)f (y1|d = 1� z = 1�x) can be written as a linear combination for the known distri-
bution of always-takers and the unknown distribution for compliers. Similarly, one can
write the joint distribution of y0 and the event of being either a never-taker or a complier,
which is (1 − P0(x))f (y0|d = 0� z = 0�x), as a linear combination of the distributions for
never-takers and compliers. Hence

f∗∗(y|X = x�d = 0)

≡ f (Y0 = y|D1 >D0�x) (2)

= 1 − P0(x)

P1(x)− P0(x)
f (y|d = 0�Z = 0�x)− 1 − P1(x)

P1(x)− P0(x)
f (y|d = 0�Z = 1�x)�
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The semiparametric model that we consider incorporates the linear quantile regres-
sion model of Abadie, Angrist, and Imbens (2002) to a parameter vector β determined
by a conditional moment equation, ∀x and ∀d,

ϕ(β�x�d)=E[g(y�d�x�β)|x�d�D1 >D0] = 0 (3)

for some parametric function g(·).1 The conditional expectation for d = 1�0 is taken with
respect to the corresponding conditional density f∗∗(y|x�d).

Two direct applications of this general definition are the mean treatment effect of
Imbens and Angrist (1994) and the quantile treatment effect of Abadie, Angrist, and Im-
bens (2002). The mean treatment effect model corresponds to a moment condition

g(y�d�x�β)= y −β1d− (1 − d)β0 −β′
2x�

The quantile treatment effect model characterizes the difference in conditional distri-
butions of potential outcomes y1 and y0 for compliers through a linear specification of
the conditional quantile functions:Qτ(y|x�d�D1 >D0)= β0d+β′

1x� The corresponding
moment function that defines the quantile treatment effect (QTE) parameter is, there-
fore,

g(y�d�x�β)= 1(y ≤ β0d+β′
1x)− τ�

These models can be extended to allow for a semiparametric component in the condi-
tional moment function. Forμ(x) being a nonparametric function of x, we may consider
estimating μ(x) and β simultaneously in the moment function: g(y�d�x�μ(x)�β)� For
example, the parametric mean treatment effect model can be generalized to a semipara-
metric partial linear model:

g(y�d�x�μ(x)�β)= y −β1d− (1 − d)β0 −μ(x)�
In the rest of the paper, we derive semiparametric efficiency bounds for the parameter
vector β and develop a semiparametric procedure that achieves the efficiency bound.
This framework can be extended to derive the semiparametric efficiency bound for a
nonparametric component in the specification of the conditional moment equations.

2.2 Efficiency bound for treatment effect parameters

We will use the arguments of Newey (1990a) and Severini and Tripathi (2001) to con-
struct the efficiency bounds for the system of conditional moments. More specifically,
given a set of instrument functions of the covariates x, the conditional moments are
first transformed into a system of unconditional moments. Then choosing the instru-
ment functions optimally will produce the semiparametric efficiency bound of the con-
ditional moment model.2

1The class of conditional models of treatment effects for compliers was developed in Abadie (2003).
2We note that the finiteness of the efficiency bound may involve some strong conditions on the absolute

integrability of the inverse propensity score function, noted in Khan and Tamer (2009). When these con-
ditions are not satisfied, one cannot estimate the treatment effect estimator at a parametric rate and the
efficiency bound becomes meaningless. One, however, may use the efficient procedure outlined in Khan
and Nekipelov (2010) even in such a nonregular case.
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Theorem 1. Under Assumption 1, the semiparametric efficiency bound for a k-dimen-
sional parameter β that characterizes the subsample of compliers in (3) can be expressed
as:

V (β) = E

(
(P1(x)− P0(x))

2E

[
∂ϕ(β�d�x)

∂β
ζ(x�d)′

∣∣∣x]

×Ω̄(x)−1E

[
ζ(x�d)

∂ϕ(β�d�x)′

∂β

∣∣∣x])−1

�

Denote ωd�z(x) = V (g(y�d�x�β)|d�z�x) and γd�z(x) = E(g(y�d�x�β)|d�z�x). We
can then express the elements of the matrix Ω̄(x) in the manner

Ω̄11(x) =
( P1(x)ω11(x)

Q(x) + P0(x)ω10(x)

1 − Q(x)

+ γ2
11(x)P1(x)P(x)

P0(x)Q(x)(1 − Q(x))

[
1 − P1(x)P0(x)

P(x)

])
�

Ω̄22(x) =
(
(1 − P1(x))ω01(x)

Q(x) + (1 − P0(x))ω00(x)

1 − Q(x)

+ γ2
00(x)(1 − P0(x))(1 − P(x))

Q(x)(1 − Q(x))(1 − P1(x))

[
1 − (1 − P0(x))(1 − P1(x))

1 − P(x)

])
�

and

Ω̄21(x)= Ω̄12(x)=
( P1(x)(1 − P0(x))

Q(x)(1 − Q(x)) γ11(x)γ00(x)

)
�

In this theorem, we have also used the notation

ζ(d�x)=
(

d

P(x)
�

1 − d
1 − P(x)

)′
�

This structure of the variance bound shows several visible features. First of all, the semi-
parametric efficiency bound will grow if the fraction of compliers P1(x)− P0(x) in the
sample decreases. Moreover, the efficiency bound will be higher if the binary instrument
is taking one of the values most of the time, in which case Q(x) is closer to 0 or 1. In addi-
tion, the proof and the estimation section show that the structure of the variance reflects
the optimal instrument function as M(x)ζ(x�d), where

M(x)=E
[
∂ϕ(d�x�β)

∂β
ζ(x�d)′

∣∣∣x]Ω̄(x)−1 diag
{

P(x)
Q(x)�

1 − P(x)
1 − Q(x)

}
�

2.3 Unconditional parameters

Often times researchers can be mainly interested in parameters that are defined uncon-
ditionally. For example, under the unconfoundedness assumption where the latent out-
come is conditionally independent of the treatment status given exogenous covariates,
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the semiparametric efficiency literature has focused on the average treatment effect and
the average treatment effect on the treated, both of which are defined unconditionally
with respect to the exogenous covariatesX .

Under the unconfoundedness assumption, one can also specify a model where the
average treatment effect or effect on the treated conditional on each covariate is con-
stant or a known parametric function of the covariates, similar to the analysis in the pre-
vious section and in Abadie, Angrist, and Imbens (2002). However, most of the literature
has focused on analyzing the average treatment effect or effect on the treated without
requiring that this effect is a constant conditional on every value of the exogenous co-
variate.

