TECHNICAL APPENDIX I
SOURCES OF MACROECONOMIC FLUCTUATIONS: A
REGIME-SWITCHING DSGE APPROACH
(NOT INTENDED FOR PUBLICATION)

ZHENG LIU, DANIEL F. WAGGONER, AND TAO ZHA

In this appendix, we derive the optimizing decisions, describe the stationary equilib-
rium, and derive the log-linearized equilibrium conditions in the paper entitled “Sources
of Macroeconomic Fluctuations: A Regime-Switching DSGE Approach” by Liu, Wag-

goner, and Zha.

I. THE OPTIMIZING DECISIONS

[.1. Households’ optimizing decisions. Each household chooses consumption, in-
vestment, new capital stock, capacity utilization, and next-period bond to solve the

following utility maximizing problem:

Mas(cn 1 ko) EZﬁtAt{log(Ct—th—l)—LLfH(h)”"} W

— 1+n
subject to
_ P _
BCt"—at(It+a<ut)Kt_1)+EtDt7t+1Bt+1 S Wt<h)Lf(h)+BTktuth_1+Ht+Bt+,_rt, (2)
t
I
Kt — (]_ - 5t)Kt—1 + 1 - S I— [t, (3)
t—1

Denote by pu,; the Lagrangian multiplier for the budget constraint (2) and by u the
Lagrangian multiplier for the capital accumulation equation (3). The first order con-

ditions for the utility-maximizing problem are given by

AU = ,Utpt, (4)
Dy = B:ut—i-l 7 5
- e
Mé;:t = {1 = SO) = SN An} + BBk e85 (Aree1) (M) (6)
/~Lt+1pt+1

pte = PE; [pg (1 — dppq) + /~Lt+115t+17”k,t+1ut+1 - a(ugr) |, (7)

Qt—l—l
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where A\, = I,/ 1;_4.

Let qp = @y :ﬁgﬁ denote the shadow price of capital stock (in units of investment

goods). Then, (4) and (6) imply that

1 AU,
0, % {1 =S(\n) = S"(A\r)Ane} + BE, qé;: tzthHS/(Al,t+1)(>\1,t+1)2- (9)

Thus, in the absence of adjustment cost or in the steady-state equilibrium where

S(Ar) = S"(Ar) =0, we have gi; = 1. One can interpret gx; as Tobin’s Q.
By eliminating the Lagrangian multipliers p; and py, the capital Euler equation (7)

can be rewritten as

At A 1Uc i Ak, t+1 a(ui1)

— = BB, —————— [(1 = 0p41) =— + Thpr1Up1 — . 10

Q =P A, U0, e T g (10)

The cost of acquiring a marginal unit of capital is gy, /Q; today (in consumption unit).

The benefit of having this extra unit of capital consists of the expected discounted
future resale value and the rental value net of utilization cost.

By eliminating the Lagrangian multiplier p;, the first-order condition with respect

to bond holding can be written as

AiUcyy1 B

D = .
v = B4 T, Py

(11)

Denote by R; = [EtDMH]_l the interest rate for a one-period risk-free nominal bond.

Then we have

(12)

1 SE, [At+1Uc7t+l _pt ] '

Rt AtUct Pt+1
In each period t, a fraction &, of households re-optimize their nominal wage setting

decisions. Those households who can re-optimize wage setting chooses the nominal

wage Wi(h) to maximize

B ) B¢ A log(Cris — bCipi) — sz—anﬂ(h)Hn] + (13)
i=0
Nt+i[Wt(h)th+iLg+i(h) + Myl (14)

where the labor demand schedule is given by

W(h)Xw i Ot
Lii(h) = (tT:H) Ly,

Huwt
Ot = : 1
' Hwt — 1 ( 5)
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the term my is given by

_ P,
my = Pryu Ky + Uy + By + Ty — PCy — a(]t +a(u) Ki—1) — E¢Dy 1By,
t
and the term x}’,, is given by
A AT P IR S
L= b ]_6
Xt t+i { 1 ifi=0, ( )
A
where A, ;, = 5

The first-order condition for the wage-setting problem is given by

> . LY. (h
By 3360 { - At L ) (1= B} =0, ()
=0
where
aLfﬂ‘(h) —_0,, 'L£l+i(h) _ __ Hwitg Lf+i(h).
oW, (h) CEEWAh) T pa — 1 Wi(h)

Factoring out the common terms and rearranging, we obtain

1 { WA LE (h)"
— S YMwtti
Htyi

Z(ﬁ@)’“t“ Le,(h)

=0

- thHWt(h)} =0.

How,ti — 1

Let MRS,(h) = % denote the marginal rate of substitution between leisure and

income. Then, using (11), we can rewrite the first-order condition for wage setting as
- 7 d 1 w
E E Sth,H-iLt—i-i(h')ﬁ {tw 1 4iM RSy 1i(h) = X Wi(h) } = 0. (18)
- w,t4+1

[.2. Firms’ optimizing decisions. Pricing decisions are staggered across firms. In
each period, a fraction &, of firms can re-optimize their pricing decisions and the other

fraction 1 — &, of firms mechanically update their prices according to the rule
Py(j) = w7 P (j), (19)

If a firm can re-optimize, it chooses P,(j) to solve

Maxp,y By Y & D0 il PG4V (5) — Vi (5)], (20)

1=0

subject to

Hp,t+i

) P( )X i T Hptgi ]
Y, () = Tt Xt Yisi, (21)
Pt—l—z
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where V;,;(j) is the cost function and the term Xf, ++; comes from the price-updating

rule (19) and is given by

I o7 gt ifi>1
P _ k=1"t+k—1 — 22
Xii {1 if i = 0. (22)
The first order condition for the profit-maximizing problem yields the optimal pricing
rule
— i L1 . .
Er Y & DY () >ﬁ [p4:Pe4i(F) = Po(3)XE 4] = O, (23)
it

i=0
where @,.;(j) = OV;4:(4)/0Y,%,;(j) denotes the marginal cost function. In the absence
of markup shocks, p,; would be a constant and (23) implies that the optimal price is
a markup over an average of the marginal costs for the periods in which the price will
remain effective. Clearly, if {, = 0 for all ¢, that is, if prices are perfectly flexible, then
the optimal price would be a markup over the contemporaneous marginal cost.
Cost-minimizing implies that the marginal cost function is given by
g — 1
(i) = [atBay (B2) ] vy (24

t

where & = a; “ o, ** and ry; denotes the real rental rate of capital input. The condi-

tional factor demand functions are given by

- . Yi(9)
W, = (I)t(J)OQ N (25)
L{(j)
_ ~ Y()
Pt’r’kt = @t(])al NG (26)
K (j)
It follows that
_ K
Wi _02Kil) e (27)

Pry a1 L{(j)
[.3. Market clearing. In equilibrium, markets for bond, composite labor, capital
stock, and composite goods all clear. Bond market clearing implies that B; = 0 for all
t. Labor market clearing implies that fol L,{ (j)dj = L;. Capital market clearing implies
that fol K!(j)dj = w,K,_,. Composite goods market clearing implies that

1
Ct + a[[t + a(ut)Kt_l] + Gt = }/;f, (28)
t

where aggregate output is related to aggregate primary factors through the aggregate

production function
Gpth = (Uth—l)al(ZtLt)a2> (29)
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Hpt 1

with G, = fo (Pt(] >_“”t71 “17°2 1i measuring the price dispersion.

t

II. STATIONARY EQUILIBRIUM CONDITIONS

Since both the neutral technology and the investment-specific technology are growing
over time, we transform the appropriate variables to induce stationarity. In particular,

we denote by X, the stationary counterpart of the variable X; and we make the following

transformations:
~ Y; =~ Cy = I = G, -~ K,
t )\:7 t )\:7 t Qt)\;;” t )\:7 t Qt)\;kj
W ~ g *
Wy = ?;\}, Tkt = Tthu U = Uct)\ta

where the underlying trend for output is given by

A= (Z02Q5) e

II.1. Stationary pricing decisions. In terms of the stationary variables, we can

rewrite the optimal pricing decision (23) as

[e.9]

; ~ ~d . 1 4
Eq Z(ﬂgp)ZAtHUCJHY;C—ll—i(])m[Mpi—i—iﬁbt—i-i(]) P Zipyil = 0. (30)
i=0 Pttt
In this equation, Yf_lH( ) = t“ ) denotes the detrended output demand; p; = P}(j)

denotes the relative price for optlmlzlng firms, which does not have a j index since all
optimizing firms make identical pricing decisions in a symmetric equilibrium; the term

p .
Zy 4y 18 defined as

X?t i
p [p— 77 +Z (31)
tt ;
o H;gzl Ttk

and finally, the term ¢,,;(j) = q)}“(] denotes the real unit cost function, which is given
by

~ [e%1 * a2 n
. o Tkt Ay a1tes N—L 1
Geri(J) = [Of(cg;,) (wt+i—Zi+,) ] Y ()mee
+17 +17

1 1
= & (’Fk,t-i-i)al (Wyq4) 2] Prvez )/;ii(])al+a2 g (32)
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The demand schedule fﬁil( j) for the optimizing firm j is related to the relative price

and aggregate output through

§ Pi(G)xP ]
}/;il (]) — t(])Xt,t+z Y;_i_l
Py
. P p,t+1 ~
= [M?i)(ﬁtﬂ} Yiyi
= P20l Vi (33)
Combining (32) and (33), we have
Gri(§) = Graalp; 20, )0+ (Vi) (34)
where @ = 1=91=22 4554
a1 ta2
- 1
Grpi =[O (Trpgd) ™ (Weps) 2] 71002 (35)

Given these relations, we can rewrite the optimal pricing rule (30) in terms of sta-

tionary variables

= AUV (5
EtZ(ﬁgp)l t+ gttt (j)

i—o Ppiti — 1

where ¢ is defined in (35).

