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Avoiding the curse of dimensionality in dynamic
stochastic games
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Discrete-time stochastic games with a finite number of states have been widely
applied to study the strategic interactions among forward-looking players in dy-
namic environments. These games suffer from a “curse of dimensionality” when
the cost of computing players’ expectations over all possible future states in-
creases exponentially in the number of state variables. We explore the alterna-
tive of continuous-time stochastic games with a finite number of states and ar-
gue that continuous time may have substantial advantages. In particular, under
widely used laws of motion, continuous time avoids the curse of dimensional-
ity in computing expectations, thereby speeding up the computations by orders
of magnitude in games with more than a few state variables. This much smaller
computational burden greatly extends the range and richness of applications of
stochastic games.
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1. Introduction

Discrete-time stochastic games with a finite number of states are central to the analysis
of strategic interactions among forward-looking players in dynamic environments. The
usefulness of discrete-time games, however, is limited by their computational burden;
in particular, under standard assumptions there is a “curse of dimensionality,” since the
cost of computing players’ expectations over all possible future states increases expo-
nentially in the number of state variables. In this paper, we examine the alternative of
continuous-time games with a finite number of states and show that under compara-
ble assumptions they avoid this curse of dimensionality. As a consequence, continuous-
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time games with more than a few state variables are orders of magnitude faster to solve
than their discrete-time counterparts. Whether an economic problem is best modeled
in continuous or discrete time depends not only on the computational burden but also
on the details of the institutional and technological setting. We argue that continuous-
time formulations of games are often natural. Overall, the continuous-time approach
offers a computationally and conceptually promising alternative to modeling dynamic
strategic interactions.

Dating back to Shapley (1953), discrete-time stochastic games with a finite number
of states have a long tradition in economics. A well known example is the Ericson and
Pakes (1995) (hereafter, EP) model of dynamic competition in an oligopolistic industry
with investment, entry, and exit. The EP model has triggered a large and active litera-
ture in industrial organization and other fields (see Doraszelski and Pakes (2007) for a
survey). Because such models are generally too complex to be solved analytically, Pakes
and McGuire (1994) (hereafter, PM1) presented an algorithm to solve numerically for a
Markov perfect equilibrium.

The range of applications of finite-state stochastic games is limited by their high
computational cost. The first source of burden is the large size of the state space. Indeed,
there can be a curse of dimensionality in that the number of states increases exponen-
tially in the number of state variables, that is, the dimension of the state vector. To avoid
this curse, applications of EP’s framework routinely restrict attention to symmetric and
anonymous equilibria (see Section 3.3 for details).

While the number of states reflects the richness of the economic environment and
is therefore independent of the concept of time, the second source of computational
burden is not: As Pakes and McGuire (2001) (hereafter, PM2) pointed out, in discrete-
time stochastic games, computing players’ expectations over all possible future states
can be subject to another curse of dimensionality. Suppose that a player can move to
one of K states from one period to the next and that these transitions are independent
across players. Given that there are K possibilities for each of N players, there are KN

possibilities for the future state of the game, and computing the expectation over all
these successor states therefore involves summing over KN terms. Because of this expo-
nential increase of the computational burden, applications of discrete-time games are
constrained to a handful of players and restrict heterogeneity among players.

In this paper, we develop continuous-time stochastic games with a finite number
of states.1 We show that specifying stochastic games in continuous time has compu-
tational advantages because under widely used laws of motion (see Section 2.3 for de-
tails), it avoids the curse of dimensionality in computing expectations. In contrast to a
discrete-time game, the possibility of two or more players’ states changing simultane-
ously disappears in a continuous-time game. This is not a restriction on the behavior of
players; rather it reflects the fact that under these laws of motion, changes happen one
by one as time passes. The absence of simultaneous changes implies that the expecta-
tion over successor states in the discrete-time game is replaced by a much smaller sum

1Our approach differs from continuous-time games with a continuum of states which date back to Isaacs
(1954) (zero-sum games) and Starr and Ho (1969) (nonzero-sum games); see Basar and Olsder (1999) for
a standard presentation of differential games and Dockner, Jorgensen, Van Long, and Sorger (2000) for a
survey of applications.



Quantitative Economics 3 (2012) Avoiding the curse of dimensionality 55

in the continuous-time game and results in a simpler, and computationally much more
tractable, model: while computing the expectation over successor states in the discrete-
time game involves summing over KN terms, it merely requires adding up (K − 1)N
terms in the continuous-time game. This eliminates the curse of dimensionality in com-
puting expectations.

The third source of computational burden of finite-state stochastic games is the
number of iterations. There are reasons to think that an iterative algorithm along the
lines of PM1 needs more iterations to converge for continuous-time games than for
comparable discrete-time games (see Section 5.2 for details). This “iteration penalty”
partly offsets the gain from avoiding the curse of dimensionality in computing expecta-
tions.

Throughout this paper, we compare our continuous-time model to the discrete-time
model in EP, PM1, PM2, and the subsequent literature (e.g., Gowrisankaran (1999a),
Fershtman and Pakes (2000), Benkard (2004)). We therefore restrict attention to games
with simultaneous moves, meaning that players choose their actions simultaneously in
each period (in the discrete-time model) or at each point in time (in the continuous-
time model). We show that under the laws of motion that are commonly assumed in
the existing literature, the discrete-time model suffers from a curse of dimensionality in
computing the expectation over successor states, whereas the continuous-time model
avoids this curse. Despite the iteration penalty, avoiding the curse of dimensionality in
computing expectations accelerates the computations by orders of magnitude for games
with more than a few state variables.

The computational advantages of continuous time stem from the fact that under
widely used laws of motion, the possibility of two or more players’ states changing si-
multaneously disappears. In discrete time, the curse of dimensionality in computing the
expectation over successor states can simply be assumed away by ruling out simultane-
ous changes in the coordinates of the state vector. Consider a model where each period
one player is picked at random to choose an action. The state of the player with the move
then changes in response to his/her chosen action. Then another random draw is taken
to pick a player, and so on. Because actions are chosen one at a time, this game is one
of sequential moves and may be thought of as a “random-leadership Stackelberg game,”
whereas the discrete-time model in EP, PM1, PM2, and the subsequent literature as well
as our continuous-time model are “Nash games” in which players’ actions are chosen si-
multaneously. The random-leadership Stackelberg game does not suffer from the curse
of dimensionality in computing the expectation over successor states, and in ongoing
research (Doraszelski and Judd (2007)), we show that it is almost as fast to solve as our
continuous-time model. However, the underlying game-theoretic assumptions (and the
institutional realities that justify them) are very different, in much the same way that a
static Cournot quantity-setting game differs from a Stackelberg game.

The curse of dimensionality in computing expectations can also be assumed away
in discrete time while retaining the assumption of simultaneous moves in the literature
following EP. Consider a model where each period each player decides on an action.
Then one player is picked at random and his/her state changes in response to the cho-
sen action. Then again each player decides on an action, and so on. This game again
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does not suffer from the curse of dimensionality in computing the expectation over suc-
cessor states. However, because the law of motion must account for the random variable
that picks the player whose state is allowed to change, it is not comparable to the ones
typically used in the literature following EP. It is also not obvious what institutional re-
alities justify a law of motion where the success of the investment project of one firm
implies the failure of the investment project of another firm.

In this paper, we maintain the underlying game-theoretic assumptions and laws
of motion in the literature following EP. Even so, there may be substantial differences
between a discrete- and a continuous-time formulation of an economic problem and
sometimes one or the other approach is preferable. The period length in a discrete-time
model is implicitly determined by the discount factor. Moreover, the larger the discount
factor, the slower is the convergence of the discrete-time algorithm (see Section 5.2 for
details). This is why, in practice, discrete-time models often work with small discount
factors such as β = 0�925 in EP, PM1, and PM2 that imply long periods.2 Given that many
economic processes unfold in close to continuous time, shorter periods are often desir-
able.

The so-called embedding problem (Elfving (1937)) is another source of differences
between discrete- and continuous-time games: The discrete-time Markov chains under-
lying many applications of EP’s framework cannot be exactly matched to continuous-
time Markov chains in the sense that it may not be possible to construct continuous-
time Markov chains that induce the same probability distribution over states at all
discrete times t = 0�1�2� � � � . In this sense, discrete-time Markov chains are richer than
continuous-time Markov chains.3 On the other hand, some discrete-time Markov chains
can be embedded into more than one continuous-time Markov chain (or even a contin-
uum of continuous-time Markov chains, see Examples 12 and 13 in Singer and Spiler-
man (1976)). There is thus no easy way to align discrete- and continuous-time Markov
chains.

Taken together the long periods in discrete-time models and the embedding prob-
lem mean that several issues have to be considered in deciding between a continuous-
and a discrete-time formulation of an economic problem. First, in contrast to a
continuous-time model, a discrete-time model limits how often and typically also how
much a state variable can change over a finite interval of time. Second, in a discrete-time
model, a player may react to a change in a rival’s state by changing his/her action, but in
contrast to a continuous-time model, the player must wait at least a period before this
brings about a change in his/her own state. Third, some dynamic phenomena such as
predictable seasonal fluctuations in demand or cost and, more generally, calendar time
are more easily modeled in discrete time. Our continuous-time approach also rules out

2Mehra (2003) reported that the average real return on a relatively riskless security was about 1% during
the twentieth century. If a firm can borrow at a real interest rate of 2%, then β = 0�925 implies a period
length of almost 4 years.

3It is worth noting that applications of EP’s framework preclude embeddability by restricting players’
transitions to immediately adjacent states. This assumption is often made more to control the compu-
tational burden of discrete-time models than for substantive reasons and, in fact, may be undesirable in
some settings.
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deterministic transitions from one state to another. The more general point here is that
continuous- and discrete-time models are different, and both are limited in their ability
to accurately represent the real world. The central question is whether a continuous- or
a discrete-time model is a better approximation of the economic process under study.
The correct answer depends on the details of the institutional and technological setting,
and must thus be determined on a case-by-case basis.

None of these differences between discrete- and continuous-time models should
distract from the fact that in many cases there are no compelling economic reasons for
either discrete or continuous time. A case in point is the quality ladder model developed
by PM1 that we use as a running example in this paper. In a case like this, the computa-
tional advantages of continuous time may be decisive on their own right. In fact, most
existing applications of EP’s framework could have been formulated in continuous in-
stead of discrete time with substantial computational savings. To give the reader a sense
of the magnitude of these savings, we compare the performance of an algorithm that is
closely related to PM1. In discrete time, the algorithm uses over 84 hours per iteration in
a model with N = 14 players and K = 3 possible transitions per player, while in continu-
ous time, the algorithm uses 2�93 seconds per iteration, over 100,000 times faster. Partly
offsetting this gain is the fact that for comparable continuous-time games, the algorithm
needs more iterations to converge to an equilibrium. This loss, however, is small relative
to the gain from avoiding the curse of dimensionality in computing expectations. In the
example with N = 14 players, continuous time beats discrete time by a factor of almost
30,000. To put this number in perspective, while it takes about 20 minutes to compute
an equilibrium of the continuous-time game, it would take over 1 year to compute an
equilibrium of the discrete-time game!

Overall, we believe that the advantages of continuous time are often substantial, and
open the way to study more complex and realistic stochastic games than currently fea-
sible. Continuous time may also be useful in empirical work on stochastic games; in-
deed, the subsequent literature (Kryukov (2008), Arcidiacono, Bayer, Blevins, and Ellick-
son (2010)) has estimated continuous-time games similar to ours.4

The remainder of the paper is organized as follows. Section 2 describes the basic
elements of discrete- and continuous-time stochastic games with a finite number of
states and shows that continuous time avoids the curse of dimensionality under widely
used laws of motion. Section 3 presents our computational strategies for both mod-
els. Section 4 formulates discrete- and continuous-time versions of the quality ladder
model of PM1. Section 5 compares the performance of the discrete- and continuous-
time algorithms, and Section 6 discusses a number of conceptual differences between
continuous- and discrete-time models. Section 7 concludes.

