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Nonparametric probability bounds for Nash equilibrium actions
in a simultaneous discrete game

Andres Aradillas-Lopez
Department of Economics, University of Wisconsin–Madison

We study a simultaneous, complete-information game played by p = 1� � � � �P
agents. Each p has an ordinal decision variable Yp ∈ Ap = {0�1� � � � �Mp}, where
Mp can be unbounded, Ap is p’s action space, and each element in Ap is an ac-
tion, that is, a potential value for Yp. The collective action space is the Cartesian
product A = ∏P

p=1 Ap. A profile of actions y ∈ A is a Nash equilibrium (NE) pro-
file if y is played with positive probability in some existing NE. Assuming that we
observe NE behavior in the data, we characterize bounds for the probability that
a prespecified y in A is a NE profile. Comparing the resulting upper bound with
Pr[Y = y] (where Y is the observed outcome of the game), we also obtain a lower
bound for the probability that the underlying equilibrium selection mechanism
ME chooses a NE where y is played given that such a NE exists. Our bounds are
nonparametric, and they rely on shape restrictions on payoff functions and on
the assumption that the researcher has ex ante knowledge about the direction of
strategic interaction (e.g., that for q �= p, higher values of Yq reduce p’s payoffs).
Our results allow us to investigate whether certain action profiles in A are scarcely
observed as outcomes in the data because they are rarely NE profiles or because
ME rarely selects such NE. Our empirical illustration is a multiple entry game
played by Home Depot and Lowe’s.

Keywords. Ordered response game, nonparametric identification, bounds, entry
models.
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1. Introduction

Recent developments in the econometrics of partially identified models have enabled
researchers to perform inference in increasingly sophisticated models with strategic
interaction. Among them, static discrete games have received considerable attention.
Some examples include Bjorn and Vuong (1984), Bresnahan and Reiss (1990, 1991),
Berry (1992), Tamer (2003), Andrews, Berry, and Jia (2004), Davis (2006), Seim (2006),
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Berry and Tamer (2006), Pakes, Porter, Ho, and Ishii (2006), Pesendorfer and Schmidt-
Dengler (2008), Sweeting (2009), Aradillas-Lopez (2010), Galichon and Henry (2011),
Beresteanu, Molchanov, and Molinari (2008), Bajari, Hong, Kreiner, and Nekipelov
(2010), Bajari, Hong, and Ryan (2010), Ciliberto and Tamer (2009), Kline and Tamer
(2011), and de Paula and Tang (2011). A common feature in empirical applications where
the space of possible choices (the action space) is large is that the choices observed in
the data tend to be heavily concentrated in a small subset of the action space. In fact,
some profiles in the action space are never observed in the data. This phenomenon
stands in a bit of conflict with the prototypical parametric model, where, in addition to
observable covariates, payoffs are assumed to depend on continuously distributed un-
observable shocks whose support is unbounded conditional on observables. In those
settings, every profile in the action space is the unique equilibrium of the underlying
game with nonzero probability and, therefore, every profile in the action space should
eventually be observed in the data.

Thus, a natural question to ask is whether the absence of certain action profiles in
the data is because equilibria where they are played are rare or because such equilibria
are systematically avoided by the underlying equilibrium selection mechanism. We say
that an action profile y is a (complete-information) Nash equilibrium (NE) profile if it is
played with positive probability in some existing NE. The goal of this paper is to charac-
terize bounds for the probability that a given y is a NE profile. Comparing the resulting
upper bound with the frequency with which y is the observed outcome of the game, we
can also deduce a lower bound for the probability that the equilibrium selection mech-
anism chooses a NE where y is played given that such a NE exists. Our bounds result
from a set of nonparametric assumptions about the underlying payoff functions and
on the presupposition that the researcher has ex ante knowledge about the direction of
strategic interaction in the game. Due to its fully nonparametric nature and the type of
question it addresses, this is the first paper of its kind in the literature on inference in
static discrete games.

Being able to isolate (at least partially) the influence of the equilibrium selection
mechanism from the structural payoff (equilibrium) properties of the model is a poten-
tially valuable policy tool. For instance, suppose some class Y of outcomes is deemed
“undesirable” for a policy maker. If the model and the data at hand predict that equilib-
ria in Y exist with very low probability, the policy maker would know that even if the se-
lection mechanism were to change unpredictably, the likelihood of observing outcomes
in Y would remain low. Conversely, if the existence of equilibria in Y appears to be high,
knowing the impact of policy variables on the selection mechanism would be a valuable
policy tool.

Robust inference in discrete games is an ongoing area of research. Two recent ex-
amples for the case of binary games include Kline and Tamer (2011) and de Paula
and Tang (2011). Beyond game-theoretic settings, our model is related to the litera-
ture on endogeneity in discrete and limited dependent variable models. A partial list
of work in this area includes, among others, Heckman (1978), Sickles and Schmidt
(1978), Gourieroux, Laffont, and Montfort (1980), Smith and Blundell (1986), Blundell
and Smith (1989, 1994), Sickles (1989), Dagenais (1999), Blundell and Powell (2004),
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Vytlacil and Yildiz (2007), Lewbel (2007), Chesher (2010), Abrevaya, Hausman, and Khan
(2010), and Klein and Vella (2009). Some of these papers focus on a single agent making
multiple decisions at once. Whether our results can be applied in those settings depends
on the appropriateness of our behavioral theory (a non-cooperative game) as a way to
represent the behavior of the single agent in question. This is highly debatable and goes
beyond the scope of this paper. Methodologically, our main goal is to do robust infer-
ence in a problem we consider to be of interest. Robust inference in econometrics is
an area of active research. Our approach and methods are particularly motivated by the
work of Charles F. Manski and his co-authors. Some examples of work related in some
way to this paper include Manski (1990, 1997, 2007), Manski and Pepper (2000), Manski
and Tamer (2002), and Imbens and Manski (2004).

The paper proceeds as follows. Section 2 describes the structural and behavioral as-
sumptions of the model. Section 3 details the information available to the researcher.
Section 4 derives the observable implications of our assumptions on the properties of
Nash equilibria. Equipped with these results, Section 5 derives bounds for the probabil-
ities of interest to us. Section 6 shows how our results simplify in the case of pure-strategy
Nash equilibrium. Using the results from Section 5, we describe in Section 7 how to do
statistical inference using existing methods. As an empirical illustration, in Section 8
we apply our results to a model of multiple entry by Home Depot and Lowe’s in the
home improvement retailer industry. Section 9 concludes. Some proofs and extensions
to nonequilibrium behavior are included in the Appendixes available in a supplemen-
tary file on the journal website, http://qeconomics.org/supp/74/supplement.pdf.

2. Description of the model

2.1 Agents and actions

We study a static, simultaneous game played by p= 1� � � � �P agents, each of which has
a real-valued decision variable Yp ∈ Ap ≡ {0�1� � � � �Mp} in N, where Mp can be un-
bounded. We refer to Ap as p’s action space and refer to each element in Ap as an
action, that is, a potential value for Yp. We use lowercase (e.g., yp, vp, ap, etc.) to de-
note actions in Ap. Thus, Yp is the action chosen by p (i.e., the choice made by p).
We index p’s opponents by −p. The space of actions for any subset of players is as-
sumed to be the corresponding Cartesian product of their individual action spaces. In
particular, A−p ≡ {(yq)q �=p :yq ∈ Aq} denotes the space of actions for p’s opponents. We
let A ≡ {(yq)pq=1 :yq ∈ Aq} denote the action space for all agents in the model. We use
boldface type to denote profiles of actions (and choices) for a subset of players, main-
taining the lower- and uppercase distinction between actions and actual choices. Thus,
y−p ≡ (yq)q �=p denotes a particular action profile forp’s opponents, while Y−p ≡ (Yq)q �=p
denotes the profile of actions chosen by p’s opponents. A given profile of actions by all
agents is denoted, for example, by y ≡ (yp)Pp=1 ∈ A. Finally, Y ≡ (Yp)Pp=1 (the profile of ac-
tions actually chosen by all players in the game) is referred to as the outcome of the game.

Remark 1. Uppercase letters Yp, Y−p, and Y always denote the actions actually chosen
by the agents. Conversely, we always use lowercase letters yp, y−p, and y to denote given
action profiles in Ap, A−p, and A.

http://qeconomics.org/supp/74/supplement.pdf
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2.2 Payoffs

Each agent has a (von Neumann–Morgenstern) payoff function which depends on his
own choice, the choices made by his opponents, and a collection of additional payoff
shifters. In particular, the payoff to agent p if Yp = yp and Y−p = y−p is denoted by

νp(yp�y−p;ωp)� (1)

where ωp denotes the collection of all other factors (besides Yp and Y−p) that affect
payoffs. Some elements inωp may be assumed to be observable to the researcher; how-
ever, we do not assume that we can exactly observe or imputeωp and we do not assume
to know its dimension. Note that (1) allows for each p to have a different payoff func-
tion. For convenience and to conform to the dimension of Ap, for any y−p ∈ A−p, we set
νp(yp�y−p;ωp)= −∞ with probability 1 (w.p.1) for any yp < 0 or yp >Mp. From now on
we denote the collection of all players’ payoff shifters as ω≡ (ωp)Pp=1.

Strategic substitutability and complementarity. Take any q �= p. We say that Yq is a
strategic complement (substitute) of Yp if, for almost every realization of ωp, p’s pay-
off function is nondecreasing (nonincreasing) in Yq everywhere in A. Otherwise, Yq is
neither a complement nor a substitute forYp. This relationship does not have to be sym-
metric: Yq could be a strategic substitute for Yp and Yp could be a complement for Yq.

Assumption 1. With probability 1 inωp, agentp’s payoff function satisfies the following
conditions:

(i) Concavity. Agents’ payoffs are strictly concave in their own choice. That is, for any
y−p ∈ A−p and any yp ∈ Ap,

νp(yp�y−p;ωp)− νp(yp − 1�y−p;ωp) > νp(yp + 1�y−p;ωp)− νp(yp�y−p;ωp)�

and ifMp = ∞, then we assume that w.p.1 there exists a y∗
p ∈ Ap such that

νp(y
∗
p�y−p;ωp) > νp(y∗

p + 1�y−p;ωp) ∀y−p ∈ A−p�

(ii) Local monotonicity. νp(yp�y−p;ωp) �= νp(yp + 1�y−p;ωp) ∀yp ∈ Ap�y−p ∈ A−p.

Assumption 1 ensures1 the existence of a unique optimal choice for p (in an
expected-utility sense) whenever p’s opponents are playing a pure strategy. It also en-
sures that, in any complete-information Nash equilibrium, players can be optimally in-
different between at most two actions, which must be adjacent.2

1Notice that while a nonconcave payoff function can be transformed into a concave one by relabeling
the actions in Ap, there is no guarantee that the resulting payoff function satisfies Assumption 1(ii) or As-
sumption 2.