[Mp,t+z’¢~5t+z' [p:ijtH]_ep’t“&(ﬁﬂ)a - p:Z£t+i] =0, (36)

II.2. Stationary wage setting decision. Using (4) and (11), we can rewrite the

optimal wage-setting decision (18) as

N AviUeiri Py 1 L ()" _
E w) — T Z L (h) [ty i ——— P,y — Wi (h) XY, ] = 0,
t;(ﬁf ) AU P t+z( ),Uw,t—i-i — 1[# At Unir T i ( )Xt7t+l]

(37)

where the labor demand schedule L{, ,(h) is related to aggregate variables through

Wit ]
Li(h) = Tm] Lyt (38)
+1
r T _911) t+1
Wy
= _wt Wyes Xt,t+i:| Lty (39)
- . = -0
wtpt)\: w,t+1
— U wo L 40
_wt Wi PNy Xt’tﬂ} " 40)
r 5~ w —0y t+i
_ “it wy : Xt t+i Loss (41)
| Wit [T 7Tt+k>\;t+i
'w:wt w _ew,t+i
= | = Ziy Liyi, (42)
| Wi
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3 w
with 7}, ; defined as
w
Xt t+i
i P
[T 7Tt+k)‘t,t+i

Further, we can rewrite the individual optimal nominal wage W;(h) as

w —
Zt,tﬂ =

Wt(h) = w:Wt = w;kﬁ)tpt)\:

Given these relations, we can rewrite the wage setting rule (37) in terms of the

stationary variables. With some cancelations, we obtain

oo i 7 d %~ —NOw,tvi TN
iAt+iU07t+iLt+i(h) Wy Wt i %~ 7w _
Ey (BEw) 1 P+ | = Zt,t—l—i = — Wy tht,t—I—i =0.
i=0 k=1 Fow,t+i — Witi e tti

(44)

I1.3. Other stationary equilibrium conditions. We now rewrite the rest of the
equilibrium conditions in terms of stationary variables.

First, the optimal investment decision equation (9) can be written as

AfQr A Uc,t+1

1=qu{l=SOn) = S (A\re)A\re} + BEqriia N O A, S' Arae1)(Are1)?,
(45)
where B
I LO N
>\It _ t tQt t (46)

Iy a it—th—IA:_1.

Second, the capital Euler equation (10) can be written as

AraUciin N Q
AU, M@

Third, the optimal capacity utilization decision (8) is equivalent to

qre = PE; (1 = 01 Q1 + Thprrtepr — aterr)] - (47)

Tre = a' (uyg). (48)

Fourth, the intertemporal bond Euler equation (12) can be written as

1 N AU, 1
I /BEt *t t+1 _ 7t+1 ) (49)
Ry )‘t—i-l AUy i1
Fifth, the law of motion for capital stock in (3) can be written as
5 N Qi - By
K= (1—6)2 =K, 4+ 1= SO (50)
)\t Qt
Sixth, the aggregate resource constraint is given by
N O, 3 L
Ct + [t + t_th 1a(ut)Kt_1 + Gt = }/;f (51)

AL Qe
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Seventh, the aggregate production function (29) can be written as

Ar1@i-1
AT Qy

Eighth, firms’ cost-minimizing implies that, in the stationary equilibrium, we have

ay
GptY; = |: uth_1:| L?z (52)

w o N Qi1 w K-
N_t — _2 t iQt 1 Ut t—1 ) (53)
Tkt ar AN Qr Ly
Finally, we rewrite the interest rate rule here for convenience of referencing:
s o e
R, = kRY" ! VAL eIt 54
t t—1 < T+ (St) ) t ( )

III. STEADY STATE

A deterministic steady state is an equilibrium in which all stochastic shocks are
shut off. Our model contains a non-standard “shock”: the Markov regime switching
in monetary policy regime and the shock regime. In computing the steady-state equi-
librium, we shut off all shocks, including the regime shocks. Since there is a mapping
between any finite-state Markov switching process and a vector AR(1) process (Hamil-
ton, 1994), shutting off the regime shocks in the steady state is equivalent to setting
the innovations in the AR(1) process to its unconditional mean (which is zero). In such
a steady state, all stationary variables are constant.

In the steady state, p* = 1 and ZP = 1, so that the price setting rule (36) reduces to

1 1 ~
— = [artw?]erter YO (55)
Hp
That is, the real marginal cost is constant and equals the inverse markup.
Similarly, in the steady state, w* = 1 and Z" = 1, so that the wage setting rule (44)

reduces to
- LT
W = ypy—=—, 56
B (56)
which says that the real wage is a constant markup over the marginal rate of substitu-
tion between leisure and consumption.

Given that the steady-state markup, and thus the steady-state real marginal cost,
is a constant, the conditional factor demand function (26) for capital input together
with the capital market clearing condition imply that

a1 Y A\

T = e 57
k/ipK ()
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The rest of the steady-state equilibrium conditions for the private sector come from

(45) -(53) and are summarized below:

1 = (k, (58)
Ag\*
= 16+, (59)
g
fo= d(l), (60)
)\*
R = —m, 61
3 (61)
I 1-6
— = 1-— 62
K A (62)
Y = C+I1+G, (63)
N \"
Y = Lo 64
(£) o
w1 K
e AN L (65)

IV. LINEARIZED EQUILIBRIUM CONDITIONS

We now describe our procedure to linearize the stationary equilibrium conditions

around the deterministic steady state.

IV.1. Linearizing the price setting rule. Log-linearizing the price setting rule (36)

around the steady state, we get

00 i A A A " A A
E¢ln Z(ﬂfp) exp {at+i + i yi + G (h) — i i it + fpirit
i=0 P

q;t—l—i — Opalpy + 27, + dﬂt+i}

~ i A N N 1% A A 5
~ By IHZ(ﬁ&;) exp {a't-i-i + Uetyi + y§l+i(h) - L fip i + D)+ Zf?m} ;

i—0 pp — 1
where
b, = Pl Ugti - 66
Pryi ot (17 s + Q2] (66)
Collecting terms to get
By > (88 {fipasi + Guii — 0,155 + L] + s |
i=0

~E Y (86) {5+ L}

1=0
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Further simplifying

1+0, a = i [~ 2 .
Ey Z(ﬁfp) {Np,t+i + G + QG — (1 + epa)thﬂ}
1-8 Ep i=0
Denote mc;; = (Z)t +; T aiyi. Expanding the infinite sum in the above equation, we
get
1+ab, R . 5
—— P, fipt + micy — (14 0,0) 2,
1-— ﬁgp

+ BEEfp 1 + mcgs — (146 @)thﬂ]
+ (ﬁgp) Eilfip 2 + micipa — (14 0,0) tt+2] +.
Forwarding this relation one period to get

1+ adb,

1= 6€ppt+1 fipi+1 + mceq — (140 a) 41,441

+ BEE i [fipiye + e — (140 @)Zfﬂ 1+2]
+ (B&) et [fipars + micies — (14 6,0) 2 145] + -
Moving the Z7,,; terms to the left, we have
14 ad

1— ngﬁ: (14 Gl B[ ZF, + BEZP oy + ] = fips + mic
p

+BEp e fip 11 + Micei]
+(5§p)2Et [fip.tro + Mo + ...

= [l + Micy

+B8p 1 tgzz i1+ (1 + dep)Et[ZAf-‘rl,t—i-l + ﬁngf+l,t+2 + ..
Since Zﬁt =0, we have

Tt

+ (14 a0,)86E Y (B8 (Ziin = Zhpinl- (67)
i=0
Using the definition of Z, ; in (31), we obtain
th+z+1 = —[Rerit1 — Whei T+ Fopr — W]
Zt—l—l,t—l—i—l—l = —[Ferir1 — Wlewi + -+ T2 — Vpher]-

Thus,

7P 7P _ 2 A
Zt+1,t+z’+1 - Zt,t—l—i—‘rl = Te41 — VpTe;
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and the Z? terms in (67) can be reduced to

o0 R 1 . X
Z(ﬁfp) 12y, 41, t4i+1 Z§t+z’+1] =1 ar [Ter1 — Ype]-
i=o 1= B¢
Substituting this result into (67), we obtain

L 1758

by = 1+ 9 (,upt + mct) + ﬁprtptH + ﬁprt [7Tt+1 - thﬂt] (68)

This completes log-linearizing the optimal price setting equation. We now log-linearize

the price index relation. In an symmetric equilibrium, the price index relation is given
by

1
1 1=ppt L
1= [Tt 77 4 (- )0, (69)
Ty
the linearized version of which is given by

Ak gp
pt_l_é-p

Using (70) to substitute out the p; in (68), we obtain

&
1—§p

(f1 = Aptoc): (70)

[7ATt - ’Ypﬁt—l]

— B&
1 + ab,

(fipe + micy)

+B£p1 e ¢ B[t — Y] + BEE T — 7t

or
Kp

t = Vple—1 = m(ﬂpt + mct) + BB — ’YpﬁtL (71)
where the real marginal cost is given by

1
o)+«

me; = (1T gt + QW] + QY. (72)
2

and the term r, is given by

L (1-88)(1-8)
P — gp

This completes the derivation of the price Phillips curve.
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IV.2. Linearizing the optimal wage setting rule. Log-linearizing this wage deci-
sion rule, we get

- 7 ~ ~ 7 Hw ~ ~
E;In Z(ﬁfw) exp {at—i-i + Uty + lf+i(h) - ﬁuw,tﬂ + fhwt+i—
i=0 w
n@w [’UAJ;: + wt - UA)H_Z' + Ztlf)t+i] + nZt+i - ac,t—l—i}

~ E,;In Z(ﬁﬁw)i exp {&t+i + i + 15 (R) — L

2 t4i o — 1 oy i + Wy + Wy + ZAquz} :
Collecting terms to get
E; i(ﬁfm)i {ﬂw,tﬂ' — N0 [W] + Wy — Wy + ZAZUt—H] + nlys — ﬁc,tﬂ'}
i=0
~E, i(ﬁgw)i {ar -+ + 2}
i=0
Further simplifying
%(U}: ) = Ey g(ﬁﬁw)i {ﬂw,t+i + nZt+i — Uepyi + NOWigs — (1 + n9w>2t1f)t+i} .