2. Models

In this section, we first describe the discrete- and continuous-time approaches to finite-
state stochastic games. Then we show that, under widely used laws of motion, the

4Note that we do not have to estimate a discrete-time model just because observations take place period-
ically. If continuous time more accurately captures the economic process under study, then it is preferable
to “aggregate up” the predictions of the continuous-time model to the periodicity of the observations.
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continuous-time model avoids the curse of dimensionality in computing the expecta-
tion over successor states that the discrete-time model suffers.

2.1 Discrete-time model

A discrete-time stochastic game with a finite number of states is often just called a
stochastic game (Filar and Vrieze (1997), Basar and Olsder (1999)). Time is discrete and
the horizon is infinite. There are N players. We let Ω denote the finite set of possible
states; the state of the game in period t is ωt ∈ Ω. In applications such as EP, ωt is a
vector partitioned into (ω1

t � � � � �ω
N
t ), where ωi

t denotes the (one or more) coordinates
of the state that describe player i (e.g., the player’s production capacity and/or product
quality). We refer to ωi

t as the state of player i and to ωt as the state of the game.
Player i’s action (also called his/her control or policy) in period t is xit ∈ X

i(ωt), where
X
i(ωt) is the set of feasible actions for player i in state ωt . We make no specific assump-

tions about X
i(ωt), which may be one- or multidimensional, discrete or continuous. The

collection of players’ actions in period t is xt = (x1
t � � � � � x

N
t ). We follow the usual conven-

tion of letting x−i
t denote (x1

t � � � � � x
i−1
t � xi+1

t � � � � � xNt ). We assume that, in each period,
players choose their actions simultaneously. Our game is therefore one of simultaneous
moves.

The state follows a controlled discrete-time, finite-state, first-order Markov process.
Specifically, if the state in period t is ωt and the players choose actions xt , then the prob-
ability that the state in period t + 1 is ω′ is Pr(ω′|ωt�xt).

We decompose payoffs into two components. First, in period t, player i receives a
payoff equal to πi(xt�ωt) when players’ actions are xt and the state is ωt . For example,
if ωt is a list of firms’ capacities and xt lists their output and investment decisions, then
πi(xt�ωt) represents firm i’s profit from product market competition net of investment
expenses. Second, at the end of period t player i receives a payoff if there is a change in
the state. Specifically, Φi(xt�ωt�ωt+1) is the change in the wealth of player i at the end
of period t if the state moves from ωt to ωt+1 �=ωt (think of the transition as occurring at
the end of the period) and players’ actions were xt .5 For example, if a firm searches for a
buyer of a piece of equipment it wants to sell and sets a reservation price, both the search
effort and the reservation price are coded in xit . If the firm succeeds in finding an accept-
able buyer, the state changes and the firm receives a payment equal to Φi(xt�ωt�ωt+1).
In general, Φi(xt�ωt�ωt+1) depends on the nature of the transition (e.g., selling some or
all equipment) and may be affected by the search effort of the firm prior to the sale as
well as its reservation price. While πi(xt�ωt) is paid out at the beginning of the period,
we assume that Φi(xt�ωt�ωt+1) accrues at the end. This representation of payoffs allows
us to capture many features of models of industry dynamics, including entry and exit.

Players discount future payoffs using a discount factor β ∈ [0�1). The objective of
player i is to maximize the expected net present value of his/her future cash flows

E

{ ∞∑
t=0

βt(πi(xt�ωt)+βΦi(xt�ωt�ωt+1))

}
�

5We set Φi(xt�ωt�ωt)= 0 without loss of generality.
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where Φi(xt�ωt�ωt+1) is discounted (relative to πi(xt�ωt)) due to our assumption that
it accrues at the end of the period after a change in the state has occurred.6

As is done in many applications of dynamic stochastic games, we focus on Markov
perfect (a.k.a. feedback) equilibria. In period t, player i chooses an action xit that de-
pends solely on the current state ωt . Formally, a Markovian strategy for player i maps
the set of possible states Ω into his/her set of feasible actions X

i(ωt). Our solution con-
cept is motivated by Bellman’s (1957) principle of optimality: Given that all his/her rivals
adopt a Markovian strategy, a player faces a dynamic programming problem and can do
no better than to also adopt a Markovian strategy. Thus, a Markov perfect equilibrium
remains a subgame perfect equilibrium even if the restriction to Markovian strategies is
relaxed.

Let V i(ω) denote the expected net present value of future cash flows to player i if
the current state is ω. Suppose that the other players use strategies X−i(ω). Then the
Bellman equation for player i is

V i(ω) = max
xi∈Xi(ω)

πi(xi�X−i(ω)�ω)

(1)
+βEω′

{
Φi(xi�X−i(ω)�ω�ω′)+ V i(ω′)|ω�xi�X−i(ω)

}
�

The Bellman equation adds the current cash flow of player i, πi(xi�X−i(ω)�ω), to the
appropriately discounted expected future cash flow,

Eω′
{
Φi(xi�X−i(ω)�ω�ω′)+ V i(ω′)|ω�xi�X−i(ω)

}
�

where the expectation is taken over the successor states ω′. Player i’s strategy is given by

Xi(ω) = arg max
xi∈Xi(ω)

πi(xi�X−i(ω)�ω)

(2)
+βEω′

{
Φi(xi�X−i(ω)�ω�ω′)+ V i(ω′)|ω�xi�X−i(ω)

}
�

Each player has his/her own version of equations (1) and (3). The system of equations
defined by the collection of (1) and (3) for each player i = 1� � � � �N and each state ω ∈ Ω

defines a Markov perfect equilibrium in pure strategies.

Existence The extant literature provides a number of existence theorems for discrete-
time stochastic games with either discrete (e.g., Fink (1964), Sobel (1971), Maskin and
Tirole (2001)) or continuous actions (e.g., Federgruen (1978), Whitt (1980)). It invariably
relies on mixed strategies to guarantee existence.

Computing mixed strategies over discrete actions (such as entry and exit in EP’s
framework) is challenging7 and computing mixed strategies over continuous actions
(such as investment) is presently infeasible. Similar to PM1 and PM2, we therefore re-

6Discounting Φi(·) is without loss of generality because it can always be replaced by Φ̃i(·) = βΦi(·), the
net present value of Φi(·) at the beginning of the period.

7In a survey of the literature, Breton (1991, p. 56) lamented, “In the zero-sum case, there exist reasonably
efficient algorithms, but such is not the case in the general sum N-player case.” Using a mathematical pro-
gramming approach, he reported being able to solve, with considerable difficulty, discrete-time stochastic
games with up to 3 players, 5 states, and 5 actions per player and state. Most recently, Herings and Peeters
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strict attention to Markov perfect equilibria in pure strategies. There are very few gen-
eral theorems that guarantee existence of such computationally tractable equilibria.
Doraszelski and Satterthwaite (2010) showed how to reformulate EP’s framework to
guarantee existence. Subsequent work by Escobar (2008) covered general games with
continuous actions.

In general, there may be multiple Markov perfect equilibria in pure strategies even
after further restrictions such as symmetry and anonymity are imposed; see the exam-
ples in Doraszelski and Satterthwaite (2010).

2.2 Continuous-time model

We next describe the continuous-time stochastic game with a finite number of states.8

As in the discrete-time model, the horizon is infinite, the state of the game at time t is
ωt ∈ Ω, there are N players, and player i’s action at time t is denoted by xit ∈ X

i(ωt). We
further retain the assumption of simultaneous moves. In our continuous-time model,
this means that players choose their actions simultaneously at each point in time.

The key difference is that the state in the continuous-time model follows a con-
trolled continuous-time, finite-state Markov process. In discrete time, the time path of
the state is a sequence, but in continuous time, the path is a piecewise-constant, right-
continuous function of time. Jumps occur at random times according to a controlled
Poisson process. At time t, the hazard rate of a jump occurring is φ(xt�ωt) < ∞.9 If a
jump occurs at time t, then the probability that the state moves to ω′ is f (ω′|ωt−�xt−),
where ωt− = lims→t− ωs is the state just before the jump and xt− = lims→t− xs are players’
actions just before the jump. That is, f (ω′|ωt−�xt−) characterizes the transitions of the
induced first-order Markov process. Since a jump from a state to itself does not change
the game, we simply ignore it and instead adjust, without loss of generality, the hazard
rate of a jump occurring so that f (ωt−|ωt−�xt−) = 0.

The payoff of player i consists of two components. First, player i receives a pay-
off flow equal to πi(xt�ωt) when players’ actions are xt and the state is ωt . Second,
Φi(xt−�ωt−�ωt) is the instantaneous change in the wealth of player i at time t if the
state moves from ωt− to ωt �= ωt− and players’ actions just before the jump were xt− .
Like the discrete-time model, πi(xt�ωt) may capture firm i’s profit from product mar-
ket competition net of investment expenses and Φi(xt−�ωt−�ωt) the scrap value that
the firm receives upon exiting the industry or the setup cost that it incurs upon en-
tering the industry. Unlike the discrete-time model, there is a clear-cut distinction be-
tween πi(xt�ωt) and Φi(xt−�ωt−�ωt) in the continuous-time model: πi(xt�ωt) repre-
sents a flow of money, expressed in dollars per unit of time, whereas Φi(xt−�ωt−�ωt)

represents a change in the stock of wealth, expressed in dollars. As in the discrete-time

(2004) solved games with up to 5 players, 5 states, and 5 actions per player and state. The smallest appli-
cations of EP’s framework have hundreds and the largest ones have millions of states. The sheer size of the
state space alone thus makes them orders of magnitude too large for computing mixed-strategy equilibria.

8While less widely used in economics, continuous-time Markov decision problems are as tractable as
their discrete-time counterparts and, dating back to Chapter 11 of Bellman (1957) and Chapter 8 of Howard
(1960), have a common history in the mathematics and the operations research literatures.

9The assumption of a finite hazard rate rules out deterministic state-to-state transitions (see Section 6.4
for details).
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game, this representation of payoffs can represent many dynamic phenomena; for ex-
ample, the Online Appendix (available in a supplementary file on the journal website,
http://qeconomics.org/supp/153/supplement.pdf) gives details on modeling entry and
exit in our continuous-time game.

Players discount future payoffs using a discount rate ρ > 0. The objective of player i
is to maximize the expected net present value of his/her future cash flows,

E

{∫ ∞

0
e−ρtπi(xt�ωt)dt +

∞∑
m=1

e−ρTmΦi
(
xT−

m
�ωT−

m
�ωTm

)}
�

where Tm is the random time of the mth jump in the state, xT−
m

are players’ actions just
before the mth jump, ωT−

m
is the state just before the mth jump, and ωTm is the state just

after the mth jump.
The remaining aspects of the continuous-time model are similar to the discrete-time

model. We again focus on Markov perfect equilibria. Thus, at time t, player i chooses an
action xit that depends solely on the current state ωt .10 As in the discrete-time model,
given that all his/her rivals adopt a Markovian strategy, a player can do no better than to
also adopt a Markovian strategy. Furthermore, although the player gets to pick his/her
action from scratch at each point in time, his/her optimal action changes only when the
state of the game changes (under weak compactness and continuity assumptions; see
Theorem 6.1 of Feinberg (2004)).