WhenX is not a constant, the conditional model and the unconditional model imply
very different parameters of interest. For example, the semiparametric efficiency bound
for an average treatment effect that is assumed to be constant across all possible values
of covariate X is tighter than that for the average treatment effect defined uncondition-
ally with respect to the covariates X . This section investigates efficient estimators for
unconditionally defined treatment effect parameters under the LIV monotonicity as-
sumption.

2.4 Semiparametric efficiency of unconditional mean treatment effects

This section will restrict attention to mean effect parameters to illustrate the ideas. How-
ever, the results are readily extendsible to general moment conditions in Section 3.6.
Specifically, we consider the average treatment effect on compliers (ATEC)β≡ β1 −β0 =
E(Y1 − Y0|D1 > D0) and the average treatment effect on the treated compliers (ATTC)
γ ≡ γ1 − γ0 = E(Y1 − Y0|d = 1�D1 > D0). These parameters reduce to the usual nota-
tion of average treatment effect (ATE) and effect on the treated (ATT) under strong ig-
norability when P(D1 >D0)= 1. The efficiency bound for ATEC was derived by Frolich
(2007), although we develop a simplified derivation. Our results for ATTC are new and
are applicable when the propensity score Q(x) is unknown, known, or parametrically
specified. The first theorem considers unknown propensity scores.

Theorem 2. The semiparametric efficient bound for β is given by the variance of the
efficient influence function

1
P(D1 >D0)

{
z

Q(x)(y −E(Y |Z = 1�x))+E(Y |Z = 1�x)

− 1 − z
1 − Q(x)(y −E(Y |Z = 0�x))−E(Y |Z = 0�x)

−
(

z

Q(x)(d−E(D|Z = 1�x))+E(D|Z = 1�x)

− 1 − z
1 − Q(x)(d−E(D|Z = 0�x))−E(D|Z = 0�x)

)
β

}
�
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while the semiparametric efficiency bound for γ is given by the variance of the efficient
influence function

1
P(d = 1�D1 >D0)

{
y − 1 − z

1 − Q(x)(y −E(Y |Z = 0�x))−E(Y |Z = 0�x)

−
(
d− 1 − z

1 − Q(x)(d−E(D|Z = 0�x))−E(D|Z = 0�x)
)
γ

}
�

Obviously, under the strong ignorability assumption when Z =D�P(D1 > D0) = 1,
both of these reduce to the corresponding influence functions derived in Hahn (1998).
In fact, the only difference (other than the factor outside the bracket) is in the coefficient
in front of β and γ, which become 1 and z under strong ignorability.

The literature has also been concerned with the semiparametric efficiency when the
so-called propensity score, in our case Q(x), is either known or parametrically specified.
We will still leave P1(x) − P0(x) nonparametrically specified, even though cases when
this is known or parametrically specified can be analyzed too.

From the proof of Theorem 2, it is clear that Q(x) does not even enter the moment
conditions that define the parameters β. (See equations (15) and (17) in Appendix C).
Consequently, any knowledge of Q(x)will have no impact on the efficiency bound for β.

Such knowledge, however, will improve the efficiency bound for γ, as described in
the following theorem.

Theorem 3. When the propensity score Q(x;α) is correctly specified up to a finite-
dimensional parameter α, the semiparametric efficiency bound for γ is the variance of
the efficient influence function

1
P(D= 1�D1 >D0)

{
z(y −E(Y |Z1 = 1�x))+ Q(x)E(Y |Z1 = 1�x)

− 1 − z
1 − Q(x)Q(x)[y −E(Y |Z = 0�x)] − Q(x)E(Y |Z = 0�x)

−
{
z(d−E(D|Z1 = 1�x))+ Q(x)E(D|Z1 = 1�x)

− 1 − z
1 − Q(x)Q(x)[d−E(D|Z = 0�x)] − Q(x)E(D|Z = 0�x)

}
γ

+ Proj
[
(z− Q(x))κ(x)|Sα(z;x)

]}
�

In the above expression we have used the definition

κ(x) = E(Y |Z = 1�x)−E(Y |Z = 0�x)

− (E(D= 1|Z = 1�x)−E(D= 1|Z = 0�x))γ�

and the efficient influence function of the parametric propensity score model

Sα(z;x)= z− Q(x)
Q(x)(1 − Q(x))

∂Q
∂α
(x�α)�
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In the same equations, Proj denotes the linear projection operator

Proj
[
(z− Q(x))κ(x)|Sα(z;x)

] = Sα(z;x)Var(Sα(z;x))−1 Cov(Sα(z;x)�κ(x))�

In fact, Theorem 2 can be considered a special case of this influence function when

Proj
[
(z− Q(x))κ(x)|Sα(z;x)

]
is replaced by just (z − Q(x))κ(x). In another special case, the efficient influence func-
tion when the propensity score Q(x) is known is the same as in Theorem 3, except that
the last term Proj[(z− Q(x))κ(x)|Sα(z;x)] is replaced by 0.

3. Efficient estimation

In this section, we describe an estimator that achieves the semiparametric efficiency
bound that makes use of the knowledge of the efficiency variance bound and the effi-
cient score function of the model. The connection between the efficient estimators and
the structure of the efficient influence function is exploited in Bickel et al. (1993) and
Murphy and van der Vaart (1997). In particular, the linear quantile treatment effect esti-
mator of Abadie, Angrist, and Imbens (2002) has a limiting variance that is strictly larger
than the semiparametric variance bound.