Denote mrs;,; = Uit+z' — Ucy4i. Expanding the infinite sum in the above equation,
we get

L+n0w ) . . . S w
1_g§ (W; + ) = flgy +mirs; — Wy + (1 +n0y) (W — Z}4)

+ BEE[flw 1 + mirsi1 — W1 + (1 4+ 00y) (W1 — ZAtlf)t+1)]

(B&w) Et[fiw,ir2 + mirsips — Wi + (1 + nby) (Wego — ZAtL:]t—i-2)] +...
Forwarding this relation one period to get

1400, ., )
1— Bé, (W1 + Wetr)

~

flwp1 + s — Wiy + (L +000) (W1 — 2451 414)

+ BB [flwito + mirsig — Wipo + (1 + 10y) (Wigo — ZAE}-LHQ)]

_|_

(B&w) Bt [ p+3 + mirseys — Wies + (1 + 10,) (Wers — Zﬁr1,t+3)] +...
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Moving the Z},,; terms to the left, we have

1416,
1-— 5&1}
+BEwE [ flw, 11 + mMirsier — Wiy + (1 4 0y ) Witq]

+(BEw)* B[l t42 + mrsiio — Wera + (1 + 0y )Weaa] + . . .

(7 + in) + (14100 B[22+ BEZE 1 + -] = fla + mirsy — iy + (14 0B, )i,

= /jl’wt + mA'f’St — wt -+ (1 + n@w)wt

I+ 779w A ~ Zw Zw
+ﬁ£wEt q(wtﬁ‘l + ’UJt+1) + (1 + n9w)[Zt+l,t+l + 5£th+l,t+2 + ] s
Since Zf‘; = 0, we have
1410y, ., . . ) . . T+n0y ., ., .
1 (W] + W) = o +mrs; — Wy + (14 nby)w + 6§w7nEt(wt+1 + Wyi1)
1 — B8 1 — B&w
+ (L4 700) BB Y (BEw) (281 mier — i) (73)
i=0
Using the definition of Z{, ,; in (43), we obtain
ZAtlf)t—l—i—i—l = —[Tigit1 = YoTiegi T+ Tp1 — Yol
Zﬁu,tﬂ'ﬂ = —[Mprit1 — Yol + -+ T2 — Yoleg1]-
Thus,
e tiritl — Zitriel = Tl — Yot
and the Z" terms in (73) can be reduced to
- i 7w Zw 1 A ~
Z(ﬁfw) [Zt+1,t+i+1 - Zt,t+i+1] = q[ﬂt—l—l — YTt
i=0 w

Substituting this result into (73), we obtain

1_5&0

1410 (e s =10 )+ (1—=BEy )W+ BEWE (W +q1 ) +BEwEe [Te1 — Ve

(74)

This completes log-linearizing the wage decision equation. We now log-linearize the

A% |
w, +wy =

wage index relation. In an symmetric equilibrium, the wage index relation is given by

11 T pay
=&, |22t et | (1= g (w]) (75)

the linearized version of which is given by

~ %

w, = 1 fwg (W — Wiy + T — YT—1)]- (76)
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Using (76) to substitute out the w; in (74), we obtain

w

’UAJt + 1 — é_w [wt — wt_l + ﬁt - r)/wﬁ-t—l]
1—pB¢&, . . . A
- ﬁ(ﬂwt +mirs, —wy) + (1 — B,y
+ﬁ5wEt {wt—l—l + 71 Ewg [wt+1 — Wy + M1 — %ﬁt]} + ngEt[ﬁt—l—l - %uth],
or
~ ~ _'_ ~ ~ '%w (A _'_ A ~ )_'_
Wy — Wy— T — YTl = ——— ([l mrs; — w
t t—1 t — YwTit—1 1+ 10, Mt t t
ﬁEt [wt+1 - wt + ﬁt-‘,—l - Vwﬁ-t]a (77)
where k,, = %

To help understand the economics behind this equation, we define the nominal wage
inflation as B B
Wt wtpt)\* ’lIJt *
=== T Tt (78)
Wi wt—lpt—l)\t_l Wt—1

The log-linearized version is given by

w
Ty

'ﬁ‘;u — wt —'lZ]t_l ‘l"frt +A)\;k,
where Az = vy — x4 is the first-difference operator and \; = ﬁ(oq(]t +sZ;). Thus,

the optimal wage decision (77) is equivalent to

w . Kw . ) w X
7 — Y1 = W(th + mirs, — W) + PE(7 ) — YwTte)
1 . . . .
‘|'1 o (1 (AZ — BEAZ 1) + ao(AG — FEAG41)]. (79)
-

This nominal-wage Phillips curve relation parallels that of the price-Phillips curve and

has similar interpretations.

IV.3. Linearizing other stationary equilibrium conditions. Taking total differ-

entiation in the investment decision equation (45) and using the steady-state conditions
that S(A;) = S'(A\r) = 0, we obtain

e = S"ODN; [y = BEA ] (80)

which, combined with the definition of the investment growth rate

. A 1
)\It = Alt + 1 [A(jt + OZQAZA’t], (81)

implies the linearized investment decision equation in the text.
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Taking total differentiation in the capital Euler equation (47) and using the steady-
state conditions that ¢y = 1, u = 1, a(l) = 0, 7, = d/(1), and %(1 — 0+ 7)) =1, we

obtain

. R ~ S . B R . .
are = By {Aat—l—l + AU 1 — AN — Ay + \ [(1 — 0) k41 — 00141 + Tkrk,t+1:| )
I

(82)

which, upon substituting the expressions for the AX;‘ and Ag;, implies the linearized
capital Euler equation in the text.

The linearized capacity utilization decision equation (48) is given by

’fjkt = O'u’llt, (83)

— a//(l)

where o, = (1)

evaluated at the steady state.

is the curvature parameter for the capacity utility function a(u)

The linearized intertemporal bond Euler equation (49) is given by
O - Et [Adﬂ_l -+ AUC,H-I - Aj\;_l + lf{t - ﬁt-‘,—l y (84)

which, along with the definition of the exogenous term Aj\;f 1, implies the linearized
bond Euler equation in the text.

Log-linearize the capital law of motion (50) leads to

14 . §~ I,
ky = ki1 — AN — AG| — —6;, + =1 85
t iy [kt—1 ¢ Gt Y t+KZta (85)

which implies the linearized capital law of motion in the text.

To obtain the linearized resource constraint, we take total differentiation of (51) to

obtain
Y = Cth + 'éyit + uyut + gygt, (86)
_C ;, _ 1 _ K _G
where ¢, = 7o ly = 7o Uy = P and g, = 7

Log-linearizing the aggregate production function (52), we get
Yy = O‘l[l%t—l + Uy — Aj\: — Ag] + Oé2zt

(OégAét + cht) + OéglAt. (87)

= kt—l _'_ﬂt —

The linearized version of the factor demand relation (53) is given by

wy = f’kt‘l'l%t—l‘l'ﬁt—Aj\:—A@t—Zt

R - . 1 . N7
= Tkt + kt—l + Ut — 1 (CYQAZt + Aqt) — lt (88)
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Finally, linearizing the interest rate rule (54) gives
Ry = peRecy + (1= pr) [0 (Fe = 7 (1)) + byl + O, (89)
where
7 (s;) = logm*(s;) — log .
Note that, with regime-switching inflation target, we have

T (st) = s = 1" (1) + s, = 2}77(2) = [77(1), 77(2)]es,,

where
| s =1}
“ T s = 2|

It is useful to use the result that the random vector ey, follows an AR(1) process:
€s, = Qest71 + Ut,
where () is the Markov transition matrix of the regime and E;_;v; = 0.

IV.4. Summary of linearized equilibrium conditions. We now summarize the
linearized equilibrium conditions to be used for solving and estimating the model.

These conditions are listed below.