The Bellman equation for player i is similar to the one in discrete time (see Bellman
(1957, pp. 83, 86–87)) for the statement and a formalization of the principle of optimality
in a continuous-time setting). To see this, note that over a short interval of time of length
Δ> 0, the law of motion is

Pr(ωt+Δ �=ωt |ωt�xt) =φ(xt�ωt)Δ+O(Δ2)�

Pr(ωt+Δ =ω′|ωt�xt�ωt+Δ �=ωt) = f (ω′|ωt�xt)+O(Δ)�

Player i thus solves the dynamic programming problem given by

V i(ω) = max
xi∈Xi(ω)

πi(xi�X−i(ω)�ω)Δ

+ (1 − ρΔ)
{(

1 −φ(xi�X−i(ω)�ω)Δ−O(Δ2)
)
V i(ω)

(3)
+ (

φ(xi�X−i(ω)�ω)Δ+O(Δ2)
)

× (
Eω′

{
Φi(xi�X−i(ω)�ω�ω′)+ V i(ω′)|ω�xi�X−i(ω)

} +O(Δ)
)}
�

10As is well known, in continuous time there is no natural notion of “a last time before time t,” thus
rendering induction inapplicable. Because induction is fundamental to defining decision trees, strategies,
and outcomes in discrete-time games, in general these notions do not have direct continuous-time analogs
and numerous technical difficulties ensue (see, e.g., Simon and Stinchcombe (1989)). To avoid them, we
focus on Markov perfect equilibria and assume a finite hazard rate. Consider playing tit-for-tat in a pris-
oner’s dilemma. Due to the latter assumption, one cannot construct a state variable that indicates whether
a player has cooperated at all times before time t; the most one can do is to loosely track past behavior
by having the state variable change with a finite hazard rate as the player switches from cooperation to
defection.

http://qeconomics.org/supp/153/supplement.pdf
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which, as Δ→ 0, simplifies to the Bellman equation

ρV i(ω) = max
xi∈Xi(ω)

πi(xi�X−i(ω)�ω)−φ(xi�X−i(ω)�ω)V i(ω)

+φ(xi�X−i(ω)�ω) (4)

× Eω′
{
Φi(xi�X−i(ω)�ω�ω′)+ V i(ω′)|ω�xi�X−i(ω)

}
�

Hence, V i(ω) can be interpreted as the asset value to player i of participating in the
game. This asset is priced by requiring that the opportunity cost of holding it, ρV i(ω),
equals the current cash flow, πi(xi�X−i(ω)�ω), plus the expected capital gain or loss
conditional on a jump occurring,

Eω′
{
Φi(xi�X−i(ω)�ω�ω′)+ V i(ω′)|ω�xi�X−i(ω)

} − V i(ω)�

times the hazard rate of a jump occurring, φ(xi�X−i(ω)�ω). Similar to the discrete-time
model, player i’s strategy is found by carrying out the maximization on the right-hand
side of the Bellman equation (4).

Existence For the same reason as in the discrete-time model, computational tractabil-
ity requires the existence of a Markov perfect equilibrium in pure strategies. In what
follows, we provide sufficient conditions for the existence of such an equilibrium.

We focus our attention on games with continuous actions.

Assumption 1. X
i(ω) is nonempty, compact, and convex for all ω and i.

Next we assume that players discount future payoffs.

Assumption 2. ρ > 0.

We further assume that the model’s primitives are continuous.

Assumption 3. πi(x�ω), Φi(x�ω�ω′), φ(x�ω), and f (x�ω) are continuous in x for all
ω, ω′, and i.

Similar continuity assumptions are commonplace in the literature on discrete-time
stochastic games (see Mertens (2002) for a survey).

Let V i(·) denote a (|Ω| × 1) vector of values of player i in the various possible states
and let hi(xi�X−i(ω)�ω�V i(·)) denote the maximand in the Bellman equation (4) for
player i. To guarantee existence in pure strategies, we finally assume that player i’s max-
imization problem always has a unique solution.

Assumption 4. arg maxxi∈Xi(ω) h
i(xi�X−i(ω)�ω�V i(·)) is single-valued for all X−i(ω),

ω, V i(·), and i.
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Note that we require that the best reply is unique for arbitrary policies X−i(ω) of
the rivals and for arbitrary values V i(·) of the player, both in and out of equilibrium.
A sufficient condition for Assumption 4 to hold is that hi(·) is strictly quasiconcave in xi

for all X−i(ω), ω, V i(·), and i.
Our Assumption 4 is the exact analog of an assumption that Doraszelski and Sat-

terthwaite (2010) make in the context of discrete-time stochastic games. The main work
there is to provide sufficient conditions in terms of the model’s primitives for Assump-
tion 4 to hold. While this is beyond the scope of the present paper, we note that in con-
crete examples Assumption 4 is often easily verified. In particular, it holds for the quality
ladder model that we use in Section 4 to illustrate the computational advantages of con-
tinuous time as well as for the variants of the model with entry and exit that we describe
in the Online Appendix.

The above assumptions ensure the existence of a computationally tractable equilib-
rium.

Proposition 1. Under Assumptions 1, 2, 3, and 4, there exists a Markov perfect equilib-
rium in pure strategies.

The proof is provided in the Appendix.
The fact that the continuous-time Bellman equation (4) is the limit of equation (3)

does not imply that the equilibria of a sequence of discrete-time games converge to the
equilibria of the continuous-time game.11

2.3 Avoiding the curse of dimensionality

Computing a Markov perfect equilibrium requires computing the expectation over suc-
cessor states. Setting Φi(X(ω)�ω�ω′) = 0 and xi =Xi(ω) to simplify the notation, in the
discrete-time Bellman equation (1) this expectation is

Eω′ {V i(ω′)|ω�X(ω)} =
∑

{ω′:Pr(ω′|ω�X(ω))>0}
V i(ω′)Pr(ω′|ω�X(ω))� (5)

In the continuous-time Bellman equation (4) we have an analogous expression with
f (ω′|ω�X(ω)) replacing Pr(ω′|ω�X(ω)). Computing the expectation over successor
states therefore involves summing over all states ω′ such that Pr(ω′|ω�X(ω)) > 0 in the
discrete-time model or f (ω′|ω�X(ω)) > 0 in the continuous-time model. Without addi-
tional structure, there is clearly no reason for either model to have any computational
advantages. In particular, continuous time by itself is not sufficient to avoid the curse of
dimensionality in computing expectations.

Under widely used laws of motion, however, the expectation over successor states is
substantially less burdensome to compute in continuous than in discrete time. This is
easiest to see—but extends beyond—the special case of independent transitions. In the

11This observation cautions against estimating the primitives from a discrete-time model and then plug-
ging the estimated primitives into the continuous-time model to compute equilibria.
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literature following EP, it is commonly specified that firm i’s state evolves as

(ω′)i =ωi + τi −ηi� (6)

where the discrete random variables {τi}Ni=1 and {ηi}Ni=1 are mutually independent.
Typically τi ∈ {0�1} is governed by firm i’s investment decision and ηi ∈ {0�1} is a
firm-specific depreciation shock (e.g., Besanko and Doraszelski (2004), Chen (2009),
Doraszelski and Markovich (2007)). This specification may be appropriate in model-
ing capacity, advertising, or research and development, where investment successes and
setbacks are idiosyncratic.

In the special case of independent transitions, the transition probability of the con-
trolled discrete-time Markov process can be written as

Pr(ω′|ω�x) =
N∏
i=1

Pri((ω′)i|ω�x)� (7)

where Pri((ω′)i|ω�x) is the transition probability for player i’s state and may depend
on the states and actions of all players, including those of player i’s rivals. Substituting
equation (7) into equation (5) shows that if each player can move to one of K states,
then the expectation over successor states involves summing over KN terms and grows
exponentially in N . Hence, in the special case of independent transitions, the discrete-
time model suffers from a curse of dimensionality.

The continuous-time model avoids this curse in computing the expectation over
successor states. In the special case of independent transitions, the hazard rate of a jump
in the state of player i occurring is φi(x�ω) < ∞, and if a jump occurs, then the prob-
ability that the state of player i moves to (ω′)i is f i((ω′)i|ω�x). Over a short interval of
time of length Δ> 0, player i’s state evolves according to

Pri(ωi
t+Δ �= ωi

t |ωt�xt) =φi(xt�ωt)Δ+O(Δ2)�

Pri(ωi
t+Δ = (ω′)i|ωt�xt�ω

i
t+Δ �=ωi

t)= f i((ω′)i|ωt�xt)+O(Δ)�

and the hazard rate of a change in the state of the game at time t is therefore φ(xt�ωt) =∑N
i=1 φ

i(xt�ωt). This last equality reveals a critical fact about continuous-time Markov
processes: in the special case of independent transitions, during a short interval of time,
there will be (with probability infinitesimally close to 1) a jump in the state of at most one
player. In the discrete-time model, we must keep track of all possible combinations of
players’ transitions between time t and time t+1. The possibility of two or more players’
states changing simultaneously disappears in the continuous-time model; this results in
a simpler and computationally much more tractable model.

Indeed, in the special case of independent transitions, the Bellman equation (4) of
player i can be written as

ρV i(ω) = max
xi∈Xi(ω)

πi(xi�X−i(ω)�ω)−φ(xi�X−i(ω)�ω)V i(ω)

+
N∑
j=1

φj(xi�X−i(ω)�ω)



Quantitative Economics 3 (2012) Avoiding the curse of dimensionality 65

× E(ω′)j
{
Φi(xi�X−i(ω)�ω� (ω′)j�ω−j)

+ V i((ω′)j�ω−j)|ω�xi�X−i(ω)
}
�

The N-dimensional expectation over successor states in equation (4) decomposes into
N one-dimensional expectations given by

E(ω′)j {V i((ω′)j�ω−j)|ω�X(ω)}
=

∑
{(ω′)j :f j((ω′)j |ω�X(ω))>0}

V i((ω′)j�ω−j)f j((ω′)j|ω�X(ω))�

where again we set Φi(X(ω)�ω�ω′) = 0 and xi = Xi(ω) to simplify the notation. Hence,
if each player can move to one of K states, then computing the expectation over suc-
cessor states involves summing over (K − 1)N terms in the continuous-time model but
KN terms in the discrete-time model.12 Since (K − 1)N grows linearly rather than expo-
nentially with N , computing the expectation over successor states in the special case of
independent transitions is no longer subject to the curse of dimensionality.

The computational advantages of continuous time stem from the fact that the pos-
sibility of two or more players’ states changing simultaneously disappears. While this
possibility can be reintroduced into the continuous-time model, the resulting stochas-
tic process is not comparable to the one underlying EP’s framework. An example makes
this point. There are two firms and two states per firm, so the state space is Ω =
{(0�0)� (0�1)� (1�0)� (1�1)}. A firm may move up one level but never back, so τi ∈ {0�1}
and ηi = 0 in the law of motion in equation (6).

Letting Pr(τi = 1) = p, the transition probability matrix of the discrete-time Markov
chain is

P =

⎛
⎜⎜⎝
(1 −p)2 p(1 −p) p(1 −p) p2

0 1 −p 0 p

0 0 1 −p p

0 0 0 1

⎞
⎟⎟⎠ �

It follows that ω1
t and ω2

t are uncorrelated in period t. At t = 1, for example, we have

Cov(ω1
1�ω

2
1|ω1

0 = 0�ω2
0 = 0) = P[1�4] − (P[1�2] + P[1�4])(P[1�3] + P[1�4])= 0�

where P[R�C] denotes the element in row R and column C of the matrix P .
Turning to continuous time, let λ be the hazard rate of one firm moving up. In addi-

tion, let ζ be the hazard rate of both firms moving up. The infinitesimal generator (rate
matrix) of the continuous-time Markov chain is

Q =

⎛
⎜⎜⎝

−2λ− ζ λ λ ζ

0 −λ 0 λ

0 0 −λ λ

0 0 0 0

⎞
⎟⎟⎠

12Here we exploit the fact that, unlike in the discrete-time model, there is no need to explicitly consider
the possibility of remaining in the same state.
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and the one-period-ahead transition probability matrix is

P = exp(Q)

=

⎛
⎜⎜⎝
e−ζ−2λ e−ζ−2λ(−1+eζ+λ)λ

ζ+λ
e−ζ−2λ(−1+eζ+λ)λ

ζ+λ
−e−ζ−2λζ+ζ+e−ζ−2λλ−2e−λλ+λ

ζ+λ

0 e−λ 0 1 − e−λ

0 0 e−λ 1 − e−λ

0 0 0 1

⎞
⎟⎟⎠�

As long as ζ �= 0 and players’ states can change simultaneously, ω1
t and ω2

t are corre-
lated at time t. At t = 1, for example, we have, in contrast to the discrete-time stochastic
process,

Cov(ω1
1�ω

2
1|ω1

0 = 0�ω2
0 = 0)

= P[1�4] − (P[1�2] + P[1�4])(P[1�3] + P[1�4])

= e−2(ζ+2λ)((−1 + eζ+2λ)ζ2 + 2eζ+λ(−1 + eλ)λζ − eζ+2λ(−1 + eζ)λ2)

(ζ + λ)2 �= 0

unless ζ = 0. Hence, as long as ζ �= 0 and players’ states can change simultaneously, the
continuous-time stochastic process is not comparable to EP’s framework.