3.1 Efficiency improvement over existing methods

We have seen that the parameters of the treated and nontreated distributions form a
conditional moment equation:∫

g(y�d�x�β)f (y|d�D1 >D0�x)= 0�

The idea of the estimator is closely related to the identification argument. First of all, any
given set of instrument functions, denotedA(d�x)= M(x)ζ(x�d) and

A(d�x)= (P1(x)− P0(x))

( Q(x)d
P(x)

+ (1 − Q(x))(1 − d)
1 − P(x)

)
A(d�x)� (4)

can be used to transform the conditional moment equations (3) into unconditional ones
E[E[A(x�d)g(y�d�x�β)|D1 > D0�x�d]] = 0� where the outer expectation is taken with
respect to the marginal distribution of d and x. For a given A(x�d), we conjecture the
form of the efficient estimator from the identification arguments. It is then shown that
efficiency bound is achieved when the optimal A(x�d) is estimated consistently. We
note that this approach to finding a regular estimator of the finite-dimensional para-
meter in the conditional moment model is a particular case of the general approach
to estimating regular conditional moment models outlined in Newey (1993). As noted
in Newey (1993), regular estimation can be performed by constructing a nonlinear in-
strument based on the conditioning set. We follow this approach to provide a regular
efficient estimator in our case.
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The identification condition in (2) translates into the following implications on the
conditional moment functions for g̃=A(x�d)g(y�d�x�β) and ĝ= A(x�d)g(y�d�x�β):

E(ĝ|d�D1 >D0�x) = P1(x)d

P1(x)− P0(x)
E(ĝ|d = 1� z = 1�x)

− P0(x)d

P1(x)− P0(x)
E(ĝ|d = 1� z = 0�x)

(5)

+ (1 − P0(x))(1 − d)
P1(x)− P0(x)

E(ĝ|d = 0� z = 0�x)

− (1 − P1(x))(1 − d)
P1(x)− P0(x)

E(ĝ|d = 0� z = 1�x)�

Using (4), this can be reexpressed in terms of g̃:

E(g̃|d�d1 > d0�x)

= P1(x)Q(x)d
P(x)

E(ĝ|d = 1� z = 1�x)− P0(x)Q(x)d
P(x)

E(ĝ|d = 1� z = 0�x)
(6)

+ (1 − P0(x))(1 − Q(x)(1 − d))
1 − P(x)

E(ĝ|d = 0� z = 0�x)

− (1 − P1(x))(1 − Q(x))(1 − d)
1 − P(x)

E(ĝ|d = 0� z = 1�x)�

Using the Bayes rule and the law of iterated expectation, one can further write

E[E(g̃|d�d1 > d0�x)]

=E
{(
dZ − Q(x)

1 − Q(x)d(1 −Z)+ (1 − d)(1 −Z)− (1 − Q(x))
Q(x) (1 − d)Z

)
ĝ

}

=E{κ(Z�d�x)ĝ}�

where

κ(d�z�x)= 1 − d(1 − z)
1 − Q(x) − (1 − d)z

Q(x)

is the weight function defined in Abadie (2003).
The conditional probability in this moment condition, Q(x), is not observed. How-

ever, it can be consistently estimated in a first step, using, for example, either kernel
regression or a sieve-based estimator. This estimate, Q̂(x), can then be used to form a
sample analog of the above moment conditions given any estimated instrument func-
tion Â(x�d) or M̂(x):

1
N

N∑
k=1

ψ̂k(β)= 1
N

N∑
k=1

ψk(β� Q̂�M̂)= 1
N

N∑
k=1

κ̂(dk� zk�xk)g̃k�
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where

κ̂(d� z�x)= 1 − d(1 − z)
1 − Q̂(x)

− (1 − d)z
Q̂(x)

is the estimated version of the weight function of Abadie (2003).
The proof of Theorem 5 shows that this estimator achieves the efficiency bound un-

der suitable regularity conditions, and the asymptotic representation

1√
N

N∑
k=1

ψ̂k(β) = 1√
N

N∑
k=1

M(xk)

{
χk(β)+E

[
∂χk(β)

∂Q

∣∣∣xk
]
(zk − Q(xk))

}

+ op(1)

holds. This influence function falls into the framework of Abadie (2003). In the above
equality, we have used the following notation to isolate the instrument matrix:

χk(β)= M(xk)
−1ψk(β�Q�M)� (7)

We now compare the efficient variance to the variance of the estimator obtained us-
ing the approach in Abadie (2003). To describe his estimator, we start with a distance
function ρ(·) whose first order condition can produce a moment condition that is im-
plied by the conditional moment model. For some consistent estimate of the probability

Q(x), the estimator for β will solve

β̃= arg min
β∈B

{
1
N

N∑
k=1

κ̂(dk� zk�xk)ρ(yk�dk�xk�β)

}
�

This optimization problem usually leads to a moment equation in the form

ψ(β)= κ(d�z�x)h(d�x�β)g(y�d�x�β)�

In the above equality, h(d�x�β) is an instrument function that can also depend on β. In
estimation, we replace the functions under consideration with their empirical analogs.
In this case,

1√
N

N∑
k=1

ψ̂k(β)= 1√
N

N∑
k=1

{
ψk(β)+E

[
∂ψk(β)

∂Q

∣∣∣xk
]
(zk − Q(xk))

}
+ op(1)�

where ψ is similar to ψ̂ with Q̂(x) replaced by Q(x). Note that we can write

E

[
∂ψk(β)

∂Q

∣∣∣x] = θ̃(x)′D̃(x)−1E

[
∂χk(β)

∂Q

∣∣∣x]�
where χ is defined implicitly in (7) and

D̃(x)= diag{P(x)�1 − P(x)}� θ̃(x)=
(
h(1�x�β0)

′
h(0�x�β0)

′
)
�
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To compute asymptotic variance associated with the empirical moment equation, note
that

V

(
E

[
∂ψk(β)

∂Q

∣∣∣xk
]
(zk − Q(xk))

)

= V
{
θ̃(xk)

′D̃(xk)−1E

[
∂χk(β)

∂Q

∣∣∣xk
]
(zk − Q(xk))

}
�

Moreover,

cov
(
ψk(β)�E

[
∂ψk(β)

∂Q

∣∣∣xk
]
(zk − Q(xk))

)

= −V
(
E

[
∂ψk(β)

∂Q

∣∣∣xk
]
(zk − Q(xk))

)
�

Finally,

V (ψk(β))=E{
θ̃(x)′D̃(x)−1V (χk(β)|x)D̃(x)−1θ̃(x)

}
�

which suggests that V (ψ̂k(β))= V (θ̃(x)D̃(x)−1χ̂k(β))�We can express the Jacobi matrix
for this model as J =E{θ̃(x)′D̃(x)−1θ(x)}� where θ(x)=E[ζ(x�d)∂ϕ(β�d�x)′∂β |x]� This gives
the expression for the asymptotic variance:

V (β̃) = E{θ̃(x)′D̃(x)−1θ(x)}−1E{θ̃(x)′D̃(x)−1Ω̄(x)D̃(x)−1θ̃(x)}
×E{θ̃(x)′D̃(x)−1θ(x)}−1�

Next we note that V (β̂)−1 − V (β̃)−1 can be written as the variance–covariance of the
residual vector of the set of regression where the dependent variables are Ω̄(x)−1/2θ(x)

and the regressors are θ̃(x)′D̃(x)−1Ω̄(x)1/2� This result implies that V (β̃)−V (β̂) is a pos-
itive semidefinite matrix and thus the variance in Abadie (2003) is larger than that for the
efficient estimator.