2If we focus on pure-strategy NE, we can replace strict concavity with weak concavity as long as local
monotonicity is maintained. Strict concavity is key to our observable implications of mixed-strategy NE
behavior.
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Assumption 2 (Nonincreasing Differences). For every agent p, all y−p�y′−p ∈ A−p and
yp ∈ Ap, the following statement holds with probability 1:

νp(yp�y−p;ωp)≥ νp(yp�y′−p;ωp)

⇒ νp(yp + 1�y−p;ωp)− νp(yp�y−p;ωp) (2)

≥ νp(yp + 1�y′−p;ωp)− νp(yp�y′−p;ωp)�

Given ωp, take any collection y1−p�y2−p� � � � such that νp(yp�y�−p;ωp) is nonincreas-
ing in �. If (2) holds, the corresponding utility gain from a more aggressive (i.e., larger)
choice than yp is also nonincreasing in �. There is an alternative interpretation of (2).
Note that it is equivalent to the statement

νp(yp�y−p;ωp)≥ νp(yp�y′−p;ωp)

⇒ νp(yp + 1�y−p;ωp)− νp(yp + 1�y′−p;ωp)

≥ νp(yp�y−p;ωp)− νp(yp�y′−p;ωp)�

That is, Assumption 2 asserts that the more “aggressive” p is, the more susceptible he
becomes to the choices made by others. Similar conditions to (2) can be found, for ex-
ample, in the literature on supermodularity and monotonicity of best-response func-
tions and equilibria; see, for example, Milgrom and Shannon (1994), Echenique and Ko-
munjer (2009), and Section 2.6.1 in Topkis (1998). Related restrictions in the econometric
literature can be found, for example, in Davis (2006) and Jia (2008). Figure 1 illustrates
the restrictions implied by Assumptions 1 and 2.

Example 1. Consider a market with P firms where Yp is an indivisible measure of “pro-
duction” of a good, with Mp = ∞ (or arbitrarily large). Suppose that if Yp = yp and
Y−p = y−p, the inverse demand function faced by p is φ1p(y−p�ξdp)+ θp · yp. Demand

shifters are ωdp = (ξdp�θp). Suppose firm p’s cost function is βap · yp + βbp · y2
p + ξcp. Cost

shifters are ωcp = (βap�β
b
p�ξ

c
p), and ωp ≡ (ωdp�ω

c
p) denotes all payoff shifters for p. If

Yp = yp and Y−p = y−p, firm p’s profits are νp(yp�y−p;ωp)= [φ1p(y−p�ξdp)−βap+ (θp−
βbp) · yp] · yp − ξcp. Assumption 1 is satisfied if the following conditions hold:

(i) Concavity. Payoffs are strictly concave if θpp − βbp < 0 w.p.1. For this, it would suf-
fice if demand has a negative own price elasticity and marginal costs are nondecreasing
w.p.1.

(ii) Local monotonicity. A sufficient (but not necessary) condition to satisfy this re-
striction is if φ1p(y−p�ξdp) is continuously distributed conditional on (βap�θp�β

b
p) for

any y−p ∈ A−p.

For Assumption 2, note first that for any yp ≥ 0 and any realization of ωp, we have
νp(yp�y−p;ωp) ≥ νp(yp�y′−p;ωp)⇐⇒ φ1p(y−p�ξdp) ≥ φ1p(y′−p�ξdp). Next note that for
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Figure 1. Graphical illustration of Assumptions 1 and 2.

any yp ≥ 0,

νp(yp + 1�y−p;ωp)− νp(yp�y−p;ωp)
= 2 · (θp −βbp) · yp + (θp −βbp −βap)+φ1p(y−p�ξdp)�
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Assumption 2 is satisfied since, w.p.1, νp(yp�y−p;ωp)≥ νp(yp�y′−p;ωp) implies νp(yp +
1�y−p;ωp) − νp(yp�y−p;ωp) ≥ νp(yp + 1�y′−p;ωp) − νp(yp�y′−p;ωp). Suppose instead
that payoffs are of the form

νp(yp�y−p;ωp)= [φ1p(y−p�ξdp)−βap + (θp −βbp) · yp] · yp −φ2p(y−p�ξcp)�

which arise, for example, if other firms’ choices also affect firm p’s fixed costs. Assump-
tion 1 is still satisfied under the conditions described above. Assumption 2 imposes
some restrictions on the stochastic relationship betweenφ1p(·� ξdp) andφ2p(·� ξcp). More
precisely, we need

Pr[φ1p(y−p�ξdp)≥φ1p(y
′−p�ξdp)|

φ1p(y−p�ξdp) · yp −φ2p(y−p�ξcp)≥φ1p(y
′−p�ξdp) · yp −φ2p(y

′−p�ξcp)] = 1

∀yp ∈ Ap�∀y−p�y′−p ∈ A−p�

A sufficient, but not necessary condition for this to hold is if

Pr[φ1p(y−p�ξdp)≥φ1p(y
′−p�ξdp)|φ2p(y−p�ξcp) < φ2p(y

′−p�ξcp)] = 1

∀yp ∈ Ap�∀y−p�y′−p ∈ A−p�

so that, w.p.1, behavior by opponents which shifts p’s costs upward also reduces p’s de-
mand.

Remark 2 (Simultaneous Ordered Response Game). The distribution of payoff shifters
could be choice-dependent. That is, choosing Yp = yp could generate a different draw
of ωp than choosing Yp = y ′

p. However, Assumptions 1 and 2 impose significant restric-
tions on the joint distribution of any pair ωp(yp) and ωp(y ′

p). In particular, the condi-
tional support of ωp(yp) conditional on ωp(y ′

p) cannot be unbounded. This rules out,
for example, the model described in Equation (1) of Bajari, Hong, and Ryan (2010). Our
model should be seen as a simultaneous ordered response game, where “ordered re-
sponse” does not refer in any way to the timing of moves in the game, but rather refers to
the econometric usage of the term, referring to a discrete choice model where, for each
individual, a single index (as opposed to a multivalued index, as is the case in a multino-
mial choice model) captures the “utility” of each possible choice, and the optimal choice
depends on the realization of said index in the real line.

Remark 3. Although our restrictions allow for it, payoff functions are not assumed to
change smoothly with ωp. In particular, even if ωp is continuous with unbounded sup-
port, payoff functions may have a limited number of possible configurations. For in-
stance, for almost every realization ofωp there could exist an action (which may depend
onωp) that strictly dominates (expected utilitywise) all other actions in Ap regardless of
the choices made by others. That is, we can have

Pr
[∃y∗

p : νp(y∗
p�y−p;ωp) >max{νp(y∗

p − 1�y−p;ωp)� νp(y∗
p + 1�y−p;ωp)}

(3)
∀y−p ∈ A−p

] = 1�
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We can also have actions in Ap that are strictly dominated w.p.1. Thus, our assumptions
are consistent with data where some action profiles in A are never observed as the out-
come of the game. This is typically not the case for parametric models with continuously
distributed unobservable payoff shocks with unbounded support.

The following consequence of nonincreasing differences is very useful to us.

Result 1 (Payoff Functions Do Not Cross). If Assumption 2 holds, then payoff functions
almost surely do not cross. That is, for almost every realization of ωp, we have

∀y−p�y′−p ∈ A−p��yp� y ′
p ∈ Ap such that

νp(yp�y−p;ωp) < νp(yp�y′−p;ωp) and νp(y
′
p�y−p;ωp) > νp(y ′

p�y′−p;ωp)�
Therefore, for any y−p�y′−p ∈ A−p� w.p.1, we have either νp(·�y−p;ωp) ≥ νp(·�y′−p;ωp)
or νp(·�y−p;ωp)≤ νp(·�y′−p;ωp).

Proof. A violation of Result 1 implies the existence of a yp ∈ Ap such that νp(yp�y−p;
ωp) < νp(yp�y′−p;ωp) and νp(yp+ 1�y−p;ωp)− νp(yp�y−p;ωp) < νp(yp+ 1�y′−p;ωp)−
νp(yp�y′−p;ωp), but this violates the nonincreasing differences condition in Assump-
tion 2. �

2.3 Behavior: Complete-information Nash equilibrium

Agents make their choices simultaneously in a complete-information environment
where the realization of payoff functions is publicly observed. A mixing strategy by
agent p is a probability function πp : Ap −→ [0�1]. Recall that ω≡ (ωp)

P
p=1 denotes the

collection of all agents’ payoff shifters. A mixing strategy by p’s opponents is a proba-
bility function over A−p, and we denote it by π−p. In our setting, for a given ω, a Nash
equilibrium is a probability function π : A −→ [0�1] induced by a collection of mixing
strategies (πp)Pp=1 through independent randomization. That is, π(y) = ∏P

p=1πp(yp)

for each y ≡ (yp)
P
p=1 ∈ A, and π−p(y−p) = ∏

q �=p πq(yq) for each y−p ≡ (yq)q �=p ∈ A−p
and each p. In addition, for each p,

yp ∈ arg max
y∈Ap

{ ∑
y−p∈A−p

π−p(y−p) · νp(y�y−p;ωp)
}

∀yp :πp(yp) > 0�

That is, every action chosen with positive probability by πp is expected-utility maximiz-
ing given the mixing strategies of p’s opponents.

Nash equilibrium profile. We say that y ∈ A is a Nash equilibrium profile if there exists
a NE π such that π(y) > 0; that is, a NE where y is played with positive probability. We
define

E (ω)= {y ∈ A : y is a NE profile}�
We assume E (ω) to be nonempty w.p.1.
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Assumption 3. The outcome of the game is a NE profile w.p.1; that is, Y ∈ E (ω) w.p.1.
More precisely, there exists a (possibly random) mechanism ME that, for each ω, selects
a NE π∗ from the set of existing NE, and the outcome observed Y is the realization of this
NE; therefore,π∗(Y) > 0. Unless we explicitly say otherwise, the features of the equilibrium
selection mechanism ME are left completely unspecified.

Our goal is to characterize bounds for Pr[y ∈ E (ω)|X] for any given y in A, where X
are observable payoff covariates. By comparing these bounds with Pr[Y = y|X], we also
obtain a lower bound for Pr[ME selects a NE π :π(y) > 0|y ∈ E (ω)�X]. While maintain-
ing Assumptions 1–3, we also presuppose that the researcher has ex ante knowledge
about the direction of strategic interaction. We describe this in the next section.

3. Information available to the researcher

We now describe the inferential setting faced by the researcher.

3.1 Features of a prototypical data set

For a sample of i = 1� � � � �N games which satisfy our assumptions, the researcher ob-
serves the corresponding outcomes Yi ≡ (Yp�i)

P
p=1 and (possibly) a vector of covari-

atesXi, which may be a subset ofωi ≡ (ωp�i)Pp=1 or, more generally, may be related toωi.
The dimension of the elements inωi that are not controlled byXi is unspecified. The re-
searcher cannot determine whether, for any pair of observations i �= j, the correspond-
ing outcomes Yi and Yj were produced by the same realization of payoff functions. We
rule out, for instance, the availability of panel data where some prespecified feature of
payoff functions is assumed to be fixed across some dimension of the panel. All of our
results could be refined in such a setting. In our statistical inference section, we assume
(Yi�Xi)Ni=1 to be an independent and identically distributed (iid) sample, but our final
results can potentially be modified to allow for dependence across observations.