Common shocks The computational advantages of continuous time extend beyond the
special case of independent transitions. The other widely used law of motion in the lit-
erature following EP holds that firm i’s state evolves according to

(ω′)i =ωi + τi −η� (8)

where the discrete random variables {τi}Ni=1 and η are mutually independent. The com-
mon shock η induces correlation in players’ states beyond that induced by strategic in-
teractions. Typically τi ∈ {0�1} is governed by firm i’s investment decision and η ∈ {0�1}
is an industrywide depreciation shock. In the quality ladder model of PM1, η = 1 rep-
resents an increase in the quality of the outside good that, given the functional form of
demand, is equivalent to a decrease in the qualities of all inside goods. In the model of
dynamic cost competition in EP, η = 1 represents an increase in factor prices. Berry and
Pakes (1993), Gowrisankaran (1999a), Fershtman and Pakes (2000), de Roos (2004), and
Markovich (2008), among others, also use the law of motion in equation (8).

The discrete-time model again suffers from a curse of dimensionality that the
continuous-time model avoids. Suppose the common shock η has L possible levels
and, conditional on η, each player can move to one of K states. Computing the expecta-
tion over successor states in the discrete-time model involves summing over LKN terms
(conditional on η, the expectation has KN terms) compared to L−1+(K−1)N terms in
the continuous-time model (L− 1 terms for the common shock plus (K − 1)N terms as
above). In the Online Appendix, we provide further details on modeling an industrywide
depreciation shock.



Quantitative Economics 3 (2012) Avoiding the curse of dimensionality 67

Common states Similarly to common shocks, common states that affect the current
payoffs of all players are computationally more burdensome in the discrete- than in
the continuous-time model. Suppose, for example, that in addition to players’ states
that describe firm-specific production capacities, there is a common state such as in-
dustry demand that evolves independently of production capacities (e.g., Besanko and
Doraszelski (2004), Besanko, Doraszelski, Lu, and Satterthwaite (2010b)). If the common
state can move to L possible levels and each player can move to one of K states, then the
summation is over LKN terms in discrete time but L−1+ (K−1)N terms in continuous
time.

Multiple states per player The curse of dimensionality becomes even more severe in
applications where each player is described by D > 1 coordinates of the state (e.g.,
Benkard (2004), Langohr (2003)). Returning to the special case of independent transi-
tions, computing the expectation over successor states in the discrete-time model in-
volves summing over KND terms compared to (K− 1)ND terms in the continuous-time
model. What matters is the total number of coordinates of the state vector. The curse of
dimensionality is just as severe in a single-agent dynamic programming problem with
an ND-dimensional state vector as in an N-player discrete-time stochastic game with
an ND-dimensional state vector.

3. Computational strategies

Next we present our computational strategies for the discrete- and continuous-time
models. Our approach is similar to PM1, the most often used algorithm in the literature
following EP to solve numerically for a Markov perfect equilibrium. The more general
observation is that computing an equilibrium is just the problem of solving a large sys-
tem of nonlinear equations. If the size of the problem is very large, then a direct applica-
tion of Newton’s method or other solution methods for nonlinear equations is typically
impractical, and some type of Gaussian method is necessary. The idea behind Gaus-
sian methods is that it is harder to solve a large system of equations once than to solve
smaller systems many times. Thus it may be advantageous to break up the large system
into small pieces.

As we showed in Section 2.3, the fact that the possibility of two or more players’ states
changing simultaneously disappears in continuous time under widely used laws of mo-
tion results in a simpler model. Since the equations that characterize the equilibrium
are simpler, the computational advantages of continuous time are not tied to a particu-
lar algorithm. Any algorithm that uses these equations stands to benefit. This includes
the direct application of solution methods for nonlinear equations in Ferris, Judd, and
Schmedders (2007) and the path-following or homotopy methods in Besanko, Doraszel-
ski, Kryukov, and Satterthwaite (2010) (see also Borkovsky, Doraszelski, and Kryukov
(2010)).

3.1 Discrete-time algorithm

The algorithm is iterative. First we order the states in Ω and make initial guesses for the
value V i(ω) and the policy Xi(ω) of each player i = 1� � � � �N in each state ω ∈ Ω. Then
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we update these guesses as we proceed through the state space in the prespecified order.
Specifically, in state ω ∈Ω, given old guesses V i(ω) and Xi(ω), we compute new guesses
V̂ i(ω) and X̂i(ω) for each player i = 1� � � � �N as

X̂i(ω) ← arg max
xi

πi(xi�X−i(ω)�ω)

(9)
+βEω′

{
Φi(xi�X−i(ω)�ω�ω′)+ V i(ω′)|ω�xi�X−i(ω)

}
�

V̂ i(ω) ← πi(X̂i(ω)�X−i(ω)�ω)
(10)

+βEω′
{
Φi(X̂i(ω)�X−i(ω)�ω�ω′)+ V i(ω′)|ω�X̂i(ω)�X−i(ω)

}
�

Note that the old guesses for the policies of player i’s opponents, X−i(ω), and the old
guess for player i’s value, V i(ω), are used when computing the new guesses V̂ i(ω) and
X̂i(ω). This procedure is, therefore, a Gauss–Jacobi scheme at each state ω ∈Ω.

There are two ways to update the old guesses V i(ω) and Xi(ω). PM1 suggest a
Gauss–Jacobi scheme that computes the new guesses V̂ i(ω) and X̂i(ω) for all players
i = 1� � � � �N and all states ω ∈ Ω before replacing the old guesses with the new guesses.
Their value function iteration approach is also called a pre-Gauss–Jacobi method in the
literature on nonlinear equations (see Judd (1998) for an extensive discussion of Gauss–
Jacobi and Gauss–Seidel methods). In contrast to PM1, we employ the block Gauss–
Seidel scheme that is typically used for discrete-time stochastic games with a finite num-
ber of states (e.g., Benkard (2004)). In our block Gauss–Seidel scheme, immediately af-
ter computing V̂ i(ω) and X̂i(ω) for all players i = 1� � � � �N and a given state ω ∈ Ω, we
replace the old guesses with the new guesses for all players in that state. This has the ad-
vantage that “information” is used as soon as it becomes available. The algorithm cycles
through the state space until the changes in the value and policy functions are small (see
Section 5.4 for details).

3.2 Continuous-time algorithm

In its basic form, our computational strategy adapts the block Gauss–Seidel scheme to
the continuous-time model. The sole change is that to update players’ values and poli-
cies in state ω ∈Ω, we replace equations (9) and (10) by

X̂i(ω) ← arg max
xi

πi(xi�X−i(ω)�ω)−φ(xi�X−i(ω)�ω)V i(xi�X−i(ω)�ω)

+φ(xi�X−i(ω)�ω) (11)

× Eω′
{
Φi(xi�X−i(ω)�ω�ω′)+ V i(ω′)|ω�xi�X−i(ω)

}
�

V̂ i(ω) ← 1

ρ+φ(X̂i(ω)�X−i(ω)�ω)
πi(X̂i(ω)�X−i(ω)�ω)

+ φ(X̂i(ω)�X−i(ω)�ω)

ρ+φ(X̂i(ω)�X−i(ω)�ω)
(12)

× Eω′
{
Φi(X̂i(ω)�X−i(ω)�ω�ω′)+ V i(ω′)|ω�X̂i(ω)�X−i(ω)

}
�
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The remainder of the algorithm proceeds as before. Note that by dividing through by
ρ + φ(X̂i(ω)�X−i(ω)�ω), we ensure that equation (12) is contractive for a given player
(holding fixed the policies of all players) since

φ(X̂i(ω)�X−i(ω)�ω)

ρ+φ(X̂i(ω)�X−i(ω)�ω)
< 1

as long as the hazard rate is bounded above. Note that the contraction factor varies with
players’ policies. In the discrete-time model, by contrast, the contraction factor equals
the discount factor β. Unfortunately, the system of equations that defines the equilib-
rium is not contractive, and hence neither our continuous- nor our discrete-time algo-
rithm is guaranteed to converge.

3.3 Precomputed addresses, symmetry, and anonymity

The first advantage of continuous time is that under widely used laws of motion,
it avoids the curse of dimensionality in computing the expectation over successor
states. We next describe a way to further speed up this computation. To understand
this suggestion, we need to briefly discuss the nuts and bolts of computer storage.
Any algorithm must store the value and policy functions in some table that we de-
note M. Each row of this table corresponds to a state ω ∈ Ω and contains the vec-
tor (V 1(ω)� � � � � V N(ω)�X1(ω)� � � � �XN(ω)) of values and policies for all players in that
state. Consider the expectation over successor states in the discrete-time model as given
by equation (5). To compute this sum, the algorithm must find the rows and columns
with the relevant information in table M, implying that the sum is really∑

{ω′:Pr(ω′|ω�M[R(ω)�(N+1�����2N)])>0}
M[R(ω′)�C(ω′� i)]

(13)
× Pr

(
ω′|ω�M[R(ω)� (N + 1� � � � �2N)])�

where C(ω′� i) is the column in row R(ω′) that contains the value for player i in state
ω′ and N + 1� � � � �2N are the columns in row R(ω) that contain the policies for play-
ers j = 1� � � � �N in state ω. Equation (13) displays all the computations that must occur
in evaluating Eω′ {V i(ω′)|ω�X(ω)} and emphasizes that there are two kinds of costs in-
volved: The first is the summation over all states ω′ such that Pr(ω′|ω�X(ω)) > 0; the
second is the computation of the address, R(ω′) and C(ω′� i), of the value of player i

at each of them. One way to reduce running times is to precompute these addresses
and store them along with the values and policies for state ω. More precisely, for each
successor state ω′ of state ω, we append a vector (R(ω′)�C(ω′�1)� � � � �C(ω′�N)) of pre-
computed addresses to the vector (V 1(ω)� � � � � V N(ω)�X1(ω)� � � � �XN(ω)) of values and
policies.

Precomputed addresses decrease running times but increase memory requirements
since N + 1 numbers need to be stored for each successor state. The practicality of this
computational strategy thus hinges on the number of successor states. As we showed
in Section 2.3, under widely used laws of motion, this number is much smaller in the
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continuous- than in the discrete-time model. Precomputed addresses are therefore es-
sentially only practical in continuous time.

The usefulness of precomputed addresses further depends on how hard it is to eval-
uate R(ω) and C(ω� i). Evaluating R(ω) and C(ω� i) is complicated when attention is
restricted to symmetric and anonymous equilibria, as is often done in applications of
EP’s framework to slow down the growth of the state space in the number of players
N and the number of states per player M . Symmetry allows us to focus on the prob-
lem of player 1 and anonymity (also called exchangeability) says that player 1 does not
care about the identity of his/her rivals, only about the distribution of their states (see,
e.g., Doraszelski and Satterthwaite (2010) for a formal definition). In practice, symmetry
and anonymity are imposed by limiting the computation of players’ values and poli-
cies to states in the set Ω̄ = {(ω1�ω2� � � � �ωN) ∈ Ω :ω1 ≤ ω2 ≤ · · · ≤ ωN}.13 Whereas Ω

grows exponentially in N , Ω̄ grows polynomially. More specifically, the number of states
to be examined is reduced from |Ω| = MN to |Ω̄| = (N+M−1)!