3.2 Efficient propensity score weighting estimator

The following multistep procedure summarizes a semiparametric efficient estimator
under suitable regularity conditions. In step 1, we first use a kernel-based or sieve-based
nonparametric estimator to obtain estimates P̂1(x), P̂0(x), and Q̂(x) of the conditional
probabilities P1(x), P0(x), and Q(x). In step 2, using an initial choice of an instrument
matrix Ã(x�d) of dimension dβ × dg, construct an initial estimate β̄ such that

1
N

N∑
k=1

κ̂(dk� zk�xk)Ã(xk�dk)g(yk�dk�xk� β̄)= 0� (8)

In step 3, β̄ is used to estimate the optimal instrument nonparametrically. For this pur-
pose, we need to estimate

ω̂d�z(x� β̄)= V̂ (g(y�d�x� β̄)|d�z�x)
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and

γ̂d�z(x� β̄)= Ê(g(y�d�x� β̄)|d�z�x)

for d = 0�1 and z = 0�1. Then an estimate of Ω̄(x) and M(x) can be analytically com-
puted as

M̂(x)=
(
∂ϕ(1�x� β̄)

∂β′ �
∂ϕ(0�x� β̄)

∂β′

)′ ˆ̄Ω(x; β̄)−1 diag
{

P̂(x)

Q̂(x)
�

1 − P̂(x)

1 − Q̂(x)

}
�

Finally, the efficient β̂ is obtained through a sample moment condition similar to the
one that leads to β̄, except that we replace Ã(x�d) by M̂(x)ζ(d�x). The particular form
of ϕ(d�x�β) is model specific. For example, for quantile treatment effect parameters,

∂ϕ(d�x�β)

∂β
= f∗∗(dβ0 + x′β1|d�x)(d�x)′�

This is analogous to the efficiency improvement using density weighting in Newey and
Powell (1990) over the nonweighted quantile regression estimator of Koenker and Bas-
sett (1978). Section 3.3 formally provides regularity condition for the asymptotic distrib-
ution. The structure of the efficient estimator also shows that while the inverse propen-
sity weighting method (the κ(d�z�x) weight function) in Abadie (2003) is an efficient
method to construct unconditional moment conditions for compliers, efficient estima-
tion with conditional moment restrictions also requires the optimal choice of moment
conditions for compliers.

3.3 Regularity conditions and asymptotic distribution

In this section, we state a set of sufficient regularity conditions for the semiparametric
efficient estimator. We will focus mainly on the reweighting estimator described in (the
previous) Section 3.2. Similar conditions can be given for the conditional expectation
projection estimator described in (the next) Section 3.4 and for the unconditional pa-
rameters estimators described in Section 2.3. We follow much of the recent literature
and describe regularity conditions in terms of sieve nonparametric estimators for con-
ditional probabilities and conditional expectations. Most of these conditions are well
understood in the recent literature (e.g., Ai and Chen (2003), Chen, Linton, and Van Kei-
legom (2003), and Newey (1994)). Therefore, we only highlight the essential elements.

Let {ql(X)� l= 1�2� � � �} denote a sequence of known basis functions that can approx-
imate any square-measurable function ofX arbitrarily well. Also let

qk(n)(X)= (
q1(X)� � � � � qk(n)(X)

)′

and

Q= (
qk(n)(X1)� � � � � q

k(n)(Xn)
)′
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for some integer k(n)� with k(n)→ ∞ and k(n)/n→ 0 when n→ ∞� A first stage non-
parametric estimator for Q(x) is then defined as

Q̂(X)=
n∑
j=1

Zjq
k(n)(Xj)(Q

′Q)−1qk(n)(X)�

An estimator of the instrument function M̂(x) depends on a preliminary parameter es-
timate β̄ and nonparametric estimates of the quantities that define Ω̄(x), which include
ω̂kl(x� β̄), k� l = 0�1, γ̂kl(x� β̄), k� l = 0�1, P̂k(x), k = 0�1, P̂(x), and the Jacobi matrix
term

Ê

[
∂ϕ̂(d�x� β̄)

∂β
ζ(x�d)′

∣∣∣x]�
which can be nonparametrically estimated by

Ê

[
∂ϕ̂(d�x� β̄)

∂β
ζ(x�d)′

∣∣∣x] =
n∑
j=1

Ŵj(β̄)q
k(n)(Xj)(Q

′Q)−1qk(n)(x)�

where

Ŵj(β̄)= g(yj�dj�xj� β̄+ h)− g(yj�dj�xj� β̄− h)
2h

ζ(xj�dj)�

For the sake of clarity, we collect all the regularity conditions in Appendix D. The follow-
ing two theorems are the direct consequences of these assumptions.

Theorem 4. Under Assumption 2, β̂−β0 = op(1).
Theorem 5. Under Assumptions 2, 3, and 4, the obtained M-estimates are consistent,
are asymptotically normal, and achieve the variance lower bound. In other words,

√
n(β̂−β) d−→N(0� V (β))

for V (β) given in Theorem 1.

The proofs of the theorems and propositions in this section are provided in the Ap-
pendix and follow immediately from the assumptions.

3.4 Conditional expectation projection estimator

The estimation method described in (the previous) Sections 3.1 and 3.2 is based on a
sample average of the properly reweighted moment conditions, where the weights are
related to the conditional probabilities Q(x), P1(x), and P0(x), all of which need to be
estimated nonparametrically. Borrowing from the terminology from treatment effect es-
timation under the unconfoundedness (i.e., strong ignorability) assumption, we will call
this the inverse propensity score weighting estimator. In fact, in the exogenous case
when P1(x)= 1 and P0(x)= 0, this is identical to the inverse probability weighting esti-
mator for strongly ignorable conditional treatment effect models.
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There also exists an alternative estimator that relies on direct estimation of the con-
ditional expectationE[g(Y�D�X�β)|D�X = x�D1 >D0] for each candidate parameterβ
instead of on reweighting the moment conditions using the inverse of Q̂(x). To describe
this estimator, begin with rewriting the identification condition (5) as

E(g̃|D= d�D1 >D0�X = x)