The labels of players p= 1� � � � �P can be meaningful in various ways, depending on
the application at hand. For instance, p= 1 and p= 2 could denote specific firms (e.g.,
Home Depot and Lowe’s), and thusY1�i andY2�i would denote the action chosen by each
of these firms in the ith market. Alternatively, p= 1 and p= 2 could refer to the largest
and the second largest firms in a market; to the incumbent and the entrant, and so on.
We could also have applications where the game is played by P symmetric players, where
their labeling would be unnecessary.

3.2 Ex ante knowledge about the direction of strategic interaction

The functional forms of payoffs are unknown. In this setting, we obtain constructive re-
sults by assuming the existence of ex ante knowledge about the direction of strategic
interaction in the game. To be precise, for any given y−p�y′−p ∈ A−p, we assume that the
researcher knows sufficient conditions such that νp(·�y−p;ωp) ≥ νp(·�y′−p;ωp) w.p.1.
This knowledge may come from economic theory or it could be a modeling assump-
tion maintained by the researcher. For instance, if economic theory predicts that Yp
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andYq are pairwise substitutes w.p.1, then having y′−p ≥ y−p (elementwise) would imply
νp(·�y′−p;ωp)≤ νp(·�y−p;ωp) w.p.1. We formalize our assumption next.

Assumption 4. For each p there exists a function fp : A−p → Rdp (with dp ≥ 1) known
to the researcher such that the following conditions hold:

(i) For all y−p�y′−p ∈ A−p, fp(y′−p) ≥ fp(y−p) (elementwise) 
⇒ νp(·�y′−p;ωp) ≤
νp(·�y−p;ωp)w.p.1.

(ii) If fp is multivalued, and we have both fp(y′−p)� fp(y−p) and fp(y−p)� fp(y′−p)�
it is impossible for the researcher to predict, conditional on observables, the ordinal rela-
tionship between νp(yp�y′−p;ωp) and νp(yp�y−p;ωp) for any yp.

With probability 1, having fp(y′−p)≥ fp(y−p) ensures that3, for any possible choicep
can make, his corresponding payoff if Y−p = y−p cannot be smaller than he would ob-
tain if Y−p = y′−p. If fp is multivalued, we cannot conclude anything if fp(y′−p)� fp(y−p)
and fp(y−p)� fp(y′−p). For almost every realization of ωp and any action p can choose,
opponent action profiles in A−p that yield higher (elementwise) values of fp cannot
leave p better off.

Example 1 (Continued). We revisit the example from Section 2 and outline two in-
stances of the type of maintained presuppositions that lead to the setting described in
Assumption 4.

(i) Suppose every other Yq can be classified as either a complement or a substitute
of Yp w.p.1, and that the researcher knows the identities of each group. In addition, it
is maintained that p’s payoffs depend on others’ actions only through the total quantity
produced by each group of opponents. Assumption 4 is then satisfied by the function
fp : A−p −→ R2 given by

fp(y−p)=
( ∑
q∈Sp

yq�−
∑
q∈Cp

yq

)
�

where Sp and Cp denote the group of substitutes and complements of Yp.

(ii) Again, suppose every other Yq can be classified as either a complement or a sub-
stitute of Yp w.p.1, and that the researcher knows the identities of each group. However,
nothing else is assumed about how p’s payoffs depend on others’ actions. Assumption 4
is then satisfied by the function fp : A−p −→ RP−1 given by

fp(y−p)= (
(yq)q∈Sp� (−yq)q∈Cp

)
�

Again, Sp and Cp denote the group of substitutes and complements of Yp.

3Since payoff functions do not cross (see Result 1), it would be enough to state Assumption 4(i) as
“∀y−p�y′−p ∈ A−p, fp(y′−p)≥ fp(y−p) (elementwise) 
⇒ νp(yp�y′−p;ωp)≤ νp(yp�y−p;ωp) for some yp.”
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Applications where Assumption 4 does not hold are not suitable for our methods.
Furthermore, without stronger conditions than those described in Assumptions 1–3, we
cannot test Assumption 4, so it must be a maintained restriction. Maintaining ex ante
knowledge of the direction of strategic interaction is a commonly found identification
assumption in parametric models of complete-information games. Some examples in-
clude Bresnahan and Reiss (1990, 1991), Berry (1992), Tamer (2003), and Davis (2006). As
Example 1 (in particular part (ii)) illustrates, even though it implicitly adds more struc-
ture, Assumption 4 does not necessarily amount to the parametrization of payoff func-
tions.

4. Implications of our assumptions on the properties of Nash equilibria

4.1 Implications of Assumptions 1 and 2

The first implication of our payoff assumptions follows from the independent mixing
in NE.

4.1.1 Features of the support of Nash equilibria

Result 2. If Assumption 1(i) holds (strict concavity), then in any NE, each agent can
play at most two actions with positive probability, and these actions must be adjacent.
Furthermore, a direct consequence of Assumption 1(ii) is that there almost surely cannot
exist a NE where only one agent is playing a mixed strategy.

Proofs for Result 2 and Propositions 1, 2, and 4 are provided in Appendix A.
Once ω is realized, independent mixing in NE implies that the expected utility of

choosingYp = yp is always of the form
∑

y−p∈A−p π−p(y−p) ·νp(yp�y−p;ωp)� as opposed
to the more general∑

y−p∈A−p
π−p(y−p|yp) · νp(yp�y−p;ωp)�

where p’s opponents’ mixing distribution can depend on the action chosen by p. For
any well defined probability functionπ−p : A−p −→ [0�1], strict concavity of payoffs (As-
sumption 1(i)) yields∑

y−p∈A−p
π−p(y−p) · [νp(yp�y−p;ωp)− νp(yp − 1�y−p;ωp)]

>
∑

y−p∈A−p
π−p(y−p) · [νp(yp + 1�y−p;ωp)− νp(yp�y−p;ωp)]

for any yp ∈ Ap. It follows that in any NE π, agent p can only be optimally indifferent be-
tween at most two actions, which must be adjacent. Coordination across agents (e.g., as
in a correlated equilibrium4) and, in general, any departure from independent mixing of

4See Definition 2.4B in Fudenberg and Tirole (1991).
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NE could invalidate Result 2. Failure of strict concavity of payoffs could also invalidate it.
With weak concavity (see the lower left panel in Figure 1), agents can be made optimally
indifferent across three or more actions. Private information in payoffs could, in general,
also bring down Result 2, even if strict concavity holds and Bayesian–Nash equilibrium
behavior prevails.

A generic characterization of the support of Nash equilibria. Without imposing stronger
conditions, the only constructive implications of our assumptions on the features of NE
distributions are the adjacent-action support restrictions described in Result 2. From
there, we can express the support of any NE as a Cartesian product of the form

S =
P∏
p=1

{ap�bp} = {(yp)Pp=1 :yp = ap or yp = bp for each p}� (4)

where

(i) ap�bp ∈ Ap ∀p,

(ii) bp = ap or bp = ap + 1 ∀p,

(iii) if ap �= bp for some p, then aq �= bq for some q �= p.

We should think about ap and bp as the two actions that player p is supposed to play
with positive probability in a hypothetical NE (if ap = bp, then p is supposed to play ap
as a pure strategy), and we should think of S as the support of said NE. For example, sup-
pose P = 2 (two players) and take any y ≡ (y1� y2) in the interior of A. Then the support S
of any NE where y is played with positive probability must be one of the five sets

{y1 − 1� y1} × {y2 − 1� y2}� {y1� y1 + 1} × {y2 − 1� y2}�
{y1 − 1� y1} × {y2� y2 + 1}� {y1� y1 + 1} × {y2� y2 + 1}� or {y1� y1} × {y2� y2}�

For instance, the first case requires agent 1 to randomize between y1 − 1 and y1, and
requires agent 2 to randomize between y2 − 1 and y2. The last case corresponds to play-
ing y1 and y2 as pure strategies. As usual, for anyp and y−p ≡ (yq)q �=p, we say that y−p ∈ S
if there exists a profile v ≡ (vp)Pp=1 in S where vq = yq for each q �= p.

How large is the collection of different sets S that can constitute the support of a NE
where y is played with positive probability? A simple counting exercise shows that

#{S : y ∈ S and S satisfies (4) } ≤
P∑
R=2

(
P

R

)
· 2R + 1 = 3P − 2P� (5)

This bound holds exactly if y belongs in the interior of A and is a strict inequality other-
wise. For instance, if P = 2, this bound is 5 (see the above example) and it is 21 if P = 3.

4.1.2 Necessary conditions for the existence of NE with a prespecified support We begin
by exploring the implications of Assumptions 1 and 2 on the existence of NE with a pre-
specified support S . Afterward, we move on to necessary conditions for the coexistence
of a NE with support S and a NE with support S ′.
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Figure 2. νup(·�S;ωp) and ν�p(·�S;ωp) for a collection S that includes y1−p, y2−p, y3−p, and y4−p.

Definition 1. (νu
p(·�S;ωp)� ν

�
p(·�S;ωp))� Let S be a set as described in (4). For any such

set, we define

νup(·�S;ωp)= max{νp(·�y−p;ωp) : y−p ∈ S} and
(6)

ν�p(·�S;ωp)= min{νp(·�y−p;ωp) : y−p ∈ S}�
Onceωp is realized, νup(·�S;ωp) and ν�p(·�S;ωp) simply denote upper and lower bounds
(envelopes) for p’s payoff function whenever p’s opponents choose an action profile
in S . Figure 2 illustrates these objects for a hypothetical S which includes four action
profiles {y�−p}4

�=1.