N!(M−1)! .14 Pakes, Gowrisankaran,
and McGuire (1993) and Gowrisankaran (1999b) proposed slightly different methods for
mapping the elements of Ω̄ into consecutive integers. These methods form the basis for
computing R(ω), but require that ω ∈ Ω̄. While this is achieved by sorting the coordi-
nates of the vector ω, sorting implies that C(ω� i) is no longer always equal to i: Suppose
that the state of the game is (1�1�3) and that firm 1 moves to state 2. Hence, the state
becomes (2�1�3) or, after sorting, (1�2�3), so that C((2�1�3)�1) = 2, C((2�1�3)�2) = 1,
and C((2�1�3)�3) = 3. Since evaluating R(ω) and C(ω� i) is rather involved, there is a lot
to be gained from precomputed addresses; see Section 5.

4. Example: The Pakes and McGuire (1994) quality ladder model

We use the quality ladder model developed by PM1 to demonstrate the computational
advantages of continuous time in Section 5 and to illustrate the conceptual differences
between discrete and continuous time in Section 6. Below we first describe their model
and then reformulate it in continuous time. To focus on the key issue related to the curse
of dimensionality in discrete-time models, we abstract from entry and exit in what fol-
lows and set Φi(x�ω�ω′) = 0. We also differ from PM1 in that our depreciation shocks
are independent across firms as in the law of motion in equation (6), whereas PM1 as-
sumed an industrywide depreciation shock as in equation (8). In the Online Appendix,
we describe how to add entry and exit either by way of an entry/exit intensity or by way
of randomly drawn, privately observed setup costs/scrap values (as in Doraszelski and
Satterthwaite (2010)), and how to model an industrywide depreciation shock in contin-
uous time.

13Some additional restrictions are needed to obtain a symmetric and anonymous equilibrium. If N = 2,
for example, symmetry requires that V 1(1�1) = V 2(1�1).

14Symmetry and anonymity can in some cases also reduce the number of terms involved in comput-
ing the expectation over successor states in the discrete-time model. For example, if ω = (2�3) and a
player can move down one level, stay the same, or move up one level, then there are 8 successor states
ω′ ∈ {(1�2)� (2�2)� (1�3)� (2�3)� (3�3)� (1�4)� (2�4)� (3�4)} with two distinct ways to reach state ω′ = (2�3).
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The existence of a Markov perfect equilibrium in pure strategies follows from
Doraszelski and Satterthwaite (2010) for the discrete-time model. For the continuous-
time model, we demonstrate in the Online Appendix that Proposition 1 applies to the
model with entry and exit; a similar argument ensures existence for the simpler model
that we use below.

4.1 Discrete-time model

The quality ladder model assumes that there are N firms with vertically differenti-
ated products engaged in price competition. Firm i produces a product of quality ωi ∈
{1� � � � �M}. The state space is Ω = {1� � � � �M}N . We first describe price competition and
then turn to quality dynamics.

Demand Each consumer purchases at most one unit of one product. The utility con-
sumer k derives from purchasing product i is g(ωi)−pi + εik, where

g(ωi) =
{

3ωi − 4� ωi ≤ 5,
12 + ln(2 − exp(16 − 3ωi))� ωi > 5,

maps the quality of the product into the consumer’s valuation for it and εik repre-
sents taste differences among consumers. There is a no-purchase alternative, product 0,
which has utility ε0k. We assume that the idiosyncratic shocks ε0k�ε1k� � � � � εNk are in-
dependently and identically extreme value distributed across products and consumers;
therefore, the demand for firm i’s product is

qi(p1� � � � �pN ;ω) =m
exp(g(ωi)−pi)

1 + ∑N
j=1 exp(g(ωj)−pj)

�

where m> 0 is the size of the market (the measure of consumers).

Price competition In each period, firm i observes the quality of its and its rivals’ prod-
ucts, and chooses the price pi of product i to maximize profits, thereby solving

max
pi≥0

qi(p1� � � � �pN ;ω)(pi − c)�

where c ≥ 0 is the marginal cost of production. Given a state ω ∈Ω, there exists a unique
Nash equilibrium (p1(ω)� � � � �pN(ω)) of the product market game (Caplin and Nalebuff
(1991)). It is found easily by numerically solving the system of first-order conditions cor-
responding to firms’ profit-maximization problems.

Law of motion Firm i’s state ωi represents the quality of its product in the present pe-
riod. The quality of firm i’s product in the subsequent period is governed by its invest-
ment xi ≥ 0 in quality improvements τi ∈ {0�1} and by depreciation ηi ∈ {0�1}. If the
investment is successful, then quality increases by one level. The probability of success

is αxi

1+αxi
, where α > 0 is a measure of the effectiveness of investment. With probability

δ ∈ [0�1], the firm is hit by a depreciation shock and quality decreases by one level.
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Combining the investment and depreciation processes, if ωi ∈ {2� � � � �M − 1}, then
the quality of firm i’s product changes according to the transition probability

Pri((ω′)i|ω�x)=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(1 − δ)αxi

1 + αxi
� (ω′)i = ωi + 1,

1 − δ+ δαxi

1 + αxi
� (ω′)i = ωi,

δ

1 + αxi
� (ω′)i = ωi − 1.

Since firm i cannot move further down (up) from the lowest (highest) product quality,
we set

Pri((ω′)i|1�ω−i� x) =

⎧⎪⎪⎨
⎪⎪⎩

(1 − δ)αxi

1 + αxi
� (ω′)i = 2,

1 + δαxi

1 + αxi
� (ω′)i = 1,

Pri((ω′)i|M�ω−i� x) =

⎧⎪⎪⎨
⎪⎪⎩

1 − δ+ αxi

1 + αxi
� (ω′)i =M,

δ

1 + αxi
� (ω′)i =M − 1.

Payoff function The per-period payoff of firm i is derived from the Nash equilibrium of
the product market game and is given by

πi(x�ω) ≡ qi(p1(ω)� � � � �pN(ω);ω)(pi(ω)− c)− xi�

where we have subtracted investment xi from the profit from price competition.

Parameterization As in PM1, the size of the market is m = 5, the marginal cost of pro-
duction is c = 5, the effectiveness of investment is α = 3, and the depreciation probabil-
ity is δ= 0�7. We again follow PM1 in first assuming that the discount factor is β= 0�925,
which corresponds to a yearly interest rate of 8.1%, and that the number of quality levels
per firm is M = 18, but we also examine other values for β and M in Section 5.

4.2 Continuous-time model

In the interest of brevity, we start by noting that the details of price competition remain
unchanged. In the continuous-time model, we can thus reinterpret πi(x�ω) as the pay-
off flow of firm i.

Law of motion To make the continuous- and discrete-time models easily compara-
ble, we take the hazard rate for the investment project of firm i being successful in the

continuous-time model to be αxi

1+αxi
, the same choice as for the success probability in

the discrete-time model. This is appropriate since the expected time to the first success
is 1+αxi

αxi
in both models (although the variance is generally higher in the continuous-

time model). Moreover, our choice of functional form for the success hazard ensures
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that the marginal incentive to invest in quality improvements—and therefore the level
of investment—is similar in the continuous- and discrete-time models. Similarly, the de-
preciation hazard in the continuous-time model equals the depreciation probability, δ,
in the discrete-time model.15

Jumps in firm i’s state thus occur according to a Poisson process with hazard rate

φi(x�ω) = αxi

1 + αxi
+ δ�

and when a jump occurs, firm i’s state changes according to the transition probability

f i((ω′)i|ω�x)=

⎧⎪⎪⎨
⎪⎪⎩

αxi

(1 + αxi)φi(x�ω)
� (ω′)i =ωi + 1,

δ

φi(x�ω)
� (ω′)i =ωi − 1,

if ωi ∈ {2� � � � �M − 1}. Since firm i cannot move further down (up) from the lowest (high-
est) product quality, we set

φi(x�1�ω−i)= αxi

1 + αxi
� f i(2|1�ω−i� x) = 1�

φi(x�M�ω−i) = δ� f i(M − 1|M�ω−i� x) = 1�

Parameterization Whenever possible, we use the same parameter values in the conti-
nuous- as in the discrete-time model. Moreover, we can easily match the discrete-time
discount factor β to the continuous-time discount rate ρ: if Δ is the unit of time in the
discrete-time model, then β and ρ are related by β = e−ρΔ or, equivalently, by ρ = − lnβ

Δ .
We take Δ = 1 to obtain ρ = − lnβ.

5. Computational advantages of continuous time

This section illustrates the computational advantages of continuous time using the qual-
ity ladder model of Section 4 as an example. Even though this is one specific example, it
is useful for many purposes. First, the results pertaining to the curse of dimensionality
are clearly robust since they simply involve the floating point operations in comput-
ing the expectation over successor states. The burden of such computations depends
on neither functional forms nor parameter values. Also, as we have pointed out in Sec-
tion 2.3, what matters is the total number of coordinates of the state vector. Hence, the

15Another possibility is to take the success and depreciation hazards to be ln(1 + αxi) and − ln(1 − δ),
respectively. This choice ensures that the probability of an investment success between time t and time t+1
is the same as in the discrete-time model. However, because αxi

1+αxi
but not ln(1 + αxi) is bounded above,

the marginal incentive to invest—and therefore the level of investment—is higher in the continuous-time
model. In practice, these comparability considerations play little role and continuous time provides greater
freedom in choosing functional forms. For example, (xi)γ is a familiar constant elasticity form that can be
used in a continuous- but not in a discrete-time model. The parameter γ has a clear-cut interpretation as
the elasticity of the success hazard with respect to investment expenditures or, equivalently, (the negative
of) the elasticity of the expected time to an investment success.
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N-firm quality ladder model should be viewed as representative of dynamic stochastic
games with N-dimensional state vectors. Second, the results related to the rate of con-
vergence may depend on functional forms and parameter values but there is no reason
to believe that our example is atypical. Third, we use our example to illustrate a strategy
for diagnosing convergence.

5.1 Time per iteration

As we showed in Section 2.3, under widely used laws of motion, continuous time avoids
the curse of dimensionality in the expectation over successor states. Since the algo-
rithms for both discrete and continuous time perform this computation once for each
state and each firm in each iteration, we divide the time it takes to complete one iter-
ation by the number of states and the number of firms. Tables 1 and 2 summarize the
results for the three algorithms presented in Section 3—the discrete-time algorithm, the
continuous-time algorithm without precomputed addresses, and the continuous-time
algorithm with precomputed addresses.16 Table 1 assumes M = 18 quality levels per firm
and up to N = 8 firms just as PM1 did; Table 2 reduces M to 9 so as to accommodate a
larger number of firms. Both tables also report the number of states after symmetry and
anonymity are invoked, (N+M−1)!

N!(M−1)! , and the number of unknowns, which equals one value
and one policy per state and firm, along with the ratio of discrete to continuous time
without precomputed addresses, the ratio of continuous time without to with precom-
puted addresses, and the ratio of discrete time to continuous time with precomputed
addresses.

Avoiding the curse of dimensionality in the expectation over successor states yields
a significant advantage only if this particular computation takes up a large fraction of
the running time. Tables 1 and 2 show that this is the case: the discrete-time algorithm
spends more than 50% of its time on it if N = 2, about 90% if N = 4, and essentially
100% if N ≥ 6. Hence, computing the expectation over successor states is indeed the
bottleneck of the discrete-time algorithm. The continuous-time algorithms, in contrast,
spend between 33% and 72% of their time on it.