= d

P1(x)− P0(x)
E(Dg̃|Z = 1�x)− d

P1(x)− P0(x)
E(Dg̃|Z = 0�x)

+ (1 − d)
P1(x)− P0(x)

E((1 −D)g̃|Z = 0�x)

− (1 − P1(x))

P1(x)− P0(x)
E((1 −D)g̃|Z = 1�x)�

For a given instrument matrix M(x), this suggests estimating β by equating to zero the
sample analog

1
N

N∑
k=1

φk(β) = 1
N

N∑
k=1

{
dk

P̂1(xk)− P̂0(xk)
Ê(dkg̃|Z = 1�xk)

− dk

P̂1(xk)− P̂0(xk)
Ê(dkg̃|Z = 0�xk)

(9)

+ 1 − dk
P̂1(xk)− P̂0(xk)

Ê((1 − dk)g̃|Z = 0�xk)

− 1 − dk
P̂1(xk)− P̂0(xk)

Ê((1 − dk)g̃|Z = 1�xk)
}
�

where each of the conditional expectation terms are estimated nonparametrically at
every given parameter value β. For example,

Ê(dkg̃|Z = 1�xk)= Q̂(xk)−1Ê(dkzkg̃|xk)� (10)

Both conditional expectations can be estimated using a variety of nonparametric regres-
sion methods such as sieve expansion or kernel smoothing.

It is easy to show that the asymptotic linear influence function that corresponds to
the moment condition 1

N

∑N
k=1φk(β) for a given M(x) including the optimal one coin-

cides with the semiparametric efficient function. First of all, similar to before, estimating
P1(x)− P0(x) has no impact on the asymptotic variance due to the conditional nature
of the moment restrictions. Using the representation theorem of Newey (1994), we can,
for example, expand the first component as

1√
N

N∑
k=1

dk

P̂1(xk)− P̂0(xk)

Ê(dkzkg̃|xk)
Q̂(xk)

= 1√
N

N∑
k=1

{
P(xk)dkzkg̃

(P1(xk)− P1(xk))Q(xk)
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− P(xk)P1(xk)E(g̃|dk = 1� zk = 1�xk)
(P1(xk)− P1(xk))Q(xk)

(zk − Q(xk))

+ dk − P(x)
(P1(x)− P0(x))

E(dkg̃|zk = 1�xk)
}

+ op(1)�

Similar calculations can be applied to the other three terms.
When summing these four components, we note that the last terms in each of the

components cancel out due to the implications of the conditional moment restric-
tions that E(dkg̃|zk = 1�xk) = E(dkg̃|zk = 0�xk) and E((1 − dk)g̃|zk = 1�xk) = E((1 −
dk)g̃|zk = 0�xk)� Therefore, it is easy to check that the sum of the four influence func-
tions is identical to the semiparametric efficient influence function when the instru-
ment is chosen optimally. For the sake of brevity, we omit the regularity conditions for
the conditional expectation projection estimator.

To summarize, the implementation of this estimation method is a two step proce-
dure, each step of which involves a profiled semiparametric estimator. In the first step,
for an initial arbitrary choice of the instrument matrix M(x) and for each trial parame-
ter β, the moment condition in each of the terms in (10) in the moment condition (9)
is estimated nonparametrically to form the moment condition (9). The near zero of this
moment gives an initial estimate of β. In second step, the same procedure is repeated
using a consistent estimate of the efficient instrument matrix M(x) which depends on
the initial estimate of β following the procedure outlined in Section 3.2.

3.5 Efficient estimation of unconditional parameters

It is easy to show that an efficient estimator can be derived from the principle of con-
ditional expectation projection that follows the identification condition. Consider first
the case of the average treatment effect on compliers (ATEC) β = E[Y1 − Y0|D1 > D0].
Combining equations for the means of the distributions of treated and nontreated ob-
servations for compliers, we obtain the unconditional moment equation

E
{
β(P1(x)− P0(x))− (E[y|z = 1�x] −E[y|z = 0�x])} = 0�

The efficient semiparametric estimator is obtained from the sample analog of this mo-
ment equation and takes the form

β̂=
(

1
N

N∑
k=1

(P̂1(xk)− P̂0(xk))

)−1
1
N

N∑
k=1

(Ê[yk|zk = 1�xk] − Ê[yk|zk = 0�xk])�

Conditional expectations in this expression can be estimated nonparametrically by
kernel- or sieve-based methods. Semiparametric efficiency of this estimator can be es-
tablished by the same projection arguments that we used before to establish efficiency
of the estimator for the conditional moment-based model.

Similarly to the ATEC, we can estimate the average treatment effect for the treated
(ATTC) as γ = E[Y1 − Y0|d = 1�D1 > D0]. The ATTC can be written in terms of the un-
conditional moment equation

E
{[
γ(P1(x)− P0(x))− (E[Y |Z = 1�x] −E[Y |Z = 0�x])]Q(x)

} = 0�
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By the same principle as the ATEC, we express the efficient estimator as an empirical
analog

γ̂ =
(

1
N

N∑
k=1

Q̂(xk)(P̂1(xk)− P̂0(xk))

)−1

× 1
N

N∑
k=1

Q̂(xk)(Ê[yk|zk = 1�xk] − Ê[yk|zk = 0�xk])�

Using the projection argument of Newey (1994), we can easily verify that this estimator
achieves the semiparametric efficiency bound when each of the conditional expecta-
tions and conditional probabilities above are estimated nonparametrically using either
kernel- or sieve-based methods.

If the Q(x) is specified as a parametric function or is a known function Qα(x), then
the efficient estimator for γ becomes

γ̂ =
(

1
N

N∑
k=1

Q̂α̂(xk)(P̂1(xk)− P̂0(xk))

)−1

× 1
N

N∑
k=1

Qα̂(xk)(Ê[yk|zk = 1�xk] − Ê[yk|zk = 0�xk])�

where α̂ is the parametric maximum likelihood estimator (MLE), or the known α0 if Q(x)
is fully known.

When the propensity score Q(x) is entirely unknown, an alternative efficient estima-
tor can be developed using the inverse propensity score weighting approach of Abadie
(2003). When Q(x) is known or parametrically specified, however, Hahn (1998) and
Hirano, Imbens, and Ridder (2003) showed that efficient estimators based on inverse
propensity score weighting typically require combining a nonparametric estimate of
Q̂(x)with the known or parametrically estimated Q(x). A detailed comparison between
the conditional expectation projection approach and the inverse propensity weighting
approach is provided in Chen, Hong, and Tarozzi (2008), but they maintained the un-
confoundedness assumption and did not investigate endogeneity.