As a consequence of the no-crossing property of payoff functions shown in Result 1,
we can see in Figure 2 that for the underlying realization of ωp depicted there, we had
νup(·�S;ωp) = νp(·�y1−p;ωp) and ν�p(·�S;ωp) = νp(·�y4−p;ωp). This is actually a general
feature of νup(·�S;ωp) and ν�p(·�S;ωp) for any S . The no-crossing property of payoffs im-
plies that for any S , once ωp is realized, there exist y∗−p ∈ S and y∗∗−p ∈ S (not necessarily
unique) such that

νup(·�S;ωp)= νp(·�y∗−p;ωp) and ν�p(·�S;ωp)= νp(·�y∗∗−p;ωp)�
As a consequence, both ν�p(·�S;ωp) and νup(·�S;ωp) must satisfy the shape restrictions
in Assumptions 1 and 2. In particular, in addition to having to satisfy concavity, nonin-
creasing differences (Assumption 2) implies that for any finite collection S and each yp
in A, w.p.1, we must have

νup(yp + 1�S;ωp)− νup(yp�S;ωp)≥ ν�p(yp + 1�S;ωp)− ν�p(yp�S;ωp)�
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νup(yp + 1�S;ωp)− νup(yp�S;ωp)
≥ νp(yp + 1�y−p;ωp)− νp(yp�y−p;ωp) ∀y−p ∈ S� (7)

νp(yp + 1�y−p;ωp)− ν�p(yp�y−p;ωp)
≥ ν�p(yp + 1�S;ωp)− νp(yp�S;ωp) ∀y−p ∈ S�

and w.p.1, if the collections S and S ′ are such that ν�p(·�S ′;ωp) ≥ νup(·�S;ωp), we must
also have

ν�p(yp + 1�S ′;ωp)− ν�p(yp�S ′;ωp)≥ νup(yp + 1�S;ωp)− νup(yp�S;ωp)� (8)

Proposition 1. Let S be as described in (4). If Assumptions 1 and 2 hold, there exists a
NE π with support S only if the following two conditions hold:

(i) νup(ap�S;ωp) < νup(ap + 1�S;ωp) and ν�p(ap�S;ωp) > ν�p(ap + 1�S;ωp) ∀p :bp =
ap + 1�

(ii) νup(ap − 1�S;ωp) < νup(ap�S;ωp) and ν�p(ap�S;ωp) > ν�p(ap + 1�S;ωp) ∀p :bp =
ap�

Proposition 1 follows from the shape restrictions in Assumptions 1 and 2 and their
implication in (7). The details are in the Appendices, but Figure 3 illustrates the argu-
ments. If bp = ap + 1, any NE with support S requires p to randomize across ap and
ap + 1. Panel (A) depicts the restrictions implied by part (i) of Proposition 1 along with
an illustration of how, if these restrictions are satisfied, we may find a mixing distribu-
tion π−p with support S that makes p optimally indifferent between ap and ap+ 1. Pan-
els (B) and (C) show that if Assumptions 1 and 2 hold and if the conditions in part (i)
are violated, there cannot be such mixing distribution. Panel (D) depicts the restrictions
stated in part (ii) of Proposition 1; that is, the restrictions needed to play Yp = ap as a
pure-strategy in a NE with support S . Panels (E) and (F) show how, if these conditions
are violated, our payoff assumptions imply thatYp = ap cannot be an optimal choice for
any mixing distribution π−p with support S .

4.1.3 Necessary conditions for the coexistence of Nash equilibria with prespecified sup-
ports Let S and S ′ be any pair of sets that satisfy the restrictions in (4). Maintaining
that a NE with support S exists, we use the results from Proposition 1 and Assumptions 1
and 2 to characterize necessary conditions for the coexistence of a NE with support S ′.

Proposition 2. Let S = ∏P
p=1{ap�bp} and S ′ = ∏P

p=1{a′
p�b

′
p} satisfy the conditions

in (4). Suppose there exists a NE π with support S . If Assumptions 1 and 2 hold, a NE
π′ with support S ′ also exists only if, for each p, either ν�p(·�S ′;ωp) < νup(·�S;ωp) and
νup(·�S ′;ωp) > ν�p(·�S;ωp) or one of the following cases holds:

Case I. If ap �= bp and a′
p �= b′

p (i.e., bp = ap + 1 and b′
p = a′

p + 1), there are two alter-
natives:

(i) If ν�p(·�S ′;ωp)≥ νup(·�S;ωp)� we must have a′
p > ap�

(ii) If νup(·�S ′;ωp)≤ ν�p(·�S;ωp)� we must have a′
p < ap�
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Figure 3. Illustration of Proposition 1. Panel (A) depicts the restrictions in part (i), while (B)
and (C) show the implications of their violation. Panel (D) describes the restrictions in part (ii),
while (E) and (F) depict the implications of their violation.
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Case II. If ap �= bp (i.e., bp = ap + 1) and a′
p = b′

p, there are two alternatives:

(i) If ν�p(·�S ′;ωp)≥ νup(·�S;ωp)� we must have a′
p > ap�

(ii) If νup(·�S ′;ωp)≤ ν�p(·�S;ωp)� we must have a′
p ≤ ap�

Case III. If ap = bp and a′
p �= b′

p (i.e., b′
p = a′

p + 1), there are two alternatives:

(i) If ν�p(·�S ′;ωp)≥ νup(·�S;ωp)� we must have a′
p ≥ ap�

(ii) If νup(·�S ′;ωp)≤ ν�p(·�S;ωp)� we must have a′
p < ap�

Case IV. If ap = bp and a′
p = b′

p, there are two alternatives:

(i) If ν�p(·�S ′;ωp)≥ νup(·�S;ωp)� we must have a′
p ≥ ap�

(ii) If νup(·�S ′;ωp)≤ ν�p(·�S;ωp)� we must have a′
p ≤ ap�

If the above conditions are satisfied, then the payoff restrictions necessary for the coexis-
tence of NE with supports S and S ′ are compatible with Assumptions 1 and 2.

Proposition 2 follows from the results in Proposition 1 and the payoff restrictions im-
plied by Assumptions 1 and 2; in particular, the implications described in (8). Figure 4
illustrates Case I(i), where p is required to randomize between ap and ap + 1 in the first
NE, and between a′

p and a′
p + 1 in the second NE. From part (i) of Proposition 1, we

must have νup(ap�S;ωp) < νup(ap + 1�S;ωp) and ν�p(a
′
p�S ′;ωp) > ν�p(a′

p + 1�S ′;ωp). If
ν�p(·�S ′;ωp) ≥ νup(·�S;ωp) and payoffs are concave, then having a′

p ≤ ap implies a vio-
lation of Assumption 2 (specifically, of Equation (8)). All other cases in Proposition 2 are

Figure 4. By concavity of payoffs, a violation of the restriction in Case I(i) of Proposition 2 nec-
essarily implies a violation of Assumption 2 (specifically, a violation of Equation (8)).
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established analogously; please see the details in Appendix A.
For notational convenience, we use an indicator function for the event that the con-

ditions in Proposition 2 are satisfied for a given pair (S�S ′). We denote it by I(S�S ′;ω)
and we describe it next.

Definition 2 (Ip(S�S ′;ωp)� I(S�S ′;ω)). Let S = ∏P
p=1{ap�bp} and S ′ = ∏P

p=1{a′
p�b

′
p}

satisfy the conditions in (4). For eachp, let Ip(S�S ′;ωp) be an indicator function defined
as follows.

Case I. If ap �= bp and a′
p �= b′

p (i.e., bp = ap + 1 and b′
p = a′

p + 1), let

Ip(S�S ′;ωp)= 1 − max
{
1{ν�p(·�S ′;ωp)≥ νup(·�S;ωp)}1{a′

p ≤ ap}�
1{νup(·�S ′;ωp)≤ ν�p(·�S;ωp)}1{a′

p ≥ ap}}�
Case II. If ap �= bp (i.e., bp = ap + 1) and a′

p = b′
p, let

Ip(S�S ′;ωp)= 1 − max
{
1{ν�p(·�S ′;ωp)≥ νup(·�S;ωp)}1{a′

p ≤ ap}�
1{νup(·�S ′;ωp)≤ ν�p(·�S;ωp)}1{a′

p > ap}}�
Case III. If ap = bp and a′

p �= b′
p (i.e., b′

p = a′
p + 1), let

Ip(S�S ′;ωp)= 1 − max
{
1{ν�p(·�S ′;ωp)≥ νup(·�S;ωp)}1{a′

p < ap}�
1{νup(·�S ′;ωp)≤ ν�p(·�S;ωp)}1{a′

p ≥ ap}}�
Case IV. If ap = bp and a′

p = b′
p, let

Ip(S�S ′;ωp)= 1 − max
{
1{ν�p(·�S ′;ωp)≥ νup(·�S;ωp)}1{a′

p < ap}�
1{νup(·�S ′;ωp)≤ ν�p(·�S;ωp)}1{a′

p > ap}}�
Finally, we let

I(S�S ′;ω)= min
p=1�����P

{Ip(S�S ′;ωp)}�

Remark 4. By construction, I(S�S ′;ω)= 1 if and only if the conditions in Proposition 2
are satisfied for each p, and it is zero otherwise. Therefore,

1{there exists a NE π with support S and a NE π ′ with support S ′}
(9)

≤ I(S�S ′;ω)�
Adding Assumption 3, we can finally analyze the event y ∈ E (ω) for any given y ∈ A.

4.2 Incorporating Assumption 3

Our ultimate focus is the event y ∈ E (ω) for a given y. Since Assumption 3 maintains that
Y ∈ E (ω), if we invoke (9), then the problem reduces to verifying whether I(S�S ′;ω)= 1
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for some pair (S�S ′) such that Y ∈ S and y ∈ S ′. For any pair of action profiles y, y′ in A,
let

IE (y�y′;ω)= max
S�S ′ {I(S�S ′;ω)}

(10)
such that (i) S and S ′ satisfy (4); (ii) y ∈ S and y′ ∈ S ′�

What we do in (10) is to search over all possible NE supports S and S ′ that include y
and y′, respectively, and verify whether the conditions in Proposition 2 are satisfied for
some such S and S ′. If this is the case, IE (y�y′;ω) = 1; otherwise, it equals 0. From (9)
and (10), we have

1{y�y′ ∈ E (ω)} ≤ IE (y�y′;ω)�

From (5), the total number of distinct pairs (S�S ′) involved in the search is at most (3P −
2P)2. We are now ready to present the main result of this section.

Proposition 3. Suppose Assumptions 1–3 hold. Then, for any y in A, w.p.1 we have5

1{Y = y} ≤ 1{y ∈ E (ω)} ≤ IE (Y�y;ω)� (11)

Furthermore, our assumptions are compatible with the conditions needed to have either
1{y ∈ E (ω)} = 1{Y = y} w.p.1 or 1{y ∈ E (ω)} = IE (Y�y;ω) w.p.1.

Proof. The lower bound follows directly from Assumption 3. The upper bound follows
from (9) and the definition of IE in (10). Having 1{Y = y} = 1{y ∈ E (ω)} holds under (3),
where each agent has a strictly dominant action w.p.1. The last piece of the statement
comes from the final part of Proposition 2 (see also Remark 3). �

Constructing an upper bound for Pr[y ∈ E (ω)|X] using (11) directly is not feasible
since IE cannot be observed. Constructive results follow from Assumption 4.

4.3 Constructive results using Assumption 4

Going back to Definition 2, constructing Ip(S�S ′;ωp) and I(S�S ′;ω) requires observing
the indicator functions 1{ν�p(·�S ′;ωp) ≥ νup(·�S;ωp)} and 1{νup(·�S ′;ωp) ≤ ν�p(·�S;ωp)}
for each p. But this is not feasible because payoff functions are unknown to the re-
searcher. It follows that IE (y�y′;ω) is unknown and, therefore, it is not possible to
use (11) directly to construct an upper bound for Pr[y ∈ E (ω)|X]. Assumption 4 enables
us to replace the unobservable IE (y�y′;ω) with a valid upper bound. Let

Hp(S�S ′)= 1{fp(u−p)≥ fp(v−p) ∀u−p ∈ S�v−p ∈ S ′}�
5Note from (10) that IE (y�y′;ω) is symmetric in y and y′. Therefore, IE (Y�y;ω)= IE (y�Y;ω).
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By Assumption 4, Hp(S�S ′)= 1 almost surely implies that having Y−p ∈ S leavespworse
off than if Y−p ∈ S ′ for any action p can choose. Thus,

Hp(S�S ′)≤ 1{ν�p(·�S ′;ωp)≥ νup(·�S;ωp)} and
(12)

Hp(S ′�S)≤ 1{νup(·�S ′;ωp)≤ ν�p(·�S;ωp)} w.p.1.