K

T — Wphe—1 = ﬁ(ﬂpt +micy) + BE[Fer1 — YpTiel, (90)
. . R Kw . N X
Wy — Wy + T — Yol—1 = m(ﬂwt + mirsy — ) +
BE [ 1 — W + Tp1 — V). (91)
A 1
Gie = S"(\)AF {Ait + T (AG: + aaAZy)
- ]
A 1 . .
—BE; |:A'Lt+1 + o (A4 + 02A2t+1)] } (92)
. . - 1 . .
Gkt = Ei {Aat+1 AU — T [a2AZi11 4 Agesa]
B . N .
UbY (L= 0)dk,t4+1 — 66141 + Fufhqr| ¢ (93)
fkt = Uuﬁt, (94)
. - 1 . . - .
0 = E; |:Aat+1 =+ AUc,t-l—l — 1— o [OéQAZtJ,_l + alAqu] + R; — 7Tt+1:| R (95)
. 1—-6 1. 0 - 1—-60\-
ke = ki1 — Az +AG)| — —0 1-— ) 96
t N {tl 1_a1(0<2 Zt + Qt)} /\1t+< N >Zt7 (96)
G = eyl + iy + uyty + gydr, (97)

. A 1 o A
U = o [ktl + Uy — 1 (aAZ, + A%)} + anly, (98)

—
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Wy = TPt l%tfl + iy — — (2AZ + Agy) — it’ (99)
R, = ertfl + (1 =pr) [¢7r(ﬁ't —#*(s") + (byyt} + Oriert, (100)
where
. 1 . . .
me, = PO [C1Tre + qoty] + @y, (101)
mArst = 7’][15 — Uctu (102)
> ﬂb(l B pa) ~ /\* ~ ~ N
Uer N5 T By =gy G T Hem = AA)
b N 3 .
.E AN — béy], 1
O 0 P A ol e
(se) = [77(1), T°(2)]es,, es, = Qes,_, + 1, (104)
(105)
and the steady-state variables are given by
o= Of-(1-0) (106)
g
S
uy = —— =4 (107)
YAr Hp
T (1)
iy = [Ar—(1-0)] R (108)
¢y = 1—1iy,— gy, (109)

1 1

with A\ = (AA2?) o0, A = (A22AY) Ter, AN = L (aAG + apAZ), and gy cali-

t = 1-ag

brated to match the average ratio of government spending to real GDP.

Recall that 0, = %, Az = T — Ty, Ky = (1—6621(1—673)

Ry = %, and ﬁ';u :wt_wt—l+ﬁt+A5\:>

— l—a1—an — H
“ortar s B =

» &= a1taz = ho—17

To compute the equilibrium, we eliminate @, by using (97), leaving 10 equations
(90)-(96) and (98)-(100) with 10 variables ,, @y, %4, Gre Prts Cts Kes G, by and Ry. Out
of these 10 variables, we have 7 observable variables, that is, all but ¢, 7, and l%t, for
our estimation. We also include the biased technology shock ¢; in the set of observable

variables.

V. GENERAL SETUP FOR ESTIMATION

In this section, we describe our empirical strategy in general terms so that the method
can be applied to any state-space-form model.

Consider a regime-switching DSGE model with s; following a Markov-switching pro-
cess. Let 0 be a vector of all the model parameters except the transition matrix for
s;. Let y; be an n x 1 vector of observable variables. In our case, n = 8. The vector

y; is connected to the state vector f;. For our regime-switching DSGE model, this
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state-space representation implies a non-standard Kalman-filter problem as discussed
in Kim and Nelson (1999).

Let (Y, 0,Q,S;) be a collection of random variables where

}/;f = Y1, - 7yt> (R”)t ’
0 = (0i);ey € (R’“)

(

(

Q = (G)esenxn € R,

S, = (sg,---,8)€ H™
(

T—t
St—i—l = (St41, " ST)GH )

and H is a finite set with h elements and is usually taken to be the set {1,---, h}.
Because s; represents a composite regime, h can be greater than the actual number
of regimes at time t. The matrix @) is the Markov transition matrix and ¢; ; is the
probability that s; is equal to i given that s, is equal to 7. The matrix () is restricted
to satisfy
gi; > 0 and Zq,-vj =1
icH

The object 6 is a vector of all the model parameters except the elements in ). The
object S; represents a sequence of unobserved regimes or states. We assume that
(Y;,0,0Q,S;) has a joint density function p (Y, 6, @, S;), where we use the Lebesgue
measure on (R")" x (R")" x R" and the counting measure on H™'. This density

satisfies the following key condition.

Condition 1.
p (st | Y;f—la 9) Q> St—l) = sy,s0 1
for t > 0.
V.1. Propositions for Hamilton filter. Given p(y; | Yi_1,0,Q,s;) for all ¢, the

following propositions follow from Condition 1 (Hamilton, 1989; Chib, 1996; Sims,
Waggoner, and Zha, 2008).

Proposition 1.

p(se | Vi1,0,Q) = > a0 (5121 Yi1,6,Q)

st—1€H

for ¢ > 0.
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Proposition 2.

p (yt | }/;5—17 97 Qv St)p (St ‘ }/;—17 97 Q)
ZSt—lEHp (yt | Y;—la 9) Q> st)p (St | Y;—la 97 Q)

p(8t|}/;f>9>@):
for t > 0.

Proposition 3.

P(St | Y;,0,Q, 5t+1) =D (St | YT>9>Q’S£1)
for0<t<T.

V.2. Likelihood. We follow the standard assumption in the literature that the initial
data Yp is taken as given. Using Kim and Nelson (1999)’s Kalman-filter updating

procedure, we obtain the conditional likelihood function at time ¢

p (yt ‘ }/;—17 97 Q7 St) . (110)

It follows from the rules of conditioning that

p(yt> | }/;—1797@) = Z p(ytast | )/;—179762)

st€H

= Z p(yt ‘ }/;—17‘97 Qv St)p(st | }/;—1797@) .

st€H

Using (110) and the above equation, one can show that the likelihood function of Y7 is

T
p(Vr|6,Q) =]]pw|Yi1,6,Q)
t? (111)
= H Zp(yt | 3@—1,9769731‘/)]9(515 ‘ Yi1,0, Q) .
t=1 |Lsi€H

We assume that p (so | Yo,60,Q) = + for every sy € H.' Given this initial condition,

the likelihood function (111) can be evaluated recursively, using Propositions 1 and 2.

V.3. Posterior distributions. The prior for all the parameters is denoted by p (6, @),
which will be discussed further in the main text of the article. By the Bayes rule, it
follows from (111) that the posterior distribution of (0, Q) is

p(0,Q | Yr) o< p(0, Q)p(Yr [ 0,Q). (112)

The posterior density p(6,Q | Yr) is unknown and complicated; the Monte Carlo
Markov Chain (MCMC) simulation directly from this distribution can be inefficient

IThe conventional assumption for p (so | 6,Q) is the ergodic distribution of @, if it exists. This

convention, however, precludes the possibility of allowing for an absorbing regime or state.
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and problematic. One can, however, use the idea of Gibbs sampling to obtain the
empirical joint posterior density p(0,Q,Sr | Yr) by sampling alternately from the

following conditional posterior distributions:

p(St | Yr,0,Q),
p(Q | YT>ST>9)>
p(0 | Yr,Q, Sr).

One can use the Metropolis-Hastings sampler to sample from the conditional posterior
distributions p(@ | Yr, @, Sr) and p(Q | Yr, S7,0). To simulate from the distribution

p(St | Yr,0,Q), we can see from the rules of conditioning that

p(Sr | Yr,0,Q) =p(sr | Yr,0,Q)p (Sr—1 | Yr,0,Q,S7)

71 . (113)
=P (ST | YT7 97 Q) Hp (St | YT7 97 Q’ St+l)

t=0

where S%. | = {si+1,- -+ ,s7}. From Proposition 3,

p (st | YTaeaQaStJ:H) :p(St | Y;beaQaSt—i-l)
_ p (st 8041 | Y1,0,Q)
(

p(5t+1 | Y, 0, Q)
p(sie1 | Y4,0,Q.5)p (50| i,0.Q) (114)
p(5t+1 | Y, 0, Q)
s, P (501 Y1,0,Q)
B p(5t+1 | Y, 0, Q)

The conditional density p (st | Yr, Z7,0,Q, Sﬁl) is straightforward to evaluate accord-
ing to Propositions 1 and 2.

To draw Sp, we use the backward recursion by drawing the last state sy from the
terminal density p(sr|Yr, 6, Q) and then drawing s; recursively given the path Sf,
according to (114). It can be seen from (113) that draws of Sy this way come from
Pr(Sr|Yr,0).

V.4. Marginal posterior density of s;. The smoothed probability of s; given the

values of the parameters and the data can be evaluated through backward recursions.
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Starting with sy and working backward, we can calculate the probability of s; condi-

tional on Y7, 60, Q) by using the following fact
p(se | Yr,0,Q) = Z p(st, 8641 | Y7,0,Q)

st+1€H

= Z p(st | Yr,0,Q,8041) p(se41 | Y7,0,Q)

St+1 cH

where p (s; | Y3, 0,Q, s;11) can be evaluated according to (114).
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TECHNICAL APPENDIX II
SOURCES OF MACROECONOMIC FLUCTUATIONS: A
REGIME-SWITCHING DSGE APPROACH
(NOT INTENDED FOR PUBLICATION)

ZHENG LIU, DANIEL F. WAGGONER, AND TAO ZHA

This technical appendix differs from Technical Appendix I by allowing the price and
wage indexation rules and the interest rate rule to reflect regime changes in the inflation
target. Under this alternative specification, we derive the optimizing decisions, describe
the stationary equilibrium, and derive the log-linearized equilibrium conditions in the
paper entitled “Sources of Macroeconomic Fluctuations: A Regime-Switching DSGE
Approach” by Liu, Waggoner, and Zha.

For a quick reference, the equations affected by the dynamic indexation rules and
the dynamic Taylor rule include (16), (19), (22), (68), (69), (67), (70), (71), (72), (73),
(76), (78), (79), (80), (82), (93), (94), and (103).