Even in its basic form, the continuous-time algorithm is far faster than the discrete-
time algorithm. The gain from continuous time increases from 50% if N = 2 to a factor
of 200 if N = 8 in the case of M = 18 (Table 1) and from 42% if N = 2 to a factor of 70,947
if N = 14 in the case of M = 9 (Table 2). In line with theory, the computational bur-
den grows exponentially in N in discrete time, but approximately linearly in continuous
time. Consequently, the gain from continuous time explodes in the dimension of the
state vector.

Precomputed addresses yield further gains: the continuous-time algorithm with-
out precomputed addresses takes about 20–50% more time per iteration than the
continuous-time algorithm with precomputed addresses. Compounding the gains from
continuous time and precomputed addresses yields a total gain over discrete time that

16The programs are written in ANSI C and compiled with Microsoft Visual C++ .NET 2003 (code opti-
mization enabled). All computations are carried out on an IBM ThinkPad T40 with a 1.6 GHz Intel Pentium
M processor and 1.5 GB memory running Microsoft Windows XP Professional.
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Table 1. Time per iteration per state per firm and percentage of time spent on computing the expectation.a

Ratio
Continuous

Time Without
Continuous
Time With

Precomputed Precomputed
Discrete Time Addresses Addresses

Discrete to
Continuous

Time Without
Precomputed

Addresses

Continuous
Time Without

to With
Precomputed

Addresses

Discrete to
Continuous
Time With

Precomputed
Addresses

Number Number Number of
of Firms of States Unknowns sec % sec % sec %

2 171 684 1�07 (−6) 55 7�13 (−7) 41 5�85 (−7) 36 1�50 1�22 1�83
3 1140 6840 1�61 (−6) 76 6�67 (−7) 44 5�26 (−7) 38 2�41 1�27 3�06
4 5985 47,880 3�30 (−6) 87 6�68 (−7) 49 5�10 (−7) 41 4�94 1�31 6�48
5 26,334 263,340 8�05 (−6) 98 7�06 (−7) 49 5�24 (−7) 43 11�40 1�35 15�36
6 100,947 1,211,364 2�15 (−5) 97 7�51 (−7) 52 5�37 (−7) 46 28�57 1�40 40�00
7 346,104 4,845,456 6�19 (−5) 100 7�74 (−7) 56 5�47 (−7) 49 80�00 1�42 113�21
8 1,081,575 17,305,200 1�65 (−4) 100 8�23 (−7) 58 5�92 (−7) 56 200�28 1�39 278�44

aQuality ladder model with M = 18 quality levels per firm and a discount factor of 0�925. (k) is shorthand for ×10k .



76
D

o
raszelskian

d
Ju

d
d

Q
u

an
titative

E
co

n
o

m
ics

3
(2012)

Table 2. Time per iteration per state per firm and percentage of time spent on computing the expectation.a

Ratio
Continuous

Time Without
Continuous
Time With

Precomputed Precomputed
Discrete Time Addresses Addresses

Disc. to
Cont. Time

Without
Precomp.
Addresses

Cont. Time
Without to

With
Precomp.
Addresses

Disc. to
Cont.

Time With
Precomp.
Addresses

Number Number Number of
of Firms of States Unknowns sec % sec % sec %

2 45 180 9�78 (−7) 52 6�89 (−7) 42 5�67 (−7) 33 1�42 1�22 1�73
3 165 990 1�45 (−6) 74 6�36 (−7) 44 5�05 (−7) 38 2�29 1�26 2�88
4 495 3960 2�90 (−6) 88 6�36 (−7) 48 4�75 (−7) 43 4�55 1�34 6�10
5 1287 12,870 6�94 (−6) 96 6�42 (−7) 53 4�77 (−7) 46 10�81 1�35 14�57
6 3003 36,036 1�81 (−5) 98 6�88 (−7) 55 4�88 (−7) 45 26�34 1�41 37�12
7 6435 90,090 5�02 (−5) 100 7�33 (−7) 53 5�11 (−7) 48 68�48 1�43 98�26
8 12,870 205,920 1�31 (−4) 100 7�77 (−7) 55 5�24 (−7) 50 168�33 1�48 249�38
9 24,310 437,580 3�82 (−4) 100 7�77 (−7) 62 5�39 (−7) 53 492�16 1�44 709�04

10 43,758 875,160 1�07 (−3) 100 8�34 (−7) 64 5�94 (−7) 44 1282�19 1�40 1800�00
11 75,582 1,662,804 2�99 (−3) 100 8�42 (−7) 67 5�77 (−7) 56 3557�14 1�46 5187�50
12 125,970 3,023,280 8�20 (−3) 100 8�60 (−7) 68 5�95 (−7) 60 9533�08 1�44 13,770�00
13 203,490 5,290,740 2�42 (−2) 100 9�22 (−7) 69 6�20 (−7) 61 26,235�65 1�49 39,033�56
14 319,770 8,953,560 6�76 (−2) 100 9�53 (−7) 72 6�55 (−7) 59 70,946�70 1�45 103,195�27

aQuality ladder model with M = 9 quality levels per firm and a discount factor of 0�925. (k) is shorthand for ×10k .
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ranges from 83% if N = 2 to a factor of 278 if N = 8 in the case of M = 18 (Table 1) and
from 73% if N = 2 to a factor of 103,195 if N = 14 in the case of M = 9 (Table 2).

In sum, an iteration of the continuous-time algorithms is orders of magnitude faster
than its discrete-time counterpart for games with more than a few state variables. Most
of the gain is from avoiding the curse of dimensionality, but the precomputed addresses,
a computational strategy that is effectively constrained to continuous time, also make a
significant contribution.

5.2 Number of iterations

While an iteration is far faster in the continuous- than in the discrete-time algorithm,
this does not prove that the equilibrium of a continuous-time model is faster to com-
pute, since the model is not solved until the iterations of the algorithm have converged.
There are reasons to think that the continuous-time algorithm needs more iterations
to converge. Suppose that the strategic elements in the stochastic game were elimi-
nated, so that it reduces to a disjoint set of single-agent dynamic programming prob-
lems. In discrete time, a value function iteration approach (also called a pre-Gauss–
Jacobi method) would now converge at rate β. As we pointed out in Section 3.2, the
continuous-time contraction factor

η(X(ω)�ω) = φ(X(ω)�ω)

ρ+φ(X(ω)�ω)

is not constant, but varies with players’ policies from state to state. It has a simple inter-
pretation: η(X(ω)�ω) is the expected net present value of a dollar delivered at the next
time the state changes if the current state is ω and players’ policies are X(ω). This is
easily seen in the special case of ρ�φ(X(ω)�ω) = 1, since

η(X(ω)�ω) = 1
ρ+ 1

≈ 1 − ρ = 1 + lnβ ≈ β�

In general, if the discount rate ρ is large or if the hazard rate φ(X(ω)�ω) is small, then
η(X(ω)�ω) is small and there is a strong contraction aspect to a value function iteration
approach. However, η(X(ω)�ω) could be close to 1 if the discount rate is small or if the
hazard rate is large, in which case a value function iteration approach would converge
slowly. Since φ(X(ω)�ω) = ∑N

i=1 φ
i(X(ω)�ω) in the special case of independent transi-

tions, this in particular suggests that convergence could be slow if the number of players
N is large.

To further explore this issue, we require a measure of the distance between two sets
of value and policy functions. We want our distance measure to be unit-free and to de-
scribe the relative difference. Therefore, we define the L∞-relative difference between
V̂ = (V̂ 1� � � � � V̂ N) and V̌ = (V̌ 1� � � � � V̌ N) to be

E(V̂ � V̌ ) =
∥∥∥∥ V̂ − V̌

1 + |V̂ |

∥∥∥∥ = max
i=1�����N

max
ω∈Ω

∣∣∣∣ V̂ i(ω)− V̌ i(ω)

1 + |V̂ i(ω)|

∣∣∣∣�
We similarly define E(X̂� X̌).
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Table 3. Number of iterations to convergence.a

Discrete Time Continuous Time Ratio
Number Discount
of Firms Factor <10−4 <10−8 <10−4 <10−8 <10−4 <10−8

3 0�925 118 201 212 446 0.56 0.45
3 0�98 412 702 776 1699 0.53 0.41
3 0�99 782 1367 1531 3393 0.51 0.40
3 0�995 1543 2719 3042 6779 0.51 0.40
6 0�925 118 201 364 725 0.32 0.28
6 0�98 494 780 1674 3324 0.30 0.23
6 0�99 983 1525 3379 6761 0.29 0.23
6 0�995 1900 2945 6797 13,637 0.28 0.22
9 0�925 119 201 404 818 0.29 0.25
9 0�98 492 775 2363 4493 0.21 0.17
9 0�99 988 1526 4973 9469 0.20 0.16
9 0�995 2003 3042 10,148 19,365 0.20 0.16

12 0�925 412 854
12 0�98 2721 5106
12 0�99 6023 11,181
12 0�995 12,580 23,304

aThe stopping rule is either “distance to truth <10−4” or “distance to truth <10−8 .” Quality ladder model with M = 9 quality
levels per firm.

Table 3 compares the discrete- and continuous-time algorithms.17,18 It presents the
number of iterations until the distance between the current iterate V̂ and X̂ , and the
“true” solution V∞ and X∞ as measured by E(V̂ �V∞) and E(X̂�X∞) is below a prespec-
ified tolerance of either 10−4 or 10−8. To obtain V∞ and X∞, we ran the algorithm until
the distance between subsequent iterates as measured by E(V̂ �V ) and E(X̂�X) failed
to decrease any further. The iterations continued until this distance was less than 10−13

and, in some cases, less than 10−15. The final iterates were considered the true solution
since they satisfied the equilibrium conditions essentially up to machine precision.

In light of our previous discussion, we expect the number of iterations to be sensitive
to the number of firms and the discount factor. Hence, Table 3 assumes N ∈ {3�6�9�12}
and β = e−ρ ∈ {0�925�0�98�0�99�0�995}. We omit the cases with N = 12 in discrete time
because one iteration takes more than 3 hours, thus making it impractical to compute
the true solution. We see that the continuous-time algorithm needs more iterations to
converge than its discrete-time counterpart, and that this gap widens very slightly as
we increase β (decrease ρ). On the other hand, the number of iterations needed by the
discrete-time algorithm remains more or less constant as we increase the number of
firms, whereas the number of iterations needed by the continuous-time algorithm in-
creases rapidly as we go from N = 3 to N = 6. Fortunately, the number of iterations in-

17Whether we use precomputed addresses in continuous time is immaterial for the number of iterations
to convergence.

18The starting values are V i(ω) = πi(ω)
1−β and Xi(ω)= 0 in discrete time, and V i(ω) = πi(ω)

ρ and Xi(ω) = 0
in continuous time.
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creases slowly as we go from N = 6 to N = 9 and remains more or less constant there-
after, so that the gap between the algorithms stabilizes.