This yields a valid, observable upper bound for the unfeasible IE (y�y′;ω).

Definition 3 (̃Ip(S�S ′)� Ĩ(S�S ′)). Let S = ∏P
p=1{ap�bp} and S ′ = ∏P

p=1{a′
p�b

′
p} be any

two sets that satisfy the conditions in (4). For each p, let Ĩp(S�S ′) be the indicator func-
tion that results when we replace 1{ν�p(·�S ′;ωp) ≥ νup(·�S;ωp)} with Hp(S�S ′) and re-
place 1{νup(·�S ′;ωp)≤ ν�p(·�S;ωp)} with Hp(S ′�S) everywhere in Definition 2, and let

Ĩ(S�S ′)= min
p=1�����P

{̃Ip(S�S ′)}�

By (12),

Ip(S�S ′;ωp)≤ Ĩp(S�S ′) ∀p; therefore� I(S�S ′;ω)≤ Ĩ(S�S ′) w.p.1. (13)

For any pair of action profiles y�y′ in A, let

ĨE (y�y′)= max
S�S ′ {̃I(S�S ′)}

(14)
such that (i) S and S ′ satisfy (4); (ii) y ∈ S and y′ ∈ S ′�

By (13), we have IE (y�y′;ω) ≤ ĨE (y�y′) w.p.1. Based on Assumption 4, the best observ-
able valid bounds that can be derived from Proposition 3 are

1{Y = y} ≤ 1{y ∈ E (ω)} ≤ ĨE (Y�y)� (15)

Remark 5. Equation (15) is the main constructive result in this paper and our probabil-
ity bounds are derived from it.

Example 1 (Continued). We illustrate how to construct the indicator functions Ĩp(S�
S ′), Ĩ(S�S ′), and ĨE (y�y′) in each of the two cases described in the example of Section 3.

Computing Ĩp(S�S ′).

(i) We have fp(y−p) = (
∑
q∈Sp

yq�−∑
q∈Cp

yq), where Sp and Cp denote the group

of substitutes and complements of Yp. For any pair of sets S = ∏P
p=1{ap�bp} and S ′ =∏P

p=1{a′
p�b

′
p} as described in (4), we then have

Hp(S�S ′)= 1

{ ∑
q∈Sp

aq ≥
∑
q∈Sp

b′
q� and

∑
q∈Cp

bq ≤
∑
q∈Cp

a′
q

}
�

Hp(S ′�S)= 1

{ ∑
q∈Sp

a′
q ≥

∑
q∈Sp

bq� and
∑
q∈Cp

b′
q ≤

∑
q∈Cp

aq

}
�
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Using these expressions, Ĩp(S�S ′) is obtained as we describe in Definition 3.

(ii) We have fp(y−p) = ((yq)q∈Sp� (−yq)q∈Cp). For any pair of sets S = ∏P
p=1{ap�bp}

and S ′ = ∏P
p=1{a′

p�b
′
p} as described in (4), we then have

Hp(S�S ′)= 1{aq ≥ b′
q ∀q ∈ Sp� and bq ≤ a′

q ∀q ∈ Cp}�
Hp(S ′�S)= 1{a′

q ≥ bq ∀q ∈ Sp� and b′
q ≤ aq ∀q ∈ Cp}�

Using these expressions, Ĩp(S�S ′) is obtained as we describe in Definition 3.

Computing Ĩ(S�S ′) and ĨE (y�y′).
Once Ĩp(S�S ′) is obtained for each p, we have Ĩ(S�S ′) = minp=1�����P {̃Ip(S�S ′)}. For

any y, y′ in A, from (14) we have

ĨE (y�y′)= max
S�S ′ {̃I(S�S ′)}

such that (i) S and S ′ satisfy (4); (ii) y ∈ S and y′ ∈ S ′�

From (5), if y, y′ belong in the interior of A, constructing ĨE (y�y′) involves computing
Ĩ(S�S ′) for (3P − 2P)2 distinct pairs (S�S ′). If P = 2, this number is 25; if P = 4, it grows
to 5329. Although this number grows exponentially with P , we stress that even in ap-
plications with large P , the simple structure of each pair (S�S ′) (described in (4)), as
well as the straightforward expressions for each Ĩp(S�S ′), makes the task of coding and
computing ĨE (y�y′) entirely feasible. As we see in Section 6, restricting attention to pure-
strategy NE eliminates any computational concern altogether.

5. Probability bounds for Nash equilibrium action profiles

Let y and C denote a prespecified action profile and a collection of profiles, respectively.
As before, X denotes the collection of observable payoff-relevant covariates. Using the
results from Section 4, we characterize bounds for the probabilities6

PE (y�X)≡ Pr[y ∈ E (ω)|X] = Pr[ y is a NE profile|X]
and

PE (C�X)≡ Pr[C ∩ E (ω) �= ∅|X] = Pr[ C includes a NE profile|X]�
Comparing the upper bound with Pr[Y = Y|X], we also derive a lower bound for

QE (y�X)≡ Pr[ME selects a NE π :π(y) > 0|y ∈ E (ω)�X]�
QE (C�X)≡ Pr[ME selects a NE π : π(y) > 0 for some y ∈ C|C ∩ E (ω) �= ∅�X];

that is, the likelihood that ME selects a NE where y (or some profile in C ) is played given
that such a NE exists.

6Our results could, for example, also enable us to determine bounds for Pr[C ⊆ E (ω)|X], the probability
that every element in C is a NE profile. For brevity, we focus only on Pr[y ∈ E (ω)|X] and Pr[C ∩E (ω) �= ∅|X].
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5.1 Bounds implied by Proposition 3

We begin with bounds for PE (y�X) and QE (y�X). Proposition 3 yields the following
result.

Proposition 4. Take any profile y in A. As before, let X denote the vector of observable
payoff shifters in ω.

(i) If Assumptions 1–3 are satisfied, then

Pr[Y = y|X] ≤ PE (y�X)≤E[IE (Y�y;ω)|X]�

Furthermore, our assumptions are compatible with the conditions needed for either of
these bounds to be attained.

(ii) For any profile y such that E[IE (Y�y;ω)|X]> 0,

Pr[Y = y|X]
E[IE (Y�y;ω)|X] ≤QE (y�X)≤ 1�

Furthermore, our assumptions are compatible with the conditions needed for either of
these bounds to be attained.

Part (i) of Proposition 4 follows directly from Proposition 3. The upper bound of 1 in
part (ii) is attained, for example, if each agent has a dominant action with probability 1
(see Remark 3 and Equation (3)). In such a case, having y ∈ E (ω) automatically implies
that there are no other profiles in E (ω) and trivially the mechanism ME must select y.
To understand the lower bound in (ii), suppose there exists a NE π that includes y in its
support. In that case, our assumptions place no restrictions on the range of values π(y)
(the probability with which y is played in π) can take on (0�1). Thus, our assumptions
only imply that

Pr[Y = y|y ∈ E (ω)�X] ≤ Pr[ME selects a NE π∗ :π∗(y) > 0|y ∈ E (ω)�X]
≡QE (y�X)�

Since

Pr[Y = y|y ∈ E (ω)�X] = Pr[Y = y|X]
Pr[y ∈ E (ω)|X] �

the lower bound in part (ii) follows from the upper bound in part (i). Let C ≡ (y1� � � � �yL)
be a prespecified collection in A. By Assumption 3 and Proposition 3,

1{Y ∈ C} ≤ 1{C ∩ E (ω) �= ∅} ≤ max
y�∈C

{IE (Y�y�;ω)} w.p.1. (16)

From this, we have the following result.
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Proposition 5. (i) If Assumptions 1–3 are satisfied, then

Pr[Y ∈ C|X] ≤ PE (C�X)≤E
[
max
y�∈C

{IE (Y�y�;ω)}∣∣X]
�

Furthermore, our assumptions are compatible with the conditions needed for either of
these bounds to be attained.

(ii) For any C such that E[maxy�∈C {IE (Y�y�;ω)}|X]> 0,

Pr[Y ∈ C|X]
E[maxy�∈C {IE (Y�y�;ω)}|X] ≤QE (C�X)≤ 1�

As before, our assumptions are compatible with the conditions needed for either of these
bounds to be attained.

Part (i) follows directly from (16). Part (ii) is shown using the same arguments as in
part (ii) of Proposition 4. All bounds involving IE are unfeasible because this indicator
function is not observed. We obtain valid, observable bounds by replacing IE with ĨE .

5.2 Feasible probability bounds using Assumption 4

The bounds in Section 5.1 which involve IE cannot be constructed or estimated because
this indicator function is not observed. Based on (15), we can replace IE with ĨE in every
instance and the resulting bounds remains valid. For a given y, let

P�E (y�X)≡ Pr[Y = y|X] and PuE (y�X)≡E[̃IE (Y�y)|X]�

Using part (i) of Proposition 4, our bounds for PE (y�X) are

P�E (y�X)≤ PE (y�X)≤ PuE (y�X)� (17.i)

If PuE (y�X) > 0, let

Q�E (y�X)≡ P�E (y�X)

PuE (y�X)
�

From part (ii) of Proposition 4, our bounds forQE (y�X) are

Q�E (y�X)≤QE (y�X)≤ 1� (17.ii)

Similarly, for a class C of profiles in A, let

P�E (C�X)≡ Pr[Y ∈ C|X] and PuE (C�X)≡E
[
max
y�∈C

{̃IE (Y�y�)}∣∣X]
�

Using part (i) of Proposition 5, our bounds for PE (C�X) are

P�E (C�X)≤ PE (C�X)≤ PuE (C�X)� (18.i)
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and if PuE (C�X) > 0, let

Q�E (C�X)≡ P�E (C�X)
PuE (C�X) �

Using part (ii) of Proposition 5, the bounds forQE (C�X) are

Q�E (C�X)≤QE (C�X)≤ 1� (18.ii)

Under our assumptions, (17.i)–(18.ii) constitute the best valid observable bounds that
can be derived from Propositions 4 and 5.

6. The case of pure-strategy Nash equilibrium behavior

Our results simplify considerably if we assume that the outcome observed is a pure-
strategy NE. Let

E ∗(ω)= {y ∈ A : y is a pure-strategy NE profile}�

By construction, the only possible support for a pure-strategy NE where y is played is
S = {y}. If we let S = {y} and S ′ = {y′}, then from Definition 3 (Case IV), we have

Ĩp({y}� {y′}) = 1 − 1{fp(y′−p)≤ fp(y−p)} · 1{y ′
p < yp}

(19)
− 1{fp(y′−p)≥ fp(y−p)} · 1{y ′

p > yp}�

Let us denote

ĨE
∗
(y�y′)≡ min

p=1�����P

{̃
Ip({y}� {y′})}� (20)

From our results in previous sections, we have 1{y�y′ ∈ E ∗(ω)} ≤ ĨE
∗
(y�y′). Consider the

following stronger version of Assumption 3.

Assumption 3′ . With probability 1, Y ∈ E ∗(ω); that is, the selection mechanism ME ∗

now directly selects an outcome (as opposed to a mixing distribution), and this outcome
is a pure-strategy NE with probability 1.