I. THE OPTIMIZING DECISIONS

[.1. Households’ optimizing decisions. Each household chooses consumption, in-
vestment, new capital stock, capacity utilization, and next-period bond to solve the

following utility maximizing problem:

Maxico i Y8 {loa(Co— b0 = Lok mr) )
t=0

subject to

_ P _
Ptot+§t([t“‘a(ut)Kt—l)+EtDt,t+lBt+l < W@(h)Lf(h)+Brktuth_1+Ht+Bt+Tt, (2)

t

K, =(1—6)K |+ {1 -5 (%)] I, (3)

Date: January 24, 2011.
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Denote by p; the Lagrangian multiplier for the budget constraint (2) and by py, the
Lagrangian multiplier for the capital accumulation equation (3). The first order con-

ditions for the utility-maximizing problem are given by

AtUct = Mtpw (4)
Dt,t+1 = BMHla (5)
e
p /! !
Mé) - = e {1 = S(Ar) = S" (M) Are} + BEupin 1415 ()\I7t+1)()‘17t+1)2 (6)
t
> /~Lt+1pt+1
Hikte = BEt ,uk,t—l—l(l - 5t+1) + Mt+1pt+17”k,t+1ut+1 - TCL(Ut+1) > (7)
t+1
a(u
e = L2, )

where A\, = I,/ 1; 4.
Let gy = Q¢ :ﬁgﬁ denote the shadow price of capital stock (in units of investment
goods). Then, (4) and (6) imply that

qkt ’ qk,t+1 At+1Uc t+1 o 9
1—SA\e) = S"Ar) A\t + BE S(\ A . 9
Qt Qt{ S(Ar) = S (Ar)Are} + 8 O Al (Are+1) (Are+1) (9)

Thus, in the absence of adjustment cost or in the steady-state equilibrium where
S(Ar) = S'(Ar) = 0, we have g = 1. One can interpret g, as Tobin’s Q.
By eliminating the Lagrangian multipliers u; and py, the capital Euler equation (7)
can be rewritten as
Ari1Uc i1
AtUct

alu
(1 o 5t+1)qk Jt+1 _'_Tk Ul — ( t+1) ) (10)

Qt—l—l Qt+1

The cost of acquiring a marginal unit of capital is gy, /Q; today (in consumption unit).
The benefit of having this extra unit of capital consists of the expected discounted
future resale value and the rental value net of utilization cost.
By eliminating the Lagrangian multiplier p;, the first-order condition with respect
to bond holding can be written as
AiUppin P,
AUy P

Dt,t-l—l = ﬁ (11)

Denote by R, = [E;D;;41]7" the interest rate for a one-period risk-free nominal bond.

Then we have

]- [At+1UC7t+l pt :| (12)

— = BE -
Rt ! AtUct Pt+1
In each period t, a fraction &, of households re-optimize their nominal wage setting

decisions. Those households who can re-optimize wage setting chooses the nominal
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wage Wi(h) to maximize

Be Y 56 A 08(Cras = WCrsimr) = - L (047 + (13
i=0
Ht+i[Wt(h)th+iLg+i(h) + Myl (14)
where the labor demand schedule is given by
Wi(h)X s e Hawt
Li(h) = | —=——5 Liyi, Ouw = ——, 15
L) = (ST ) h = L (15)

the term my is given by
_ . P,
my = Prpu Koy + 11, + B, + T, — P,Cy — a(ft + a(uy) Ki—1) — EeDy 441 Biya,
t
and the term x;’,,, is given by

" I,  m (se) N, i >1
Xt’t_i_i :{ k=1"t+k—1 t,t+ (16)

1 if i =0,
Mt and 7*(s;) is the regime-dependent inflation target.

)\t
The first-order condition for the wage-setting problem is given by

where A7, =

3 (86 { A Ll 0 ) 41— bt | =0, (1
tizo w t+1 t+1 8Wt(h> t+1 w,t+1 ) Xt t+iHt+i )

where

aL?ﬂ(h) Lf+i(h) _ Hwgti Lg—l—i(h')

U et =

aWt(h) Wt(h) Pow,t+i — 1 VVt(h) .

Factoring out the common terms and rearranging, we obtain

B Y06 EE L) {u—()

— X rriWe(h } =0.
i=0 t P, i — 1 t+iWi(h)

ot+i

Let MRS, (h) = M%g(h)n denote the marginal rate of substitution between leisure and

income. Then, using (11), we can rewrite the first-order condition for wage setting as

1

Mo ,ti — 1

By Y €L Dusii LYy (h)

=0

{#tw,01iM RSy 1i(h) = x5 Wi(h) } = 0. (18)
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[.2. Firms’ optimizing decisions. Pricing decisions are staggered across firms. In
each period, a fraction &, of firms can re-optimize their pricing decisions and the other

fraction 1 — &, of firms mechanically update their prices according to the rule
P,(j) = 2,7 (s0)' 7" P (), (19)

If a firm can re-optimize, it chooses P;(j) to solve

Maxp, ) B Z f;f;Dt,tJri[B(j)X‘ZHthii(j) — Vit (4], (20)
i=0
subject to
Hp t+i
. P (j)Xp AN
Vi, () = (7t Iz HE ) Yiti, (21)
t+i

where V;,;(j) is the cost function and the term Xf, ++; comes from the price-updating

rule (19) and is given by

XY s = 1 T T () T i > 1 (22)
t,t+1 1 0
The first order condition for the profit-maximizing problem yields the optimal pricing
rule
B> DY) [ineri®eal) = PONE] =0, (29)
=0 pit+i

where @,.;(j) = OVi4:(4)/0Y,%;(j) denotes the marginal cost function. In the absence
of markup shocks, p,; would be a constant and (23) implies that the optimal price is
a markup over an average of the marginal costs for the periods in which the price will
remain effective. Clearly, if {, = 0 for all ¢, that is, if prices are perfectly flexible, then
the optimal price would be a markup over the contemporaneous marginal cost.

Cost-minimizing implies that the marginal cost function is given by

. = e (W wras 1
o) = [t () |7 vt (24)
t

where & = o] “a;“* and ry; denotes the real rental rate of capital input. The condi-

tional factor demand functions are given by

V_Vt = @t(j)%
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It follows that
W, _ Q2 th ()
B o L{ (7)

, Vjielo1]. (27)

[.3. Market clearing. In equilibrium, markets for bond, composite labor, capital
stock, and composite goods all clear. Bond market clearing implies that B; = 0 for all
t. Labor market clearing implies that fo Lf )dj = L;. Capital market clearing implies
that fo th )dj = u; K;_1. Composite goods market clearing implies that

Ct + a[[t + a(ut)Kt 1] -+ Gt Y;, (28)
t

where aggregate output is related to aggregate primary factors through the aggregate
production function
GpYy = (ueK1)™ (Ze L), (29)
I»Lpt

with G, = fo (Pt(] ) o T s dj measuring the price dispersion.

t

II. STATIONARY EQUILIBRIUM CONDITIONS

Since both the neutral technology and the investment-specific technology are growing
over time, we transform the appropriate variables to induce stationarity. In particular,

we denote by X, the stationary counterpart of the variable X; and we make the following

transformations:
~ Y: ~ Cy ~ I ~ G, ~ K,
t )\: ) Ct )\: ) t Qt)\: ) Gt )\: ) t Qt)\;k )
W - .
Wy = ?;\}, Tkt = Tthu Ues = Uct)\ta

where the underlying trend for output is given by
1
X = (2
II.1. Stationary pricing decisions. In terms of the stationary variables, we can

rewrite the optimal pricing decision (23) as

[e.e]

: - ~ , 1 .
) (8%) At-i-iUC,t-‘riY;C—ll—i(j)ﬁ[:u;mt+i¢t+i(.]) P 2ty = 0. (30)
i=0 pt+i
In this equation, Y;,(j) = Yf\t’ denotes the detrended output demand; p} = P;éj)

denotes the relative price for optlmlzlng firms, which does not have a j index since all
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optimizing firms make identical pricing decisions in a symmetric equilibrium; the term

p .
Zy 4y 18 defined as

VA _ Xit-ﬁ-’i

R (31)
szl Tt+k

and finally, the term ¢;,;(j) = %ﬁ_j) denotes the real unit cost function, which is given

by

1
~ | Thtti o <~ )‘:+i)a2:| B S |
i = (67 Wi Y, i artaz
Gri(J) [ < Ora ) t+ Zies t+ (7)
1~ N
= (A (Frpgd) ™ (Wpp) 2] 71702 Yyii(])aﬁ” g (32)

The demand schedule fft‘iz (7) for the optimizing firm j is related to the relative price

and aggregate output through

: Oy
O
D —Op,tti
= {p:%Xf‘it-i-i} Y/tﬂ'
LA R (33)
Combining (32) and (33), we have
Gori(§) = Pori [p:Z§t+i]_9p’t+ia(Y/;+i)da (34)
where o = I;Tﬁ and
Gri = 16 (Fresd)™ (@eys) )77 | (35)

Given these relations, we can rewrite the optimal pricing rule (30) in terms of sta-

tionary variables
= AUV, (5
Et Z(ﬁgp)z t+ gttt (j)

i—o Ppiti — 1

[Mp,t+z’¢~5t+z' [pizﬁtﬂ]_e”’t“&(ﬁﬂ)a - P:Zzgtﬂ] =0, (36)

where ¢ is defined in (35).