We last note that both the discrete- and the continuous-time algorithms always con-
verged in the case of the quality ladder model as specified in Section 4. Our experience
with other models is that sometimes either one or both algorithms fail to converge and
that the number of convergence failures is about the same for the two algorithms.19

5.3 Time to convergence

The continuous-time algorithm suffers an iteration penalty because η(X(ω)�ω) sub-
stantially exceeds the discrete-time discount factor β. Even though the continuous-time
algorithm needs more iterations, the loss in the number of iterations is small when com-
pared to the gain from avoiding the curse of dimensionality in computing the expecta-
tion over successor states. Table 4 illustrates this comparison and the total gain from
continuous time. Continuous time beats discrete time by 60% if N = 3, a factor of 12 if
N = 6, a factor of 209 if N = 9, a factor of 3977 if N = 12, and a factor of 29,734 if N = 14.
To put these numbers in perspective, in the case of the 14-firm quality ladder model, it

Table 4. Time to convergence.a

Ratio
Number Discrete Continuous
of Firms Time (min) Time (min) Time per Iteration Number of Iterations Time to Convergence

2 1�80 (−4) 1�12 (−4) 1�73 0�93 1�61
3 1�42 (−3) 8�83 (−4) 2�88 0�56 1�60
4 1�13 (−2) 4�43 (−3) 6�10 0�42 2�54
5 8�78 (−2) 1�70 (−2) 14�57 0�36 5�18
6 6�42 (−1) 5�34 (−2) 37�12 0�32 12�03
7 4�44 (0) 1�47 (−1) 98�26 0�31 30�19
8 2�67 (1) 3�56 (−1) 249�38 0�30 74�94
9 1�66 (2) 7�95 (−1) 709�04 0�29 208�85

10 9�28 (2) 1�77 (0) 1800�00 0�29 523�72
11 4�94 (3) 3�30 (0) 5187�50 0�29 1498�33
12 2�46 (4) 6�18 (0) 13,770�00 0�29 3977�26
13 1�27 (5) 1�13 (1) 39,033�56 0�29 11,246�96
14 6�00 (5) 2�02 (1) 103,195�27 0�29 29,734�23

aThe stopping rule is “distance to truth <10−4 .” Entries in italics are based on an estimated 119 iterations to convergence in

discrete time. Quality ladder model with M = 9 quality levels per firm and a discount factor of 0�925. (k) is shorthand for ×10k .

19There are a number of things one can try to facilitate convergence. First, dampening may help to
“smooth out” the path that the algorithm takes; see footnote 18 of PM1 and Chapter 3 of Judd (1998) for
details. Second, the Stein–Rosenberg theorem asserts, at least for certain systems of linear equations, that
if the Gauss–Jacobi algorithm fails to converge, then so does the Gauss–Seidel algorithm; (see, e.g., Propo-
sition 6.9 in Section 2.6 of Bertsekas and Tsitsiklis (1997)). This suggests that a Gauss–Jacobi scheme such
as PM1 may be less prone to convergence failures than our Gauss–Seidel scheme. Third, one may solve out
for the Nash equilibrium in each state rather than rely on the iterative best reply approach of our algorithm
(see Chen, Doraszelski, and Harrington (2009)).
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takes about 20 minutes to compute the equilibrium of the continuous-time game, but it
would take over 1 year to do the same in discrete time!

The stochastic approximation algorithm suggested by PM2 is another effort to allevi-
ate the burden of computing equilibria of dynamic stochastic games. To break the curse
of dimensionality in computing expectations in discrete-time games, they created ap-
proximations to players’ expectations over all possible future states and updated them
each time a state was visited by a random draw from the set of successor states. Similar
to Monte Carlo integration, many visits to a state are required to reduce the approxima-
tion error to an acceptable level and obtain useful estimates of these expectations. In
addition, PM2 addressed a separate issue in computing equilibria, namely the large size
of the state space, by tracking the states that appear to be visited frequently in equilib-
rium, that is, are in the ergodic set, and ignoring the rest. Since the number of states is
independent of the concept of time, we do not pursue this idea and instead simply note
that our continuous-time algorithm can be extended to target the ergodic set and that
this may result in further speedups in some applications.20

Since PM2 exploited this additional idea in addition to stochastic approximation,
whereas we focus on the problem of computing the expectation over successor states,
it is difficult to compare their algorithm with our continuous-time approach. However,
to give the reader some basis for comparison, we note that PM2 reported that their al-
gorithm cuts running time roughly in half (relative to PM1) in a 6-firm quality ladder
model where the ergodic set comprises about 3.3% of all states. They also project that
it reduces running time by a factor of 250 in a 10-firm quality ladder model where the
ergodic set contains 0.4% of all states. In contrast, our continuous-time approach avoids
approximations altogether, computes the equilibrium on the entire state space, and yet
reduces running time by a factor of 12 and 524, respectively.

5.4 Stopping rules

It is rarely feasible to compute the true solution V∞ and X∞. Rather, the algorithm
is terminated once the distance between subsequent iterates, E(V̂ �V ) and E(X̂�X),
is deemed sufficiently small. The problem is that the distance to the true solution,
E(V̂ �V∞) and E(X̂�X∞), may be much larger than the distance between subsequent
iterates. This makes it hard to tell whether the algorithm has provided us with a reason-
able approximation to an equilibrium. Below we describe a stopping rule that uses a
careful examination of the iteration history to assess the accuracy of the computations.

20Many applications require the equilibrium to be known at states outside the ergodic set. For example,
in studying the effect of a change in antitrust policy, the initial state generated by the old regime may not be
in the ergodic set induced by the equilibrium under the new regime, so that the transition from the old to
the new regime cannot be captured accurately unless the equilibrium is computed at the transient states.
In practice, this can be done via multiple restarts of the PM2 algorithm, but at a cost. Moreover, the ergodic
set is large in many dynamic stochastic games and there is thus little gain from restricting attention to it.
In Doraszelski and Markovich (2007), for example, the ergodic set consists of the entire state space. Finally,
as PM2 acknowledged, their algorithm needs to be significantly altered to solve models in which behavior
depends on players’ values and policies “off the equilibrium path,” as is typically the case in models of
collusion, since off-path states are by definition never visited in equilibrium (PM2, p. 1278).
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As we pointed out in Section 3.2, neither the discrete- nor the continuous-time al-
gorithm is guaranteed to converge. However, if the algorithm does converge, then con-
vergence is linear as in all Gaussian schemes (Ortega and Rheinboldt (1970, p. 301)).
Consider therefore a sequence {zl}∞l=0 that converges linearly to the limit z∞, so that

lim
l→∞

‖zl+1 − z∞‖
‖zl − z∞‖ ≤ θ < 1�

Suppose the first inequality can be strengthened to hold along the entire sequence of
iterates, that is, ‖zl+1 − z∞‖ ≤ θ‖zl − z∞‖ for all l; this contraction property is similar to
dynamic programming except that we do not a priori know the convergence factor θ.
Then the distance to the limit is related to the distance between subsequent iterates by
‖zl − z∞‖ ≤ ‖zl+1−zl‖

1−θ . Hence, to ensure that the current iterate is within a prespecified
tolerance ε of the limit, we can stop once

‖zl+1 − zl‖ ≤ ε(1 − θ)� (14)

The key is to estimate the convergence factor from past iterates. We let k be the first
iteration such that ‖zk − zk−1‖< 10ε and let l be the first iteration such that ‖zl − zl−1‖<
ε to produce the estimate

θ̂ =
( ‖zl − zl−1‖

‖zk − zk−1‖
)1/(l−k)

� (15)

Equations (14) and (15) together comprise the adaptive stopping rule. It contrasts with
the widely used ad hoc rule of stopping once

‖zl+1 − zl‖ ≤ ε�

Table 5 compares the two stopping rules with ε = 10−4. For the sake of brevity, we fo-
cus on the continuous-time quality ladder model; the results for discrete time are similar
and can be found in the Online Appendix. In all cases, the adaptive rule outperforms the
ad hoc rule. The ad hoc rule prematurely terminates the algorithm, although the dis-
tance to the true solution exceeds the prespecified tolerance by up to 3 orders of magni-
tude. In contrast, the adaptive rule usually terminates the algorithm once the distance
to the true solution is smaller than the prespecified tolerance, and it is always within an
order of magnitude. Because we do not know the exact value of the convergence factor,
there are cases in which our adaptive rule stops early (e.g., N = 3 and β = 0�995). We
note, however, that our estimator in equation (15) is quite crude and can be improved
at little cost (Judd (1998, pp. 42–44)). Overall, Table 5 clearly shows the importance of
having a reliable stopping rule.

6. Conceptual differences between continuous and discrete time

In Section 5, we emphasized the computational advantages of continuous time. How-
ever, a continuous- and a discrete-time formulation of the same economic problem may
differ and sometimes one or the other approach is preferable. Below we first note some
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Table 5. Stopping rules.a

Ad Hoc Rule Adaptive Rule

Number Discount Terminal Distance Terminal Distance Convergence
of Firms Factor Iteration to Truth Iteration to Truth Factor

3 0�925 131 2�43 (−3) 218 7�84 (−5) 0�9676
3 0�98 313 9�93 (−3) 775 1�00 (−4) 0�9899
3 0�99 455 2�01 (−2) 1483 1�27 (−4) 0�9937
3 0�995 589 4�05 (−2) 2778 1�92 (−4) 0�9953
6 0�925 220 3�84 (−3) 370 8�42 (−5) 0�9777
6 0�98 742 1�78 (−2) 1689 9�17 (−5) 0�9948
6 0�99 1198 3�66 (−2) 3454 8�15 (−5) 0�9978
6 0�995 1832 7�41 (−2) 6766 1�04 (−4) 0�9986
9 0�925 232 4�45 (−3) 407 9�18 (−5) 0�9791
9 0�98 1100 2�30 (−2) 2387 9�01 (−5) 0�9961
9 0�99 1927 4�87 (−2) 5091 7�84 (−5) 0�9984
9 0�995 3129 1�00 (−1) 10,358 8�10 (−5) 0�9992

12 0�925 227 4�73 (−3) 411 1�02 (−4) 0�9781
12 0�98 1276 2�58 (−2) 2751 8�89 (−5) 0�9966
12 0�99 2447 5�59 (−2) 6185 7�48 (−5) 0�9987
12 0�995 4217 1�16 (−1) 12,994 7�01 (−5) 0�9994

aTerminal iteration, distance to truth at terminal iteration, and estimated convergence factor are shown. Prespecified toler-

ance is 10−4 . Continuous-time quality ladder model with M = 9 quality levels per firm. (k) is shorthand for ×10k .

of the conceptual differences between discrete- and continuous-time models. Next we
compare the equilibrium behavior of players and the dynamics implied by that behavior
using the quality ladder model of Section 4 as an example. We finally note some limita-
tions of continuous-time models.

6.1 State changes

Discrete- and continuous-time models differ in how often and how much a state vari-
able can change over a finite interval of time. In discrete-time models, a state vari-
able can change at most once per period, so the number of changes is bounded.21 In
continuous-time models, by contrast, the number of changes over a finite interval of
time is not bounded. This may or may not be appropriate, depending on the institu-
tional and technological details of the economic problem under study. Rigidities in the
decision-making process could put a limit on change, for example, if decisions are made
by a board of directors that meets at fixed times or if there are contractual obligations
that lock a firm into its decision for a period of time.

In addition to restricting how often a state variable can change over a finite interval
of time, discrete-time models also force the changes to take place at regular intervals, a
sometimes useful feature. Consider the automobile industry. Automobile manufacturers

21To allow for a larger number of changes over a finite interval of time in discrete-time models, one could
think about shortening the length of a period by taking the discount factor close to 1. However, as Table 3
shows, the number of iterations to convergence increases with β.



Quantitative Economics 3 (2012) Avoiding the curse of dimensionality 83

launch new models at more or less the same time in early fall of each year, a fact that
can be easily captured in a discrete-time model, but, without explicitly accounting for
the reasons behind it, not in a continuous-time model. On the other hand, this feature
of discrete-time models makes it harder to interpret data that do not arrive at regular
intervals. For example, plant openings and closings do not all take place on the same
day, but instead are spread out over the year.

Turning from the number of changes to their size, many dynamic stochastic games
such as the quality ladder model of Section 4 restrict players’ transitions to immedi-
ately adjacent states. This assumption imposes a sense of continuity—a player cannot
go from state 3 to state 5 without passing through state 4—although the number of
states is finite. The “continuity” assumption has different consequences for discrete-
and continuous-time models. In discrete-time models it implies that a state variable
changes by at most 1 unit in any given period. Hence, a minimum of n periods is re-
quired for a change of n units. In continuous-time models, by contrast, the “continu-
ity” assumption just says that the state variable changes by 1 unit at a time, but these
changes “add up.” Continuous time thus allows for a richer range of outcomes over a
finite interval of time.