If Assumption 3′ holds, we have7

1{Y = y} ≤ 1{y ∈ E ∗(ω)} ≤ ĨE
∗
(Y�y)� (21)

For any such profile or any collection C in A, denote

PE ∗(y�X)≡ Pr[y ∈ E ∗(ω)|X]�
7This result remains valid even without strictly concave payoffs as long as weak concavity and local

monotonicity still hold. See footnote 2 and the lower left panel in Figure 1 for an illustration of weakly
concave payoffs.
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PE ∗(C�X)≡ Pr[C ∩ E ∗(ω) �= ∅|X]�
QE ∗(y�X)≡ Pr[ME ∗ selects y|y ∈ E ∗(ω)�X]�
QE ∗(C�X)≡ Pr[ME ∗ selects some y ∈ C|C ∩ E ∗(ω) �= ∅�X]�

These are the probabilities from Section 5 for the case of pure-strategy NE behavior.
Based on (21), the expressions for the bounds in (17.i)–(18.ii) remain valid for these prob-
abilities if we replace ĨE with ĨE

∗
in each case. As expected, assuming pure-strategy NE

refines these bounds; this is illustrated in the empirical example of Section 8.

Example 1 (Continued). We show how to construct ĨE
∗
(y�y′) in each of the two cases

described in the example of Section 3.

(i) We have fp(y−p) = (
∑
q∈Sp

yq�−∑
q∈Cp

yq), where Sp and Cp denote the group

of substitutes and complements of Yp. For any pair y ≡ (yp)
P
p=1 and y′ ≡ (y ′

p)
P
p=1 in A,

Equation (19) yields

Ĩp({y}� {y′}) = 1 − 1

{ ∑
q∈Sp

y ′
q ≤

∑
q∈Sp

yq and
∑
q∈Cp

y ′
q ≥

∑
q∈Cp

yq

}
· 1{y ′

p < yp}

− 1

{ ∑
q∈Sp

y ′
q ≥

∑
q∈Sp

yq and
∑
q∈Cp

y ′
q ≤

∑
q∈Cp

yq

}
· 1{y ′

p > yp}�

(ii) We have fp(y−p) = ((yq)q∈Sp� (−yq)q∈Cp). For any pair y ≡ (yp)
P
p=1 and y′ ≡

(y ′
p)
P
p=1 in A, Equation (19) yields

Ĩp({y}� {y′}) = 1 − 1{y ′
q ≤ yq ∀q ∈ Sp and y ′

q ≥ yq ∀q ∈ Cp} · 1{y ′
p < yp}

− 1{y ′
q ≥ yq ∀q ∈ Sp and y ′

q ≤ yq ∀q ∈ Cp} · 1{y ′
p > yp}�

In all cases, from (20), we have ĨE
∗
(y�y′)= minp=1�����P {̃Ip({y}� {y′})}.

Remark 6. Put together, our results show that in a game with the features described
here, the data can be informative about some features of the underlying selection mech-
anism. However, without additional assumptions, there are some aspects of the se-
lection mechanism that we cannot uncover. For illustration, focus on a 2 × 2 game
of strategic substitutes and suppose we maintain that the outcomes observed are al-
ways pure-strategy NE. In this setting, (1�0) and (0�1) could simultaneously be NE.
Let us focus on the outcome (1�0). While our results produce a lower bound on
Pr[ME ∗ selects (1�0)|(1�0) ∈ E ∗(ω)], finding bounds for Pr[ME ∗ selects (1�0)|(1�0)�
(0�1) ∈ E ∗(ω)] is not a well defined problem. This is because, while our assumptions
enable us to produce an upper bound for Pr[(1�0)� (0�1) ∈ E ∗(ω)], the lower bound for
this probability is always zero. Naturally, if we are willing to impose the restriction that
the latter probability is bounded away from zero, bounds for Pr[ME ∗ selects (1�0)|(1�0)�
(0�1) ∈ E ∗(ω)] would follow from our results. More generally, our bounds provide clear
guidelines for any simulation exercise of a game fitting our general assumptions. For
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instance, suppose the data reveal that Pr[ME ∗ selects (1�0)|(1�0) ∈ E ∗(ω)] = 1. Then,
in any simulation aimed at describing said data, the selection mechanism must always
choose (1�0)whenever it is a NE, including the case where (0�1) is also a NE. If the origi-
nal data also yielded Pr[ME ∗ selects (0�1)|(0�1) ∈ E ∗(ω)] = 1, then any simulation must
be such that Pr[(1�0)� (0�1) ∈ E ∗(ω)] = 0.

7. Inference

Let x denote a particular value of X and let C denote a collection of profiles in A. Based
on the bounds in (18.i) and (18.ii), we construct confidence intervals for PE (C�x) and
QE ∗(C�x) that asymptotically include the true values of these probabilities with a fixed
probability 1 −α. If pure-strategy NE behavior is maintained as in Section 6, confidence
intervals for PE ∗(C�x) andQE ∗(C�x) are constructed in the exact same way after replac-
ing ĨE with ĨE

∗
. We maintain that we observe an iid8 sample (Yi�Xi)Ni=1 which satisfies

Assumptions 1–4. We apply the results in Imbens and Manski (2004) and Stoye (2009)
to our setting.9. Split X = (Xc�Xd), where Xc ∈ Rc and Xd ∈ Rd denote the continu-
ous and discrete elements in X , respectively. We partition x = (xc�xd) accordingly. Let
K :Rc −→ R and hN denote a kernel function and a bandwidth sequence, respectively.
Let

ĝ(x)= 1
Nhc

N

N∑
i=1

K

(
Xc
i − xc
hN

)
· 1{Xd

i = xd}�

Our results come from the inequalities P�E (C�x) ≤ PE (C�x) ≤ PuE (C�x) and Q�E (C�x) ≤
QE (C�x)≤ 1 in (18.i) and (18.ii). Our estimators for P�E (C�x), PuE (C�x), andQ�E (C�x) are
of the form

P̂�E (C�x)= 1
NhcN

N∑
i=1

1{Yi ∈ C}K
(
Xc
i − xc
hN

)
1{Xd

i = xd}/ĝ(x)�
P̂uE (C�x)= 1

NhcN

N∑
i=1

max
yj∈C

{̃IE (Yi�yj)}K
(
Xc
i − xc
hN

)
1{Xd

i = xd}/ĝ(x)�
Q̂�E (C�x)= P̂�(C�x)/P̂u(C�x)�

Assumption 5. Let fc|d denote the conditional density of Xc given Xd . For a given
x ≡ (xd�xc) in the support of X , denote fc|d(xc|xd) · Pr(Xd = xd) ≡ g(x). The data ob-
served (Yi�Xi)Ni=1 is an iid sample from a distribution belonging to a family G , where

8Asymptotically valid inference could potentially be performed if (Yi�Xi)Ni=1 are identically distributed
but not independent. We focus on the iid case for simplicity.

9We concentrate on confidence intervals for individual probabilities. More generally, we could also con-
struct asymptotically valid joint confidence regions, for example, for PE (C�x) andQE (C�x) or for PE (C�x)
and PE (C�x′) with x �= x′.
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each one of its members satisfies the following conditions for C and almost every x in
some compact set X : (i) 0 < g ≤ g(x) ≤ g < ∞, 0 < p ≤ PuE (C�x) ≤ p < 1, and 0 < p ≤
P�E (C�x) ≤ p < 1. (ii) g(x), P�E (C�x) and PuE (C�x) are twice differentiable with respect
to xc (the continuous elements in x) with bounded derivatives everywhere in X . The ker-
nel K is nonnegative, has compact support, is Lipschitz-continuous, bounded, and sym-
metric around zero. Denote ψ= (ψ1� � � � �ψc)

′. Then
∫
K(ψ)dψ= 1,

∫
ψK(ψ)dψ= 0, and∫ ‖ψ‖2ψK(ψ)dψ <∞. The bandwidth sequence hN satisfies hN −→ 0, Nhc

N
/ log(N) −→

∞, andN log(N)hc+4
N

−→ 0.

Let μK2 ≡ ∫
K2(ψ)dψ. If Assumption 5 holds, we can show that uniformly over the G

and X ,10 √
NhcN

(
P̂�E (C�x)− P�E (C�x)
P̂uE (C�x)− PuE (C�x)

)
d−→ N

([
0

0

]
�

[(
σ2
� (C�x) ρ(C�x)σ�(C�x)σu(C�x)

ρ(C�x)σ�(C�x)σu(C�x) σ2
u(C�x)

)])
�√

NhcN(Q̂
�
E (C�x)−Q�E (C�x)) d−→ N (0��2(C�x))�

where

σ2
� (C�x)= P�E (C�x)(1 − P�E (C�x))

g(x)
·μK2 �

σ2
u(C�x)= PuE (C�x)(1 − PuE (C�x))

g(x)
·μK2 �

ρ(C�x)=
√
P�E (C�x)(1 − PuE (C�x))
PuE (C�x)(1 − P�E (C�x))

�

�2(C�x)= Q�E (C�x)(1 −Q�E (C�x))
PuE (C�x) · g(x) ·μK2 �

Since K ≥ 0, we have P̂�(C�x) ≤ P̂u(C�x) w.p.1 for any x. Therefore, 0 ≤ Q̂�E (C�x) ≤ 1.
Based on (18.ii) (where the upper bound is the known constant 1), the following interval
has uniformly valid asymptotic coverage of at least (1 − α)% forQE (C�x):

CIQα ≡
[
Q̂�E (C�x)− �̂(C�x)√

Nhc
N

· zα�1
]
� where�(zα)= 1 − α� (22)

Moving on to PE (C�x), denote �(C�x) = Pu(C�x) − P�(C�x) and �̂(C�x) = P̂u(C�x) −
P̂�(C�x). As we pointed out above, we have P̂�(C�x)≤ P̂u(C�x)w.p.1 for any x. Combining
this with our previous asymptotic normality result, we can show that a feature analogous
to Assumption 3 in Stoye (2009) holds in our setting. Namely, we can show that there ex-

10To understand the expression for ρ(C�x), note first that by construction 1{Y ∈ C} · maxyj∈C {̃IE (Y�yj)} =
1{Y ∈ C} and, therefore, E[1{Y ∈ C} · maxyj∈C {̃IE (Y�yj)}|X = x] =E[1{Y ∈ C}|X = x] = P�(C�x). From here, it

follows that Cov(1{Y ∈ C}�maxyj∈C {̃IE (Y�yj)})= P�(C�x) · [1 − Pu(C�x)].
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ists a sequence aN → 0 such that aN
√
Nhc

N
→ ∞ and

√
Nhc

N
|�̂(C�x)−�N(C�x)| p−→ 0 for

all sequences of distributions in G for which �N(C�x) ≤ aN . This can be shown by fol-
lowing steps analogous to Lemma 3 in Stoye (2009). Combining these facts, we have that
under Assumption 5, the following confidence interval has uniformly valid asymptotic
coverage of (1 − α)% for the true value of P(C�x):

CI1
α ≡

[
P̂�E (C�x)− σ̂�(C�x)√

Nhc
N

· c1
α(C�x)� P̂uE (C�x)+ σ̂u(C�x)√

Nhc
N

· c1
α(C�x)

]
� (23)

where c1
α(C�x) solves (for cα) �(cα +

√
Nhc

N
�̂(C�x)

max{σ̂�(C�x)�σ̂u(C�x)})−�(−cα) = 1 − α. The proof is

analogous to the proof of Proposition 1 in Stoye (2009).11 If we allow for P�E (C�x)= 0 but
maintain the remaining restrictions in Assumption 5, the following equality is a valid
confidence interval for PE (C�x) with asymptotic coverage at least (1 − α)%:

CI3
α ≡

[
0� P̂uE (C�x)+ σ̂u(C�x)√

Nhc
N

· zα
]
� where�(zα)= 1 − α� (24)

On the other hand, the identified interval forQE (C�x) simply becomes [0�1].