II1.2. Stationary wage setting decision. Using (4) and (11), we can rewrite the

optimal wage-setting decision (18) as

ArviUc v P, d 1 Lf+i(h)" B
E§ w) J —— L% (h)————— |t 4riy ——— P, — Wi(h wi—o,
t g (55 ) 4tlrct Pt ; t+z( ) w.bbi 1 [:u S+ 77D th ; 3 t( )Xt7t+ ]

(37)
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where the labor demand schedule L{, ,(h) is related to aggregate variables through

_Wt(h)xw . —0w,t+i
Li(h) = T] L (39)
—+1
r T —0w t+i
L Wy ’
= | W Wit Xt,t+i:| Lty (39)
- . = -6
wtpt)\: w,t+1
= UV N wo L., 40
_wt Wi PriAiy Xt’tﬂ} " (40)
[y~ w —Ow,t+i
_ “it wy : Xt t+i Loss (41)
| Wei JTjmy Tk 14
Mo~ —Ouw,t+i
w;iw
= [z " L (12)
| Wit
with 7}, defined as
w Xiyt-+i
Zt,t—i—i = o (43)

i P
[T 7Tt+k)‘t,t+i

Further, we can rewrite the individual optimal nominal wage W;(h) as
Wt(h) = wIWt == wfﬁ)tpt)\:

Given these relations, we can rewrite the wage setting rule (37) in terms of the

stationary variables. With some cancelations, we obtain

T i AveiUeisiLif i (1) wiwy 17 LY R
- ZZ:; kl:[l(ﬁfw) P i — 1 Haw i) EZLH—Z‘ Uc,t—i—i —wiw Ly 0 =0,
(44)

I1.3. Other stationary equilibrium conditions. We now rewrite the rest of the
equilibrium conditions in terms of stationary variables.

First, the optimal investment decision equation (9) can be written as

AQr A (jc,t+1

1= g {1 = SOr) — ' Ne) A1} + BEeGrisn N0 AL S' (Are1) Ar 1),
(45)
where .
I I *
)\It _ t tQt)\t (46)

Iy jt—th—l)\:_l.
Second, the capital Euler equation (10) can be written as

A 0c,t+1 A Qy

= BE _ .
Akt ' AUy M1 Qe

(1 = 0ps1) Qo1 + Thpr1terr — altggr)] - (47)



TECHNICAL APPENDIX 8

Third, the optimal capacity utilization decision (8) is equivalent to
’Fkt = a'(ut). (48)

Fourth, the intertemporal bond Euler equation (12) can be written as

1 Ao AU 1
I — /BEt *t t+1q ,t-‘rl . (49)
Ry 1 AUy Ten
Fifth, the law of motion for capital stock in (3) can be written as
_ N Qg - 5
K= (1—6) 220K, 4 [1— SO (50)
>\t Qt
Sixth, the aggregate resource constraint is given by
S L W . L
Ct + [t + %Qtla(ut)f(t_l -+ Gt = }/;f (51)
)\t Qt
Seventh, the aggregate production function (29) can be written as
_ )\*_ Q _ _ aq N
Gpt}/;‘/ == {%ut}(t—l} Lt 2, (52)

Eighth, firms’ cost-minimizing implies that, in the stationary equilibrium, we have

~ * g
Wy g A Qi1 u K

— = 53
Tkt ar A Q1 Ly ( )
Finally, the interest rate rule is given by
1—pr
R RPr *( ) T o Y/¢y Orter (54)
=K T (S eortert
t t—1 t T+ (st) t )

where r is the steady-state real interest rate and x is a constant that captures the
steady-state value of Y ~¢v(1=pr),

III. STEADY STATE

A deterministic steady state is an equilibrium in which all stochastic shocks are
shut off. Our model contains a non-standard “shock”: the Markov regime switching
in monetary policy regime and the shock regime. In computing the steady-state equi-
librium, we shut off all shocks, including the regime shocks. Since there is a mapping
between any finite-state Markov switching process and a vector AR(1) process (Hamil-
ton, 1994), shutting off the regime shocks in the steady state is equivalent to setting
the innovations in the AR(1) process to its unconditional mean (which is zero). In such

a steady state, all stationary variables are constant.



TECHNICAL APPENDIX 9
In the steady state, p* = 1 and Z? = 1, so that the price setting rule (36) reduces to

1 1 ~
— = [artw?]etez YO (55)
Hp
That is, the real marginal cost is constant and equals the inverse markup.
Similarly, in the steady state, w* = 1 and Z" = 1, so that the wage setting rule (44)

reduces to
- WYL
w = wT 56
o7 (56)
which says that the real wage is a constant markup over the marginal rate of substitu-
tion between leisure and consumption.

Given that the steady-state markup, and thus the steady-state real marginal cost,
is a constant, the conditional factor demand function (26) for capital input together
with the capital market clearing condition imply that

a1 Y A\

T = -—. 57
kﬂpK ()

The rest of the steady-state equilibrium conditions for the private sector come from

(45) -(53) and are summarized below:

AN sh (59)
B
7, = a(l), (60)
)\*
R = —m, 61
3 (61)
I 1-6
IR W (62)
Y = C+I1+G, (63)
N ®\" .
P () o
w1 K
e AN L (65)

IV. LINEARIZED EQUILIBRIUM CONDITIONS

We now describe our procedure to linearize the stationary equilibrium conditions

around the deterministic steady state.
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IV.1. Linearizing the price setting rule. Log-linearizing the price setting rule (36)

around the steady state, we get

- i A N A % A A
E¢ln Z(ﬁfp) exp {am i + Giyi(h) — —F—fipati + fipetit

i—0 pp — 1

Do — OpQlD} + 27,3 + @Qtﬂ}

o0 ) A A ) " ) . X
~ By an(ﬁgp) exp {at+i + Ue,t4i + yzfl+i(h') - I i 1/~Lp,t+i +p+ Zf,t—i—i} )
i=0 P
where
" o+ ] (66)
;= aqr i QWi
t+12 a + Qo 17k t+ 2Wt+
Collecting terms to get
Eq Z(ﬁgp)i {ﬂp,t+z‘ + Gpas — p0lB; + 200y + @@tﬂ}
i=0
~ By Z(ﬁfp)l {ﬁ: + Z£t+i} :
i=0
Further simplifying
1+6,a ., - D 2 . A
ﬁpt =E Z(ﬁfp) {,up,t-i-i + ¢t+i + QYpyi — (1 + epa)Z5t+i} .
p i=0

Denote mc;; = (j;t +i + 0¥y Expanding the infinite sum in the above equation, we

get

1+ ab, .
DY = [ ey — (1 +60,a)7°
1_ ngpt fpe + micy — (1 + 6,&) tt

~

+  BEE fipr1 + M — (14 Hp@)Z£t+1]
+ (ﬁgp)zEt[ﬂp,t—i-z +mege — (1 + ep@)Z£t+2] +...

Forwarding this relation one period to get

1+ ab o . " N\ 5
7ppt+1 = lpg+1 T+ MCy1 — (1+ epa)Zf+1,t+1
1 —B&,
+ 5§pEt+1 [ﬂp,t+2 + mct+2 - (1 + Hpo_‘>Zf+17t+2]
+ (6€p)2Et+1[ﬂp,t+3 + mct+3 - (1 + 6)10@)ZAf+1,t+3] +...
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Moving the Z7,,; terms to the left, we have

1+ab, . . . . o
e i (L Q8)BUZE, o+ B T + ] = i+ ey
p

+5§pEt [/:Lp,t—i—l + mct+1]
+(5§p)2Et [fip.tro + M) + ...

- /lpt ‘l’ Wict
1+ ab - - ~ .
+6& ?ﬁg”Etpm (14 GO B[ 201 + BE L s a2
P
Since Z{ft =0, we have
1 _'_ @ep ~ " . 1 + O_Zep .
——Lpy = i +mic + BE——LEp;
+ (L4 ab,)55E, Z(ﬁgp)i[zfﬂ,tﬂﬂ - Z£t+i+l]' (67)
i=0

Using the definition of Z, ; in (31), we obtain

Z£t+i+1 = —[Mppir1 — VpTtti — (1—- ’Yp)ﬁ:+i+1 +o e T — YT — (1—- %)7%2;1]7
(68)
Zf+1,t+i+1 = —[Myir1 — Whepi — (1 — Vp)ﬁ:ﬂ'ﬂ o Ty — Ypfp — (1 — Vp)ﬁ:w]-
(69)
Thus,

7D 7D _ 4 - ok
Ly rivt — Lpgipr = Tep1 — Vplhe — (1= 7)1,

and the Z? terms in (67) can be reduced to

- i[ 7 g 1 ~ ~ ~ %
Z(ﬁgp) [Zf-l-l,t—i-i-i-l - Z§t+z’+1] = q[ﬂ'tﬁ-l — W — (1 = p) iy )-
=0 P

Substituting this result into (67), we obtain

Ak - 5§ ~ ~ ~ ~ ~ ~ %
Py = 1+ @Qp (fpt + mice) + BEEDY 1 + BEE T — Ypufte — (1 — )74 (70)
P

This completes log-linearizing the optimal price setting equation. We now log-linearize
the price index relation. In an symmetric equilibrium, the price index relation is given

by

1
1 N _ L=ppt 1 —
1=¢ {;twklﬂ- (St)l 'yp} + (1 =&)(py)" v, (71)
the linearized version of which is given by
5t = T (i — s — (1= )D) (72)
—&
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Using (72) to substitute out the p; in (70), we obtain

3

1-¢, (e — wpfte—1 — (1 — ) 7]

18,
1+ ad,

(fupt + micy)

+68 _pg Eiffterr — vpfte — (1= )70 ] + BEE R — it — (1 — %) 704],
P

or
A A A% K ~ A A S A%
e — Yphe—1 — (L — )7, = %(Mm +micy) + BE R — e — (L — ) 7], (73)
+ ab,
where the real marginal cost is given by
1
me; = Pl tai + Uti] + QY. 74
t L+ o [0417‘k,t+ QWi ] Y ( )
and the term k, is given by
_ (1=88)(1 - &)
Kp =

&p

This completes the derivation of the price Phillips curve.