To summarize, a recipe for empirically implementing the efficient estimators for β
and γ only requires summing over the data a function of the nonparametrically esti-
mated choice probabilities Q̂(x), P̂1(x), and P̂0(x), and nonparametric estimates of the
conditional expectations Ê[yk|zk = 1�xk] and Ê[yk|zk = 0�xk]. This is a very straightfor-
ward procedure that does not involve any nonlinear or numerical optimization proce-
dures.

3.6 General separable unconditional model for compliers

The treatment effect models considered in this section have a straightforward general-
ization to the separable conditional moment restrictions expressed in terms of unob-
servable outcome variables. Consider a problem where a finite-dimensional parameter
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β ∈ R
k is given by the following unconditional moment equation described in terms of

unobservable variables Y1 and Y0:

ϕ(β)=E[g1(Y1�x�β)− g0(Y0�x�β)|D1 >D0] = 0� (11)

In particular, when g1(Y1�β)= Y1 − β and g0(Y0�β)= Y0 + β, parameter β defines the
average treatment effect for compliers. On the other hand, g1(Y1�β) = 1(Y1 ≤ β1) − τ

and g0(Y0�β) = 1(Y0 ≤ β0) + τ define a complier analog of the average quantile treat-
ment effect parameter proposed in Firpo (2003).

Note that we can represent this moment equation for compliers in terms of distri-
butions for the entire population. Using the Bayes’s rule, we find that this equation is
equivalent to

E
[
(P1(x)− P0(x))

(
Q(x)E[g1(Y1�x�β)|d = 1�D1 >D0�x]

− (1 − Q(x))E[g0(Y0�x�β)|d = 0�D1 >D0�x]
)] = 0�

which can be redefined in terms of only observable variables in the form

E

[
(P1(x)− P0(x))

( Q(x)d
P(x)

+ (1 − Q(x))(1 − d)
1 − P(x)

)

×E[dg1(y�x�β)− (1 − d)g0(y�x�β)|d�x�D1 >D0]
]

= 0�

This equation in general defines an overidentified system of moments for β. Using a
constant matrix A (which we can then choose optimally), we can transform this vector
of moments into an exactly identified system. The Jacobi matrix J for this system givenA
is computed in the standard way. The following theorem describes the structure of the
efficient influence function for this model.

Theorem 6. In the model given by the general moment condition (11), the efficient in-
fluence function, which corresponds to finite-dimensional parameter β, can be expressed
as

�(y�d�x� z) = −J−1A
z− Q(x)
1 − Q(x)

{
dg1(y�x�β)+ (1 − d)g0(y�x�β)

− 1
Q(x)

[
(1 − Q(x))E[(1 − d)g0(y�x�β)|z = 1�x]

+ Q(x)E[dg1(y�x�β)|z = 0�x]]}

= −J−1Aφ(y�d�x� z)�

The structure of the efficient influence function in this case is similar to that in the
ATE model which we considered earlier in this section. We can further choose the ma-
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trixA such that it minimizes the variance of the efficient influence function. In particu-
lar, given that the Jacobi matrix can be expressed as

J =A∂ϕ(β)
∂β′ �

the semiparametric efficiency bound for this model when A is chosen optimally takes
the form V (β)= (ϕ(β)∂β E[φ(y�d�x� z)φ(y�d�x� z)′]ϕ(β)∂β′ )−1. An optimally weighted gener-
alized method of moments (GMM) estimator based on the nonparametrically estimated
moment condition

(
1
N

N∑
k=1

(P̂1(xk)− P̂0(xk))

)−1

× 1
N

N∑
k=1

(Ê[g1(yk�xk�β)|zk = 1�xk] − Ê[g0(yk�xk�β)|zk = 0�xk])= 0

can easily be shown to achieve the efficiency bound derived in Theorem 6.
Similarly, it is immediate to develop semiparametric efficiency bounds for a nonlin-

ear treatment effect parameter for treated compliers, defined as

ϕ(γ)=E[g1(Y1�x�γ)− g0(Y0�x�γ)|d = 1�D1 >D0] = 0�

In addition, an optimally weighted GMM estimator based on the nonparametric esti-
mated moment condition

(
1
N

N∑
k=1

Q̂α̂(xk)(P̂1(xk)− P̂0(xk))

)−1

× 1
N

N∑
k=1

Qα̂(xk)

× (
Ê[g1(yk�xk�γ)|zk = 1�xk] − Ê[g0(yk�xk�γ)|zk = 0�xk]

) = 0�

where Q̂α(xk) can be nonparametrically estimated, parametrically estimated, or the
known propensity, can easily be shown to achieve the required corresponding semipara-
metric efficiency bound when the propensity score is unknown, parametrically speci-
fied, or known.

4. Numerical simulations

In this section we report the results from a Monte Carlo study to illustrate the finite sam-
ple properties of the proposed estimators and the numerical efficiency comparisons
with existing estimators. The design of the Monte Carlo study is motivated by the empir-
ical illustration in Appendix E.
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4.1 The structure of the data-generating process

To analyze the performance of our semiparametric estimator, we designed an experi-
ment where the outcome variable Y depends on the endogenous regressor X in a non-
linear fashion. We construct the data in which a binary instrumental variableZ depends
on X , but is conditional on X potential outcomes and the treatments are independent
fromZ. The observable outcome is generated from these variables. The data-generating
mechanism for the simulation is characterized by the vector of potential outcomes
(Y1�Y0) and the vector of potential treatments (D1�D0). Their distributions depend on
the vector of covariates X . In light of the empirical illustration, the observable outcome
for compliers has a Poisson distribution whose mean depends on the covariates and the
parameters. We first consider the benchmark model. In Monte Carlo simulation experi-
ments, we consider alternative parameter values and measure parameter differences in
relation to the benchmark values. The sequential sampling scheme in the benchmark
model is given by the following steps.