8. Empirical illustration: A model of multiple entry

We use our model to study the decision of how many stores to open in a market by the
two dominant12 firms in the U.S. home improvement products industry: Home Depot
(player p= 1) and Lowe’s (player p= 2). We model this problem as a simultaneous dis-
crete game assumed to satisfy our assumptions. Accordingly, Yp = denotes the number
of stores opened by player (firm)p, and no upper bound was imposed on the space of ac-
tions (i.e., Mp was assumed to be arbitrarily large relative to the collection of outcomes
observed). Payoff functions are unknown, but we maintain that they satisfy Assump-
tions 1 and 2. We also maintain that the outcomes observed result from NE behavior (As-
sumption 3) and in instances that are made explicitly clear, we assume they result from

11Alternatively, following the steps in the proof of Proposition 2 in Stoye (2009), we can show that the
following confidence interval is also valid

CI2
α ≡

[
P̂�E (C�x)− σ̂�(C�x)√

Nhc
N

· c�α(C�x)� P̂uE (C�x)+ σ̂u(C�x)√
Nhc

N

· cuα(C�x)
]
�

where c�α(C�x) and cuα(C�x)minimize σ̂�(C�x) · c�α + σ̂u(C�x) · cuα subject to

Pr
(

−c�α ≤Z1� ρ̂(C�x) ·Z1 ≤ cuα +
√
Nhc

N
�̂(C�x)

σ̂u(C�x)
+

√
1 − ρ̂2(C�x) ·Z2

)
≥ 1 − α�

Pr
(

−c�α −
√
Nhc

N
�̂(C�x)

σ̂�(C�x)
−

√
1 − ρ̂2(C�x) ·Z2 ≤ ρ̂(C�x) ·Z1�Z1 ≤ cuα

)
≥ 1 − α�

where Z1 and Z2 are independent N (0�1).
12According to NASDAQ, by the end of 2010 the U.S. market share of both firms in plumbing, electrical,

and kitchen products (part of the broader home improvement products category) was approximately 40%,
with 23% for Home Depot and 17% for Lowe’s.
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pure-strategy NE behavior (Assumption 3′). We also maintain that Y1 and Y2 are mutual
strategic substitutes w.p.1, and, therefore, Assumption 4 is satisfied with fp(y−p)= y−p.
From here, construction of the indicator functions ĨE (Y�y) and ĨE

∗
(Y�y) follows directly

from the examples in Sections 4.3 and 6. However, for clarity, we show in Appendix C
how to compute them for the specific case of this section (P = 2 and mutual strategic
substitutes).

8.1 Data overview

We define a market as a core based statistical area (CBSA) in the contiguous United States
(the 48 states that do not include Alaska or Hawaii). Each observation in our sample
corresponds to a CBSA13 and our sample consists of N = 951 such observations.14 The
total number of stores of firm p that existed in market i in the year 2008 is denoted
by Yp�i. Table 1 summarizes the outcomes observed in the data.

The sample correlation between Y1 and Y2 was 0.8475. The collection of different
outcomes observed in the sample was 105, a number that is significantly smaller than
the cardinality of the action space implied by Table 2 (the maximum number of stores
by either player in a market was 61). We also included the following covariates in our
analysis:15

INCi ≡ income per household in ith market (dollars)�

POPi ≡ Population in ith market�

Dp�i ≡ Distance between ith market and corporate headquarters of p�

The source for INC is the 2000 census; POP is the estimated CBSA population16 in 2003.
Our sample covers approximately 93% of the estimated population in the United States

Table 1. Overview of outcomes observed.

No Firm Home Depot Only Home Lowe’s Only Lowe’s Both Firms
Entered Entered Depot Entered Entered Entered Entered

Number of markets 263 487 124 564 201 363

13The Office of Budget and Management defines a CBSA as an area that consists of one or more counties,
and includes the counties containing the core urban area as well as any adjacent counties that have a high
degree of social and economic integration (as measured by commuting to work) with the urban core.

14Jia (2008) defined a market as a county and allows for intrafirm complementarities across markets.
Our modeling approach allows for such complementarities across counties within a single CBSA as long
the resulting decision problem can be accurately described by the game studied here.

15The headquarters of Home Depot (p = 1) and Lowe’s (p = 2) are located in Atlanta, GA (30339) and
Mooresville, NC (28115), respectively. We computedDp�i as the minimum distance between the headquar-
ters zip code of firm p, and the zip codes that conform to the ith market. The distance between both head-
quarters is 242 miles.

16The source is Table 1 of the Annual Estimates of the Population of Metropolitan and Micropolitan Sta-
tistical Areas: April 1, 2000 to July 1, 2003 (CBSA-EST2003-01) published by the Population Division, U.S.
Census Bureau.
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Table 2. Summary statistics of outcomes observeda.

Home Depot Stores (Y1) Lowe’s Stores (Y2) Total Stores (Y1 +Y2)

25th percentile 0 0 0
50th percentile 1 1 1
75th percentile 1 1 3
95th percentile 11 7 17
98th percentile 22 13 31
Maximum 61 27 88
Average 1�99 1�56 3�55
Standard deviation 5�39 2�96 8�06
Total 1899 1485 3384

aExisting stores in 2008.

in 2003. We maintain that (Y1�i�Y2�i� INCi�POPi�D1�i�D2�i)
N
i=1 is an iid sample (to allow

spatial dependence, see footnote 8). Due to the relative proximity of both headquarters
(240 miles), we focus primarily on

Di ≡ min{D1�i�D2�i}�

An overview of the data is presented in Table 3.
Distance from headquarters as a determinant of entry was studied, for example, by

Manuszak and Moul (2008) for office supply stores and by Jia (2008) and Holmes (2011)
in the case of big box retailers. One argument is that proximity to markets that are other-
wise unattractive may induce entry. In our case, Table 3 seems to indicate that markets
without entry tend to be systematically farther away from both firms’ headquarters rel-
ative to markets where at least one firm is present. The importance of population and
income per household as determinants of entry also seems evident in the table.

There are many potentially interesting questions about the data that could be ad-
dressed by applying our methodology. We focus on the following issues here. First, we
study some properties of equilibria where no firm enters a market as well as equilibria
where both firms enter. Then we move on to different types of action profiles that were
rarely observed in the data, and we ask whether this is because these are seldom NE ac-

Table 3. Summary statistics of additional covariates.

Markets Where Markets Where
No Firm Entered at Least One Firm Entered

INC POP D INC POP D

25th percentile 37�846 25�118 403 43�725 59�584 251
50th percentile 42�500 33�936 696 53�095 112�947 473
75th percentile 50�269 43�181 974 69�375 279�966 741
Average 44�651 37�590 806 62�773 382�667 631
Min 21�266 12�238 41 25�625 20�928 0
Max 100�130 150�959 2212 200�001 11�421�928 2180
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tions or whether the selection mechanism avoids choosing such NE. Finally, we study
whether there is evidence that the selection mechanism favors entry by either firm in a
discernible way. Our analysis reveals some interesting features of the underlying struc-
tural model.

8.1.1 Kernels and bandwidths employed Our confidence intervals are constructed as
we described in Section 7, specifically, in equations (22) and (23). For simplicity, in
Section 7, we assumed the use of the same bandwidth for every continuous covariate
in X , but this can be easily relaxed and all the asymptotic results shown there hold ex-
actly as described after replacing hc

N
with

∏c
�=1 h��N , where h��N is the bandwidth used

for X�, the �th continuous covariate in X (c denotes the number of continuous co-
variates in X). Our bandwidths are of the form h��N = 2 · (X�

(0�90) −X�
(0�10)) ·N−α, where

α= 1/(c+4)+10−6 andX�
(τ) denotes the τth quantile ofX�. We use a multiplicative ker-

nel of the form K(ψ1� � � � �ψc)= ∏c
�=1 K(ψ�), with K(z)= 15

16(1 − z2)21{|z| ≤ 1} (biweight
kernel). Our kernel and bandwidths satisfy Assumption 5.

8.2 On the equilibrium where no firm enters a market

There were 263 markets (28% of our observations) where no firm entered. In addition to
POP and INC, distance D seems to be a determinant of entry (see Table 3), as markets
where there was no entry tend to be systematically farther away. In Table 4 we estimate
95% confidence intervals for PE ((0�0)�X) (the probability that (0�0) is a NE profile),
and for QE ((0�0)�X) (the probability that the selection mechanism chooses a NE that
includes (0�0) given that such a NE exists). Unconditionally, the confidence interval for
PE ((0�0)) is [0�2563�0�7652] and that forQE ((0�0)) is [0�3457�1]. Thus, while the (uncon-
ditional) probability that (0�0) is a NE action can be as high as ≈ 76%, the likelihood of

Table 4. 95% confidence intervals for PE ((0�0)�X) and QE ((0�0)�X).

X = 1{d� ≤D≤ du} X = (1{d� ≤D≤ du}
No Additional Covariates INC = 40�000�POP = 20�000)

PE ((0�0)�X) QE ((0�0)�X) PE ((0�0)�X) QE ((0�0)�X)

d� = 0, du = 300 [0�1171�0�7424] [0�2024�1] [0�1621�0�9437] [0�2332�1]
d� = 300, du = 800 [0�2344�0�7719] [0�3369�1] [0�3609�0�9809] [0�4229�1]
d� = 800, du = 1300 [0�4544�0�9103] [0�5841�1] [0�5994�0�9997] [0�6859�1]
d� = 1300, du = 2300 [0�2557�0�7653] [0�4275�1] [0�3713�0�9741] [0�5027�1]

X = (1{d� ≤D≤ du} X = (1{d� ≤D≤ du}
INC = 45�000�POP = 60�000) INC = 60�000�POP = 200�000)

PE ((0�0)�X) QE ((0�0)�X) PE ((0�0)�X) QE ((0�0)�X)

d� = 0, du = 300 [0�0610�0�8591] [0�1387�1] [0�0321�0�7265] [0�1143�1]
d� = 300, du = 800 [0�2617�0�9540] [0�3337�1] [0�1830�0�8816] [0�2723�1]
d� = 800, du = 1300 [0�4365�0�9878] [0�5552�1] [0�3154�0�9451] [0�4747�1]
d� = 1300, du = 2300 [0�3281�0�9706] [0�4573�1] [0�2270�0�9116] [0�3819�1]
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selecting such a NE given that it exists can be as low as ≈ 35%. We want to investigate if
and how these results change withD, with and without controlling for POP and INC.