IV.2. Linearizing the optimal wage setting rule. Log-linearizing this wage deci-

sion rule, we get

E;In Z(ﬁgw)l exp {dt—l-i + Uepyi + Zf—l—i(h) - y Mi 1ﬂw,t+z‘ + [l t4i—
i=0 w

n@w [’UAJ;: + wt - UA)H_Z' + Ztlf)t+i] + nZt+i - ac,t—l—i}
zEmQ]&@@m&M+%m+mﬂmjﬁ%ﬁwﬂ+@+@+@m}
i=0 w

Collecting terms to get

o0

E: Z(ﬁﬁw)l {ﬂw,t+i — N0y W] + Wy — Wyt + ZAﬂH] + nZt+i - ac,t—l—i}
i=0
~ By (B6) {0 + i+ 2 )
i=0

Further simplifying

o0

+) = Ey Z(ﬁfw)l {/lwi-i-i + nzt—i-i — Ugyppi + NOwWigs — (1 + er)Z;ftH} .
i=0

1416,
1_ﬁ€w

~ %

(0
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Denote mrs;,; = nZtH — Ucy4i. Expanding the infinite sum in the above equation,

we get
1+ 911} A% -~ Iy ) 1 L Z
ﬁ(wt F ) =+ s — W+ (1 +00y) (0 — Zf5)

A

+ BEwEi|flw,ip1 +mirsiy — Wipr + (14 000) (W1 — 2141
+ (ﬁfw)QEt [ﬂw,t+2 + mrspe — Wiyo + (1 + er)(wtﬂ - ZAZUt—i-2)] +...

Forwarding this relation one period to get

1+ ew s R ~ ~ ~ A Sw
ﬁ(wtﬁ-l FWiy1) = flwgpr +mS1 — Wepr + (14 00y) (W1 — Zt+1,t+1)

A

+ ﬁgwEt+1[ﬂw7t+2 + M — Wiao + (14 n0y) (Wi — Zfilm)]
+  (B&w) B [flwirs + mirsiss — Wi + (14 10,) (Wi — ZAtlil,t—l—ZS)] +...
Moving the Z, ., terms to the left, we have

1+ ew A~k ~ 7w W ~ » ~ ~
= gg (W7 + ) + (1 +n0uw)E[Z) + BESZY + -] = e +mirsy — by + (14 0y,

+BEwE[flw 11 + mMirsier — Wiy + (1 4 0y ) Witq]
+(BEw) Eilfiw tra + mrsiya — Wira + (14 10,) o] + . ..

= /jl’wt + mA'f’St — wt -+ (1 + n@w)wt

1+ T]Qw ~ ~ Zw Zw
q(wt—i—l + Wer1) + (L4 000)[ 251 101 + BEwZia e + -1

1410y, .. . R R R R 1+n0, " R
1_ qu} (wt -+ wt) =  Hwt +mrs; — wy + (1 -+ nﬁw)wt + B{w%ﬂt(wtﬂ -+ wt—l—l)
+ (4 000) BB > (BEw) 128 i1 — L) (75)
=0

Using the definition of Z{, ,; in (43), we obtain

Zift+i+1 = —[Mrit1 — Yol — (1 — Vw)ﬁ:ﬂ‘ﬂ o T — Yol — (1= Vw)ﬁ;rl]
Atli)‘rl,t-‘ri—i-l = —[Fpiv1 — Yol — (1= ’Yw)ﬁ:+i+1 + o e — Yo — (1= ’Yw)ﬁ:+2]-
Thus,
Zgrl,mﬂ - ZAZU,t—i-i—i-l = Ter1 — Yolte — (1 = V)T, (76)

and the Z" terms in (75) can be reduced to
S iryw Zw 1 A A ~ %
Z(ﬁfw) [Zt+1,t+z'+1 - Zt,t-i—i—i—l] = 1— 5_5 [T — Yoe — (1 — 7w)”t+1]-
i=0 w
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Substituting this result into (75), we obtain

1_ﬁ€w
1+ nb,

Wy Wy = (Lot s —14) +(1—BEw )0+ BEw B (Wi +rp 1) +BEwEe [T 1 =Yoo fre— (1= ) i |-
(77)

This completes log-linearizing the wage decision equation. We now log-linearize the

wage index relation. In an symmetric equilibrium, the wage index relation is given by

1
Wy_1 1 T— it 1
1=& |———mym(s)' + (1 = &) (wy) Tt (78)

Wy Ty

the linearized version of which is given by

w; = 1 wa (W — Wi—1 + Ty — Ywfe-1) — (1 — 7)) 7] (79)
Using (79) to substitute out the w; in (77), we obtain
wy + 1 Ewg [y — Wiy + 7y — YwTte—1 — (1 = V) 7]
1— B¢, . N R -
-1 f:gw (fwt + mirsy — wy) + (1 — BE, )y

1—¢&,
+B&wE[Ti41 — YoTte — (1 — %u)fr;rl]a

+B8wE: {wt+1 + [Wep1 — Wy + Fypr — Yol — (1 — %;)7%;;1]}

or
N o o o o R N « A
Wy — W1 + T — YuTreo1 — (1 — v 7} = m(uwt + mirs; — W)+
BE 11 — Wy 4 T — Yole — (1 — Y) T, (80)
where k,, = 7(1_552”(1_5”).

To help understand the economics behind this equation, we define the nominal wage
inflation as _ _
W, 0 P D

to_ Wil A _ ~7~Ut 7Tt>\:_17t- (81)

Wi wt—lpt—l)\:_l Wt—1

The log-linearized version is given by

w
Ty

ﬁf:wt—wt_l‘i‘ﬁ't—'—A)\:,

where Ax; = x; —x;_1 is the first-difference operator and 5\;* = 1—1a1 (o1 +anz;). Thus,

the optimal wage decision (80) is equivalent to

w . . Ko
Ty — YwTt—1 — (1 - ”Yw)”t = 1+ 10

(fit + mirsy — wy) + ﬁEt(ﬁ-ﬁH — YTty — (1 — Vw)ﬁ;rl)

1

+1—Oé1

(a1 (AZ — BEAZ) 4+ aa(AG — BEAG+1)].(82)
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This nominal-wage Phillips curve relation parallels that of the price-Phillips curve and

has similar interpretations.

IV.3. Linearizing other stationary equilibrium conditions. Taking total differ-
entiation in the investment decision equation (45) and using the steady-state conditions
that S(A;) = S"(A\r) = 0, we obtain

e = "N [y = BEA ] (83)

which, combined with the definition of the investment growth rate

< A 1
)\It = Alt + 1 [A(jt + OZQAZA’t], (84)

implies the linearized investment decision equation in the text.
Taking total differentiation in the capital Euler equation (47) and using the steady-
state conditions that g, = 1, u = 1, a(1) = 0, 7, = d/(1), and %(1 —d+7) =1, we

obtain

Gre = By {Adt+1 + AUc,t—l—l — AS\:H — A1 + )% [(1 — 0) k1 — 30p41 + fkfk,t—l—l} } ;

(85)
which, upon substituting the expressions for the AS\;‘ and Ag;, implies the linearized
capital Euler equation in the text.

The linearized capacity utilization decision equation (48) is given by

’fjkt = O'u’llt, (86)

where o, = ‘;,,,((11)) is the curvature parameter for the capacity utility function a(u)

evaluated at the steady state.

The linearized intertemporal bond Euler equation (49) is given by

0= Et [Adt—l—l + AUC,H—I - Aj\:+1 + ﬁt - ﬁt-i—l ) (87)

*

which, along with the definition of the exogenous term Aj\t 1, implies the linearized
bond Euler equation in the text.

Log-linearize the capital law of motion (50) leads to

14 . §~ I,
ky = ki1 — AN — Agy] — —0; + =1
1 iy [kt—1 ¢ Gt X\ ¢ + K/Ltu (88)

which implies the linearized capital law of motion in the text.

To obtain the linearized resource constraint, we take total differentiation of (51) to

obtain

Uy = Cyéy + iyly 4 uyly + gydr, (89)
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LK
YA Yy®

Log-linearizing the aggregate production function (52), we get

[}

_C ; _ _
where ¢, = £, iy = and g, =

Uy = O‘l[l%t—l + U — Aj\: — Ag] + asly

= o ]%t—l + ﬂt - (OégAét + cht) + OéglAt. (90)

The linearized version of the factor demand relation (53) is given by
Wy = e+ ke @ — AN — Ag —

~

(A% + Ag) — 1y (91)

. - R 1
= Tkt‘l'k‘t—l‘l'ut—l o
-

Finally, linearizing the interest rate rule (54) gives
Ry = peRicy + (1= pp) [fnfre + (1= 0n)A7 + byfh] + orice, (92)
where
7; =logm*(s;) — log .
Note that, with regime-switching inflation target, we have
T = s = (1) + s, = 2}77(2) = [7°(1), 7" (2)]es,,

where
o 1{St = 1}
“T s =23

It is useful to use the result that the random vector ey, follows an AR(1) process:
Csy = Qespl + v,

where () is the Markov transition matrix of the regime and E; v, = 0.