First, we generate potential treatments as D1 = 1(γ0 + x′γ1 + δ + v ≥ 0) and D0 =
1(γ0 + x′γ1 + v ≥ 0), where γ0 = −0�5, γ1 = 1, δ = 1, x is generated from the uni-
form distribution, and v is standard normal. Second, we generate potential outcomes
based on Poisson distributions. We first generate four independent Poisson random
variables ξ1 ∼ Poisson(exp(α + x′β)), ξ2 ∼ Poisson(exp(x′β)), ξ3 ∼ Poisson(λ11), and
ξ4 ∼ Poisson(λ00), where α = 1, β = 0�5, λ11 = 2, and λ00 = 1. Denote e = (1�1)′. Then
we construct the potential outcomes as

(
Y1

Y0

)
=

(
ξ1

ξ2

)
+ ξ3e1{D1 = 1�D0 = 1} + ξ4e1{D1 = 0�D0 = 0}�

Note that this structure assures that for compliers (D1 = 1 and D0 = 0), two potential
outcomes are independent and Yi ∼ Poisson(exp(αi + x′β)) for i = 0�1. For always-
takers (D1 =D0 = 1), the potential outcomes have covariance λ11, and for never-takers
(D1 = D0 = 0), the potential outcomes have covariance λ00. Finally, the instrument is
generated as an independent Bernoulli random variable Z ∼ Bernoulli(�(x)).

Given the latent variables generated above, we compute the observable treatments
and outcomes as D = D1Z + D0(1 − Z) and Y = Y1D + Y0(1 − D). This structure of
the data-generating process guarantees that for compliers, the outcome will be inde-
pendent from the observable treatment D and the mean of the treatment outcome can
be computed from the pair of Poisson random variables (ξ1� ξ2). As a result, the data-
generating process for the Monte Carlo experiment is characterized by conditional mo-
ments

E[Y − exp(αD+X ′β)|D1 >D0�D= d�X = x] = 0�

This model fits into our general conditional moment framework in the LATE context.
To analyze the performance of our estimation procedure for parameters α and β, we
designed a series of experiments.
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4.2 Experiment 1: Basic comparison with alternative procedures

The analysis of our estimation procedure begins with a comparison between our effi-
cient two-stage estimator and the alternative existing estimator. We estimate this model
using both the original method of Abadie (2003) and our more efficient estimator. Three
parameters are estimated: β0 = 0 is the coefficient on the constant term of the covariate,
β1 = 1 is the slope coefficient on the uniform regressor, and α= 0�5 is the coefficient on
the treatment dummy. The simulation results across 1000 simulations are summarized
in Table 1.

We separately investigate the impact of the error in Monte Carlo sampling on our
results by considering different Monte Carlo sample sizes. We analyze the differences
in the mean-squared error of the estimated treatment effect α for different numbers of
Monte Carlo samples. We study the impact of the Monte Carlo sampling error by repeat-
ing the simulation results for 1000 Monte Carlo replications (which we use throughout
our analysis) 100 times for the baseline parameters of the model. By decomposing the
mean-squared error into a between Monte Carlo component and a within Monte Carlo

Table 1. Simulation Summary.

Parameter Mean Bias Median Bias Std Deviation Mean Squared Errors

Sample Size 1000
Abadie et al. estimator
β0 0�0956 0�1120 0�2176 0�0565
β1 0�0559 0�0527 0�1880 0�0385
α −0�3825 −0�3186 0�3254 0�2504

Semiparametric efficient estimator
β0 0�0053 −0�1045 0�1587 0�0254
β1 0�0493 0�0540 0�1605 0�0282
α −0�0365 −0�0286 0�1672 0�0288

Sample Size 2000
Abadie et al. estimator
β0 0�1126 0�1209 0�1435 0�0332
β1 0�0452 0�0384 0�1271 0�0182
α −0�3727 −0�3510 0�2205 0�1875

Semiparametric efficient estimator
β0 0�0113 0�079 0�1132 0�0129
β1 0�0434 0�0384 0�1141 0�0149
α −0�0186 −0�0254 0�1188 0�0144

Sample Size 4000
Abadie et al. estimator
β0 0�0974 0�1050 0�0998 0�0194
β1 0�0534 0�0502 0�0893 0�0108
α −0�3441 −0�3325 0�1353 0�1367

Semiparametric efficient estimator
β0 −0�0009 0�0035 0�0787 0�0062
β1 0�0464 0�0453 0�0787 0�0083
α −0�0029 −0�0069 0�0824 0�0068
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component, we find that the mean-squared error for the estimated treatment effect as-
sociated with sampling error constitutes only 16.3% of the overall mean-squared error
across a total of 100,000 Monte Carlo simulations. This leads us to the conclusion that
even though the impact of the sampling error is visible, it does not substantially interfere
with the results of the Monte Carlo experiment.

4.3 Experiment 2: Proportional reduction of noncompliers

In this experiment, we study the robustness of the estimator against the endogeneity of
the dependent variable. We proportionally decrease the variances of ξ3 and ξ4, which
are responsible for the dependence between the binary regressors and the outcome. In
the limiting case where these variances λ00 and λ11 are equal to zero, the latent outcomes
are completely independent. In Table 2, we document its effect on the mean-squared er-
ror of the estimate for the coefficient of the endogenous dummy variable. The tabulated
data are obtained from 1000 Monte Carlo replications. The table shows that a reduction
in the correlation between the treatment outcomes (Y1 and Y0) leads to a smaller vari-
ance of the estimated treatment effect. Moreover, an increase in the sample size results
in a decrease of the mean-squared error. The numbers in the table are computed from
the Monte Carlo sample where we trimmed away the top and bottom 1% of observa-
tions to avoid including the cases where the distance minimization algorithm did not
converge.

Table 2. Simulation Summary for Decreasing Correlation Between Treatment Outcomes.

λ11 = 2K, λ00 =K Sample Sizes

K = 250 350 450 600 1000

1 0.2716 0.2307 0.1865 0.1782 0.1282
0.9474 0.2774 0.2242 0.1873 0.1640 0.1306
0.8947 0.2791 0.2155 0.1792 0.1642 0.1249
0.8421 0.2578 0.2065 0.1900 0.1667 0.1207
0.7895 0.2509 0.2174 0.1829 0.1519 0.1138
0.7368 0.2453 0.2079 0.1808 0.1577 0.1209
0.6842 0.2528 0.2201 0.1883 0.1544 0.1171
0.6316 0.2504 0.1941 0.1732 0.1621 0.1139
0.5789 0.2463 0.1938 0.1663 0.1566 0.1137
0.5263 0.2506 0.1938 0.1684 0.1457 0.1124
0.4737 0.2305 0.2054 0.1746 0.1554 0.1140
0.4211 0.2169 0.1914 0.1600 0.1463 0.1173
0.3684 0.2187 0.1868 0.1589 0.1495 0.1151
0.3158 0.2135 0.1847 0.1625 0.1431 0.1096
0.2632 0.2116 0.1762 0.1514 0.1408 0.1133
0.2105 0.2181 0.1804 0.1596 0.1383 0.1125
0.1579 0.2149 0.1839 0.1551 0.1372 0.1067
0.1053 0.2074 0.1729 0.1642 0.1385 0.1035
0.0526 0.2137 0.1730 0.1660 0.1305 0.1030
0.0000 0.2050 0.1714 0.1528 0.1312 0.1053
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4.4 Experiment 3: Smaller treatment effect