Compared with markets that are farther away, nearby markets are consistent with a
much smaller propensity to select a NE that includes (0�0) given that such a NE exists.
For instance, while this propensity can be as low as ≈ 21% in markets closer than 300
miles, it cannot be smaller than 58% in markets that are between 800 and 1300 miles
away. For relatively unattractive markets (INC = 40�000, POP = 20�000), these figures
change to 23% and 68% respectively. The lower confidence bound for QE ((0�0)�X) in-
creased steadily with distance up to 1300 miles, declining a little bit afterward. This can-
not be explained solely by the presence of major metropolitan areas in the West Coast
since it was also observed for smaller markets (INC = 40�000, POP = 20�000). Our confi-
dence intervals for PE ((0�0)�X) suggest that (0�0) is a NE profile with high probability.
For example, we cannot refute that (0�0) is a NE action with ≈ 73% probability at every
distance range studied. The fact that the proportion of markets where nobody entered
was well below 73% suggests the presence of a selection mechanism that favors entry.

8.3 Equilibria where both firms enter a market

Both firms entered into 363 markets (38% of the observations) and each one entered
with two or more stores in 163 markets (17%). Let

Ca = {(y1� y2) : 1 ≤ yp ≤ 60 for p= 1�2 }�
Cb = {(y1� y2) : 2 ≤ yp ≤ 60 for p= 1�2 }�

We construct 95% confidence intervals for PE (Ca�X), QE (Ca�X), PE (Cb�X), and
QE (Cb�X) next. We present results both for general NE behavior and for pure-strategy-
only NE in Table 5.

Nash equilibrium in Ca seems to exist with very high probability in large, wealthy
markets (POP ≥ 150�000, INC = $80�000). The propensity to select such a NE when it
exists is also remarkably high (at least ≈ 93% with mixed strategies and ≈ 96% if we
maintain pure-strategy NE). These features are similar, but a bit weaker, for NE in Cb.
Maintaining pure-strategy NE behavior, we see that while the unconditional probability

Table 5. 95% confidence intervals.

Mixed and Pure Strategy Pure Strategy NE
NE Behavior Behavior Only

PE (Ca�X) QE (Ca�X) PE ∗(Ca�X) QE ∗(Ca�X)

X = ∅ (unconditional) [0�3598�1] [0�3598�1] [0�3598�0�4396] [0�8948�1]
X = (1{POP ≥ 150�000}� INC = 80�000) [0�8979�1] [0�9359�1] [0�8977�0�9975] 0�9635�1]

PE (Cb�X) QE (Cb�X) PE ∗(Cb�X) QE ∗(Cb�X)

X = ∅ (unconditional) [0�1544�0�4396] [0�3762�1] [0�1544�0�2221] [0�8036�1]
X = (1{POP ≥ 150�000}� INC = 80�000) [0�5526�0�9974] [0�6462�1] [0�5524�0�7779] [0�8881�1]
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Table 6. 95% confidence intervals. Pure-strategy NE behavior is the maintained assumption.

PE ∗(C HD�X) QE ∗(C HD�X) PE ∗(C LO�X) QE ∗(C LO�X)

X = ∅ (unconditional) [0�2409�0�7436] [0�3350�1] [0�2841�0�7332] [0�4013�1]
X = 1{POP ≤ 250�000} [0�1573�0�6801] [0�2467�1] [0�2878�0�6801] [0�4491�1]
X = 1{POP> 250�000} [0�5577�1] [0�5977�1] [0�2338�0�9692] [0�2861�1]
X = 1{INC ≤ 45�000} [0�1099�0�5904] [0�2290�1] [0�3131�0�5904] [0�6125�1]
X = 1{INC> 45�000} [0�3061�0�8428] [0�3857�1] [0�2544�0�8270] [0�3286�1]

that a NE in Ca exists can be as low as ≈ 35%, the likelihood of selecting such a NE when
it exists is at least ≈ 90%. In the case of profiles in Cb, these figures change to ≈ 15% and
80%, respectively. Our results reveal a selection mechanism with a high propensity to
select NE where both firms enter whenever such a NE exists.

8.4 Does the selection mechanism favor either firm in a systematic way?

Home Depot entered with more stores than Lowe’s in 248 markets and the opposite was
true in 290 markets. The median values of INC and POP in markets where Home Depot
entered with more stores than Lowe’s were approximately $63�000 and 170�000, respec-
tively. These figures dropped to $47�000 and 83�000 for markets where Lowe’s entered
with more stores than Home Depot. Is the selection mechanism biased in favor of either
firm depending on INC and POP? Let

C HD = {(y1� y2) :y2 + 1 ≤ y1 ≤ 60}� C LO = {(y1� y2) :y1 + 1 ≤ y2 ≤ 60}�

Home Depot enters with more stores than Lowe’s in every profile in C HD and the op-
posite is true for every profile in C LO. For brevity, we maintain pure-strategy NE be-
havior only and construct 95% confidence intervals for PE ∗(C HD�X), QE ∗(C HD�X),
PE ∗(C LO�X), andQE ∗(C LO�X) in Table 6.

In all cases, the upper bounds for PE ∗(C HD�X) and PE ∗(C LO�X) either coincide ex-
actly or are very close to each other. This reveals a striking feature of the data. Every
market that was compatible with the existence of a NE in C LO was also compatible17 with
the existence of a NE in C HD. Furthermore, only 10 markets (out of 951) were compati-
ble with equilibria in C HD but ruled out equilibria18 in C LO. These markets were among
the 20 largest and wealthiest in the sample. Thus, except perhaps for these types of mar-
kets, our results support the assertion that equilibria in C HD and C LO tend to coexist with
high probability. However, the probability of selecting NE in C HD (C LO) when they ex-
ist appears to be systematically higher for larger, wealthier (smaller, less wealthy) mar-
kets. If POP ≥ 250�000, equilibria favoring Home Depot are selected with at least 60%
probability whenever they exist. Coincidentally, this propensity is also at least ≈ 60% for
equilibria favoring Lowe’s in markets where INC ≤ $45�000.

17That is, maxy∈CLO {̃IE ∗
(Yi�y)} = 1 implied maxy∈CHD {̃IE ∗

(Yi�y)} = 1 for every market i= 1� � � � �951 in our
sample.

18That is, we had maxy∈CLO {̃IE ∗
(Yi�y)} = 0 and maxy∈CHD {̃IE ∗

(Yi�y)} = 1 for only 10 markets i.
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8.5 Some action profiles seldom observed in the data

Many profiles in A were very rarely observed as outcomes in the data. For example, 48%
of all action profiles (y1� y2) where max{y1� y2} ≤ 10 (clearly a subset of A) were not ob-
served as the outcome in any market in our sample. Two instances were19 (5�6) (Home
Depot enters with five stores and Lowe’s with six) and (4�0) (only Home Depot enters
with four stores). Unconditionally, a 95% confidence interval for PE ((5�6)) is [0�0�0683]
and for PE ((4�0)) is [0�0�9195]. If we presuppose pure-strategy NE behavior, these inter-
vals shrink to [0�0�0371] and [0�0�4956], respectively. Remarkably, while the data appear
consistent with widespread existence of a NE that includes (4�0), the probability that
(5�6) is a NE profile is no more than ≈ 6%. A question of interest is whether this indi-
cates a more general pattern, namely, that rarely observed outcomes where both firms
enter with multiple stores are absent because they are rarely NE profiles, while outcomes
where only one firm enters with multiple stores are absent because the selection rule
avoids such NE. Let

Cd = {(y1� y2) : 2 ≤ yp ≤ 4 for p= 1�2}�
Ce = {(y1� y2) : 2 ≤ yp ≤ 4 and y−p = 0 for p= 1�2}�

Both firms enter with between two and four stores in each profile in Cd , and only one
firm enters with between two and four stores in Ce. We observed outcomes in Cd in
63 markets (6�6% of our sample), and this number was 34 (3�5% of our sample) for Ce.
We construct 95% confidence intervals next; for brevity we focus on pure-strategy Nash
equilibrium behavior.

Our results in Table 7 indicate that equilibria in Cd are rare (they exist at most 6%
of the time in small markets and at most 25% of the time in large markets), and the
propensity to select such equilibria when they exist is high (at least 45% in small markets
and at least 58% in large, wealthy markets). Conversely, we cannot rule out widespread
existence of equilibria in Ce (this probability can be as high as 71% in small markets
and 88% in large markets), coupled with a very low propensity to select such equilibria
when they exist (as low as ≈ 6% in all cases studied). While the scarcity of outcomes in
Cd appears to be due to the rarity of NE where such profiles are played, the absence of
outcomes in Ce seems to follow from a low propensity to select NE where those profiles
are played.

Table 7. 95% confidence intervals. Pure-strategy NE behavior is the maintained assumption.

PE ∗(Cd�X) QE ∗(Cd�X) PE ∗(Ce�X) QE ∗(Ce�X)

X = ∅ (unconditional) [0�0550�0�1345] [0�4878�1] [0�0273�0�6568] [0�0432�1]
X = (POP = 50�000� INC = 60�000) [0�0115�0�0640] [0�4527�1] [0�0277�0�7166] [0�0616�1]
X = (POP = 150�000� INC = 60�000) [0�0281�0�1032] [0�5140�1] [0�0296�0�7667] [0�0605�1]
X = (POP = 300�000� INC = 60�000) [0�0926�0�2552] [0�5824�1] [0�0276�0�8883] [0�0571�1]

19“Nearby” profiles (6�5) and (4�1) (and others) were observed as outcomes in our sample.
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9. Concluding remarks

Real world data in simultaneous discrete choice games with large action spaces A tend
to have a common feature, namely the collection of outcomes observed is usually con-
centrated in a relatively small subset of A. Understanding the reason behind this phe-
nomenon is important. Maintaining the assumption of equilibrium behavior, we ad-
dressed this question in a nonparametric setting which allows, for instance, cases where
some action profiles in A are never played in equilibria. Aside from general restric-
tions about payoff functions, we presupposed that the researcher has ex ante knowledge
about the direction of strategic interaction in the game; these predictions usually come
from economic theory. This type of assumption was imposed previously in parametric
settings, but its applicability depends on the empirical problem at hand. Our assump-
tions enabled us to characterize bounds for the probability that a prespecified action
profile y is a Nash equilibrium profile. We also obtained a lower bound for the proba-
bility that the underlying equilibrium selection mechanism chooses equilibria where y
is played in the event that such equilibria exist. Potentially, our results can enable the
researcher to determine whether the absence of certain outcomes in the data is due to
the fact that equilibria where they are played rarely exist or whether such equilibria are
avoided by the selection mechanism. We applied our results to a model of multiple en-
try by the two dominant firms in the home improvement industry (Home Depot and
Lowe’s). Our results uncovered interesting features of the underlying structural model.
Aside from our main goals, our methodology and results can also be used to test specific
versions of the model with stronger (e.g., parametric) assumptions.
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