IV.4. Summary of linearized equilibrium conditions. We now summarize the
linearized equilibrium conditions to be used for solving and estimating the model.
Note that

Eiirey = [3°(1) #°(2)) Eiea,,, = [7(1) #°(2)] Qes,.

The log-linearized equations are listed below.
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R ~ ~ ~ ~ ~ sk
= Tgep(,upt +mcy) + BB — e — (1 — )41l
Ry
1416,

BE (W1 — Wy + Teg1 — Yot — (1 — Y )11 ]

A %

+ M= yoTti—1 — (1 — )7} (frwt + mirsy — ) +

- S”(AI)A‘;‘{A%t+1 !

— a1

(AGi+1 + 012A2t+1)} }

(Ag: + aaAZ)

A 1
—BE; |:A7/t+l + 1

—

R ~ 1
= B {AatJrl + AU 41 — 1

[@2AZi 1 + Adiia]
1

B
by

= OylUt,

[(1 — 0) k11 — 00141 + ":k":k,tJrl} } ,

R S 1
= By |:Aat+1 +AUq 41 — 1

1-0 (-
= )\I |:k:tl —

. . 0 4 1-9
1_ o (CYQAZt +Aqt):| — )\—Iét + (1 — )\—])

= CyCt + Zult + Uy Ut + 9y9t,

. 1 .
= o [kt—l + U — 1 (o Az, + A@t)] + aly,

—

(OéQAZ?t + Aq}) — Zt,

R - . 1
= Tre +ki—1 + U —
1—a1

= ertfl + (1 - pr) [(bwfrt + (1 - ¢7‘l’)fr: + Qbygt] + OortErt,

[Oélfkt —+ 04211)15] + @gt,

Qg + ao
77Zt - Uct,
ﬂb(l _ pa) 0 A* A ~ q *
b T Dn S =gy G MG = AN
b R - )
" (As — b)ﬁ()\* — b) MEi(r + AN L) — bee],

[ﬁ-*(1>a 7 (2)]€Sta €sy = Qest—l + Ut

and the steady-state variables are given by

A1

T = 5 (1-9),
’I:kk a1
Uy = =— = —,
Y Ar Hp
. aq
1 = )\ —(1— (S —_—,
o= o)

¢y = 1—1y—gy,

17

(93)

(96)

(97)

X [aaAZi 11 + a1 AG1] + Re — ﬁt+1(]98)

1, (99)
(100)
(101)
(102)

(103)

(104)

(105)

(106)

(107)
(108)

(109)

(110)

(111)

(112)
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with A\j = ()\q)\(zm)ﬁ, A = (A?ZAg‘l)l*l'H AN = T (oqut + aA%), and g, cali-
brated to match the average ratio of government spendmg to real GDP.
Recall that 0, = —u;‘fl, Ary =o — 341, Kp = (1-55)(-¢p) ﬁg’él(l ﬁp), a = 1;‘3‘};?% 0, = HZ[I,
— (1-Bgw)(1-&w)

K ,and T = Wy — Wwp—q + T + AA;‘,

To compgl;ute the equilibrium, we eliminate 4, by using (100), leaving 10 equations
(93)-(99) and (101)-(103) with 10 variables 7, @y, it Gres Pres Gt kes Gy by, and Ry, Out
of these 10 variables, we have 7 observable variables, that is, all but ¢, 7%, and l%t, for
our estimation. We also include the biased technology shock ¢; in the set of observable

variables.

V. GENERAL SETUP FOR ESTIMATION

In this section, we describe our empirical strategy in general terms so that the method
can be applied to any state-space-form model.

Consider a regime-switching DSGE model with s; following a Markov-switching pro-
cess. Let 0 be a vector of all the model parameters except the transition matrix for
s;. Let y; be an n x 1 vector of observable variables. In our case, n = 8. The vector
y; is connected to the state vector f;. For our regime-switching DSGE model, this
state-space representation implies a non-standard Kalman-filter problem as discussed
in Kim and Nelson (1999).

Let (Y3,0,Q, S;) be a collection of random variables where

Y1, 7yt> (Rn>t )
0i)icn € (]R’")

Y = (
(

Q = (6)uenxn € R,
(
(

9 pum

St = S0, St)EHH—la

T—t
St—i—l = \St+1, " >ST) €eH )

and H is a finite set with h elements and is usually taken to be the set {1,---, h}.
Because s; represents a composite regime, h can be greater than the actual number
of regimes at time t. The matrix () is the Markov transition matrix and ¢; ; is the
probability that s; is equal to ¢ given that s, 1 is equal to 7. The matrix @) is restricted

to satisty
qij >0 and Zqu’ =1.
ieH
The object # is a vector of all the model parameters except the elements in (). The

object S; represents a sequence of unobserved regimes or states. We assume that
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(Y, 6,Q,S;) has a joint density function p(Y;,0,Q,S;), where we use the Lebesgue
measure on (R")" x (R")" x R" and the counting measure on H'*!. This density

satisfies the following key condition.
Condition 1.
p (st | }/;ﬁ—la 9) Q> St—l) = sy,s,1
for t > 0.
V.1. Propositions for Hamilton filter. Given p(y, | Y;_1,0,Q,s;) for all ¢, the

following propositions follow from Condition 1 (Hamilton, 1989; Chib, 1996; Sims,
Waggoner, and Zha, 2008).

Proposition 1.

p (St ‘ }/;‘/—17 07 Q) - Z qSt,st,lp (St—l | }/;—17 97 Q)

si—1€H

for t > 0.

Proposition 2.

p (yt | }/;5—17 97 Qv St)p (St ‘ }/;—17 97 Q)
Zstfler (yt ‘ }/;/—17 97 Qv St)p (St | }/;—17 97 Q)

p(se|Y:,0,Q) =
for t > 0.

Proposition 3.

p (st | Y;a 9) Q> st+1) =P (St | YT> 97 Qa Stzji-l)
for0<t<T.
V.2. Likelihood. We follow the standard assumption in the literature that the initial

data Yj is taken as given. Using Kim and Nelson (1999)’s Kalman-filter updating

procedure, we obtain the conditional likelihood function at time ¢

p (yt | }/;f—la 9) Q> st) : (113)

It follows from the rules of conditioning that

p(yt7 | }/;—1797@) = Z p(ytvst | }/;3—1797@)

st€H

= Z p(yt ‘ }/;—17‘97 Qv St)p(st | }/;—1797@) .

st€H



TECHNICAL APPENDIX 20

Using (113) and the above equation, one can show that the likelihood function of Y7 is

T
p(Yr|6,Q)=]]pw|Yier.0.Q)
t? (114)
= H Z P(yt | Y;—laeaQaSt)p(st | Yi1,0, Q)

t=1 |Lst€H

We assume that p (so | Yo,60,Q) = 7 for every sy € H.' Given this initial condition,

the likelihood function (114) can be evaluated recursively, using Propositions 1 and 2.

V.3. Posterior distributions. The prior for all the parameters is denoted by p (6, @),
which will be discussed further in the main text of the article. By the Bayes rule, it
follows from (114) that the posterior distribution of (0, Q) is

The posterior density p(f,Q | Yr) is unknown and complicated; the Monte Carlo
Markov Chain (MCMC) simulation directly from this distribution can be inefficient
and problematic. One can, however, use the idea of Gibbs sampling to obtain the
empirical joint posterior density p(0,Q,Sr | Yr) by sampling alternately from the

following conditional posterior distributions:

p(ST | YTaea Q)?
p(Q ‘ YTvsTve)v

p(e | YT> Qa ST)

One can use the Metropolis-Hastings sampler to sample from the conditional posterior
distributions p(@ | Yr, @, Sr) and p(Q | Yr, S7,0). To simulate from the distribution

p(St | Yr,0,Q), we can see from the rules of conditioning that

p(Sr|Yr,0,Q)=p(sr|Yr,0,Q)p (ST—l | Yr,0,Q, S7)

T . (116)
p(sr|Yr, 0,Q) H se | Yr,0,Q, St+1)
t=0

IThe conventional assumption for p (so | 6,Q) is the ergodic distribution of @, if it exists. This

convention, however, precludes the possibility of allowing for an absorbing regime or state.
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where S{; = {41, -+, sr}. From Proposition 3,

p (St ‘ YT797Q75tT+1) =p (s | Y1,0,Q, 5041)
o P (5,541 | Y1, 0,Q)
p (s | Y4, 0,Q)
(s [ Y 0.Qs)p (50| V1.6, Q) (117)
B p (s | Y4, 0,Q)
oD (501 Y4,0,Q)
B p (s | Y4, 0,Q)

The conditional density p (st | Yr, Z7,0,Q, Sgrl) is straightforward to evaluate accord-

ing to Propositions 1 and 2.
To draw Sp, we use the backward recursion by drawing the last state sy from the
terminal density p(sr|Yr, 6, Q) and then drawing s, recursively given the path Si,

according to (117). It can be seen from (116) that draws of Sy this way come from
PI(ST‘YT, ‘9)

V.4. Marginal posterior density of s;. The smoothed probability of s; given the
values of the parameters and the data can be evaluated through backward recursions.
Starting with s7 and working backward, we can calculate the probability of s; condi-
tional on Y7, 0, Q) by using the following fact

p (St | YT7 97 Q) = Z p (St7 St+1 ‘ YT7 97 Q)

St+1 cH

= Z b (St ‘ YT7 97 Qa St—l-l)p (St—l-l | YT7 97 Q)

si+1€H

where p (s; | Yy, 0,Q, s¢11) can be evaluated according to (117).
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