In this experiment we study the sensitivity of our estimator with respect to the value
of the treatment effect. We vary the coefficient α of the dummy endogenous variable,
keeping the remaining components of the model the same. This exercise illustrates the
robustness of our estimation method with respect to the magnitude of the treatment
effect parameter of interest relative to the remaining components of the model. The re-
sults in Table 3 show that, in principle, our procedure gives stable mean-squared errors
across different choices of the treatment effect parameters and the sample sizes. Similar
to the previous experiment, the numbers in the table are computed from the trimmed
Monte Carlo sample (removing top and bottom 1% quantiles) to avoid including the
cases where the distance minimization algorithm did not converge. One can see, how-
ever, from Table 3 that reduction of the actual treatment effect leads to an increase in
the distribution range for the estimated treatment effect.

4.5 Experiment 4: Choice of the bandwidth

In this experiment, we study the sensitivity of the estimator with respect to the choice of
the bandwidth parameter. We use the same structure of the bandwidth for the estima-
tion of all nonparametric components of the model, including the conditional probabil-
ity of treatment selection Z = 0 and the conditional probability of treatment D= 0. We
choose the bandwidth as hn = 4σ exp(K)n−1/3, where σ is the unconditional variance of

Table 3. Simulation Summary for Reduction of the Treatment Effect.

λ11 = 0�5K Sample Sizes

K = 250 350 450 600 1000

1 0.2716 0.2276 0.1903 0.1617 0.1347
0.9474 0.2728 0.2287 0.1943 0.1690 0.1319
0.8947 0.2871 0.2383 0.1999 0.1681 0.1266
0.8421 0.2899 0.2332 0.2064 0.1661 0.1288
0.7895 0.2793 0.2358 0.1888 0.1679 0.1216
0.7368 0.2845 0.2315 0.2060 0.1688 0.1223
0.6842 0.2924 0.2371 0.2067 0.1745 0.1251
0.6316 0.2922 0.2172 0.2040 0.1743 0.1271
0.5789 0.2929 0.2314 0.1900 0.1756 0.1322
0.5263 0.2921 0.2321 0.1959 0.1621 0.1299
0.4737 0.2931 0.2291 0.2027 0.1684 0.1313
0.4211 0.2820 0.2118 0.1988 0.1573 0.1234
0.3684 0.2894 0.2224 0.1904 0.1695 0.1326
0.3158 0.2481 0.2101 0.1881 0.1538 0.1259
0.2632 0.2558 0.2200 0.1782 0.1637 0.1255
0.2105 0.2700 0.1825 0.1550 0.1250 0.1117
0.1579 0.2480 0.1886 0.1513 0.1127 0.0970
0.1053 0.2577 0.1613 0.1305 0.1155 0.0779
0.0526 0.2596 0.1687 0.1309 0.1109 0.0796
0.0000 0.2013 0.1532 0.1339 0.1110 0.0868
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Table 4. Simulation Summary for Various Bandwidth Choices.

h= 4σ exp(K)n−1/3 Sample Sizes

K = 250 350 450 600 1000

1 0.2860 0.2488 0.2210 0.1854 0.1565
0.9474 0.3022 0.2436 0.2210 0.1900 0.1528
0.8947 0.3002 0.2392 0.2152 0.2000 0.1570
0.8421 0.2669 0.2392 0.2202 0.2016 0.1535
0.7895 0.3215 0.2492 0.2266 0.1961 0.1540
0.7368 0.2868 0.2609 0.2183 0.2045 0.1492
0.6842 0.3027 0.2403 0.2236 0.1922 0.1581
0.6316 0.2926 0.2482 0.2275 0.1857 0.1601
0.5789 0.2825 0.2457 0.2194 0.1950 0.1582
0.5263 0.2749 0.2475 0.2154 0.1972 0.1502
0.4737 0.2863 0.2437 0.2172 0.1972 0.1555
0.4211 0.2895 0.2524 0.2231 0.1990 0.1553
0.3684 0.3074 0.2566 0.2043 0.1795 0.1650
0.3158 0.2802 0.2478 0.2221 0.1857 0.1540
0.2632 0.2809 0.2362 0.2189 0.1969 0.1571
0.2105 0.2841 0.2419 0.2135 0.2008 0.1533
0.1579 0.2857 0.2430 0.2179 0.1876 0.1542
0.1053 0.2937 0.2331 0.2209 0.1824 0.1520
0.0526 0.2759 0.2315 0.2069 0.1996 0.1528
0.0000 0.3066 0.2393 0.2245 0.1875 0.1495

the binary variable (Z or D), n is the sample size, and K is the constant of choice which
we vary from 0 to 1. The results in Table 4 demonstrate the mean squared errors across
the Monte Carlo simulations. As one can see from the table, the mean-squared error re-
mains stable across all different bandwidth choices. It is especially visible for sample size
1000. This confirms our theoretical results that if the regularity conditions are satisfied,
the choice of the estimation procedure for non-parametric components of the model
should not have a large impact on the estimated treatment effect parameter.

5. Conclusion

In this paper, we derive the semiparametric efficiency bound for the estimation of a
finite-dimensional parameter defined by generalized moment conditions under the lo-
cal instrumental variable assumptions of Imbens and Angrist (1994) and Abadie, Angrist,
and Imbens (2002). These parameters identify the treatment effect on the set of compli-
ers under the monotonicity assumption. The moment equation characterizes the para-
metrized moment of the outcome distribution given a set of covariates and the treat-
ment dummy. The distributions of covariates, the treatment dummy, and the binary in-
strument are not specified in a parametric form, making the model semiparametric. We
also develop multistep semiparametric efficient estimators that achieve the semipara-
metric efficiency bound. The results of the Monte Carlo simulations demonstrate good
performance of the semiparametric efficient estimator for finite samples.
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