6.2 Strategic interactions

The nature of strategic interactions may also be different in discrete- and continuous-
time models and has to be considered in choosing an appropriate formulation of an
economic problem. Suppose that two firms are both trying to expand their capacity.
In a discrete-time model there is some chance that both firms succeed in a given pe-
riod. This may result in excess capacity, make both firms regret their investments, and
perhaps even spur some efforts to disinvest. “Mistakes” like this cannot happen in a
continuous-time model, since at most one firm succeeds at a given point in time and
the other promptly adjusts by stopping its investment.

In what follows, we assume that players make decisions in a discrete-time model at
the beginning of the period, whereas state-to-state transitions take place at the end, say
because it takes a period for an investment project to come to fruition.22 If so, then a
player may also react right away to a change in a rival’s state at the end of period t − 1
by changing his/her action at the beginning of period t, but the player must wait at least
a period before this brings about a change in his/her own state. In many applications
of EP’s framework such as the quality ladder model of Section 4, the state space is fairly
coarse. Thus, a change in the state has a large effect on the strategic situation, and while
a lag of a few days, weeks, or even months may be plausible, a lag of 1 or more years is
often not. In a continuous-time model, by contrast, a player may adjust his/her action to
bring about a change in his/her own state much more quickly. This difference in the abil-
ity of players to respond may substantially affect the equilibrium, since a player’s actions
are contingent on his/her rivals’ reactions. Whether the rapid response of a continuous-
time model or the delayed response of a discrete-time model is deemed a better approx-
imation depends on the economic problem at hand.

22While other assumptions may be made, ours appears to be the most widely used one in the literature
following EP (see, e.g., Fershtman and Pakes (2000, p. 210)).
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Figure 1. Equilibrium value (upper panels) and policy functions (lower panels) for the dis-
crete- (left panels) and the continuous-time (right panels) quality ladder model with N = 2 firms,
M = 18 quality levels per firm, and a discount factor of 0�925.

6.3 Equilibrium and dynamics

Given the conceptual differences between discrete- and continuous-time models noted
above, we now ask how the equilibrium behavior of firms and the dynamics implied by
that behavior change as the discrete-time quality ladder model is recast in continuous
time.

Figure 1 compares the equilibrium value and policy functions for N = 2 firms and
M = 18 quality levels per firm. Overall, the shapes of these functions are similar. Perhaps
the most obvious difference is that a low-quality firm has a lower value and invests
less in the discrete-time model (left panels) than in the continuous-time model (right
panels). For example, we have V 1(1�9) = 0�43 and x1(1�9) = 0�09 in discrete time, and
V 1(1�9) = 16�44 and x1(1�9) = 0�58 in continuous time. The reason is that in the discrete-
time model, a minimum of n periods is required for a change of n units in a state variable.
Hence, the firm is stuck in states with low quality and thus low profit from product mar-
ket competition for a long time. In contrast, the continuous-time model does not limit
how often and how much a state variable can change over a finite interval of time, so
that, by investing more heavily, the firm is able to more quickly reach states with high
quality.

The second difference is that the peak of investment around state (4�1) is lower in
the continuous-time model. In fact, the policy functions differ most in state (4�1) and
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the value functions in state (6�1) with x1(4�1) = 4�16 and V 1(6�1) = 272�91 in discrete
time, and x1(4�1) = 2�94 and V 1(6�1) = 168�83 in continuous time. As firm 1 enjoys an
advantage over firm 2 in state (4�1), it has an incentive to further invest in quality im-
provements so as to cement its leadership position. But in the continuous-time model,
the follower is able to more quickly catch up to the leader. This renders the leadership
position more tentative and consequently less valuable, and, in turn, diminishes the
leader’s incentive to invest.

From the equilibrium policy function, we construct the probability distribution over
the next period’s state ((ω′)1� (ω′)2) given this period’s state (ω1�ω2), that is, the transi-
tion probability matrix that characterizes the discrete-time Markov process of indus-
try dynamics. Similarly, we construct the infinitesimal generator (rate matrix) of the
continuous-time Markov process of industry dynamics. Rather than rely on simulation,
we apply stochastic process theory to analyze these Markov processes. More specifically,
we compute the transient distribution over states at time t, μt , starting from state (1�1).
This tells us how likely each possible industry structure is at time t, given that both firms
began the game at the minimal quality level. In addition, we compute the limiting (or
ergodic) distribution over states, μ∞.23 The transient distribution captures short-run
dynamics and the limiting distribution captures long-run (or steady-state) dynamics.

Figure 2 compares the transient distribution at time t = 5�10�25 and the limiting
distribution. The probability mass is apparently more concentrated in the discrete-time
model (left panels) than in the continuous-time model (right panels), in line with the
fact that continuous time allows for a richer range of outcomes over a finite interval of
time. In Table 6, we list the most likely industry structure (modal state) and its proba-
bility at various points in time. In the discrete-time model, in the short run the industry
evolves either in a symmetric or in an asymmetric fashion. However, even if a firm is able
to gain the upper hand over its rival in the short run, in the long run the most likely in-
dustry structure is symmetric and the limiting distribution leaves little probability mass
on asymmetric industry structures (see again Figure 2). In the continuous-time model,
the dynamics of the industry exhibit greater variability, thus making it less likely that a
firm can sustain a pronounced advantage over its rival for an extended period of time.
We finally report in Table 6 a firm’s expected profit from product market competition
and its expected investment in quality improvements along with their standard devia-
tions. These statistics are mostly similar, except that early on expected profits are higher
in the continuous-time model due to the fact that a firm is able to more quickly reach
states with high quality.

23Let P be the M2 × M2 transition probability matrix in the discrete-time model. The 1 × M2 transient

distribution in period t is given by μt = μ0Pt , where μ0 is the 1 × M2 initial distribution and Pt is the tth

matrix power of P . The Markov process turns out to be irreducible. That is, all its states belong to a single
closed communicating class and the 1 ×M2 limiting distribution μ∞ solves the system of linear equations
μ∞ = μ∞P . In the continuous-time model, let Q be the infinitesimal generator. The transient distribution
at time t is given by μt = μ0 exp(Qt) and the limiting distribution μ∞ solves the system of linear equations
0 = μ∞Q.
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Figure 2. Transient distribution at time t = 5�10�25 (upper panels) and limiting distribution
(lower panels) for the discrete- (left panels) and continuous-time (right panels) quality ladder
model with N = 2 firms, M = 18 quality levels per firm, and a discount factor of 0�925.
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Table 6. Most likely industry structure and its probability, expected profit, and investment, and
their standard deviations.a

Profit Investment
Most Likely

Industry Structuret Prob. Mean Std. Dev. Mean Std. Dev.

Discrete time
5 (2�1)� (1�2) 0�1177 1�20 3�02 2�20 1�12

10 (3�3) 0�0510 4�57 7�12 2�32 1�19
25 (7�1)� (1�7) 0�0301 8�60 9�32 1�46 0�93
50 (7�7) 0�0307 7�78 8�18 0�97 0�61

100 (8�7)� (7�8) 0�0360 6�74 6�56 0�90 0�53
∞ (8�7)� (7�8) 0�0404 6�14 5�27 0�91 0�51

Continuous time
5 (1�1) 0�0489 4�98 7�91 1�94 0�61

10 (3�3) 0�0193 7�24 9�07 1�66 0�64
25 (7�6)� (6�7) 0�0088 7�89 8�63 1�17 0�59
50 (9�8)� (8�9) 0�0077 7�44 7�78 0�92 0�51

100 (9�9) 0�0080 7�16 7�31 0�84 0�48
∞ (9�9) 0�0080 7�13 7�26 0�84 0�48

aDiscrete- (upper panel) and continuous-time (lower panel) quality ladder model with N = 2 firms, M = 18 quality levels
per firm, and a discount factor of 0�925.

6.4 Limitations: Calendar time and deterministic transitions

Suppose that there are predictable seasonal fluctuations in demand or cost. In the auto-
mobile industry, for example, the model year begins in the early fall with strong demand,
after which demand gradually weakens. Because the time within the year determines
demand, it is a state variable. Another example is the collusion model of Fershtman and
Pakes (2011). In their model, a firm’s cost is privately known. The cartel meets when one
of its members calls for a meeting, whereupon each firm discloses its cost and output
is allocated. Between meetings, each firm invests to reduce its cost, but this is not ob-
served by other firms. The elapsed time since the last meeting is a state variable because
a firm’s uncertainty about its rivals’ costs rises with it. Calendar time is easily handled in
a discrete-time model because discrete time adds just another discrete state variable. In
contrast, continuous time adds a continuous state variable. Since our continuous-time
approach is based on a finite number of states, it cannot directly model calendar time.24

The continuous-time approach is also limited to stochastic state-to-state transi-
tions. Suppose a firm is guaranteed an investment success at a cost of x̄. Given the
“lumpy” nature of investment, the firm spends either zero and stays put or spends x̄ and
moves up one state. Such a deterministic transition corresponds to a transition proba-
bility of 1 and can thus in principle be modeled in discrete time, whereas in continuous
time it requires an infinite hazard rate.25

24Apart from Fershtman and Pakes (2011), we are not aware of any applications of EP’s framework in
which calendar time plays a role.

25Whether an investment success can indeed be guaranteed or whether there always remains some un-
certainty as in the quality ladder model in Section 4 undoubtedly depends on the type of investment one
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From a practical point of view, however, lumpy investment also poses difficulties for
discrete time because the existence of an equilibrium cannot generally be ensured with-
out allowing for computationally burdensome mixed strategies. The same issue arises if
it is assumed that exit (entry) takes place for sure upon receiving (paying) a certain scrap
value (setup cost) because this entails that an incumbent firm (potential entrant) tran-
sits deterministically to an “inactive” state (initial state). To avoid the need for mixed en-
try/exit strategies in the context of EP’s framework, Doraszelski and Satterthwaite (2010)
assumed that an incumbent firm (potential entrant) draws a random scrap value (setup
cost) in each period. Draws are independent across firms and periods. Its scrap value
(setup cost) is private information that is known to the firm but unknown to its rivals.
Its rivals thus perceive the firm as if it were following a mixed entry/exit strategy. The
same idea has been applied to construct computationally tractable models with lumpy
investment (Ryan (2006), Besanko, Doraszelski, Lu, and Satterthwaite (2010a), Besanko
et al. (2010b)). It carries over to continuous time if it is assumed that an incumbent firm
(potential entrant) draws a random scrap value (setup cost) at random times instead of
in each period. In the Online Appendix, we show how to model entry and exit in contin-
uous time along these lines.

7. Concluding remarks

Under standard assumptions, discrete-time stochastic games with a finite number of
states suffer from a curse of dimensionality in computing players’ expectations over
all possible future states in that their computational burden increases exponentially in
the number of state variables. We develop the alternative of continuous-time stochas-
tic games with a finite number of states and demonstrate that they avoid the curse of
dimensionality under comparable assumptions, thereby speeding up the computations
by orders of magnitude for games with more than a few state variables. We further speed
up the computations with precomputed addresses, a computational strategy that is ef-
fectively constrained to continuous time. Extending our continuous-time algorithms to
focus on the ergodic set as suggested by PM2 may lead to further gains in some appli-
cations. There are also many variations of the block Gauss–Seidel scheme in Section 3,
and it is highly likely that there are some superior approaches available.

In addition to the computational burden, whether an economic problem is best
modeled in continuous or discrete time depends on the details of the institutional and
technological setting. We argue that continuous-time formulations have a number of
features that may be useful in modeling dynamic strategic interactions. Overall, the ad-
vantages of continuous-time games are often substantial and open the way to study
more complex and realistic stochastic games than currently feasible.

has in mind. Pakes (1994, p. 177), for example, contended, “One might argue the relevance of the special
deterministic case for investment in physical capital, but it seems much less appropriate for the accumu-
lation of ‘intangible’ capital stocks that emanate from a firm’s investment in research and exploration, or in
advertising and goodwill. Here the randomness in the outcome from the investment activities often seem. . .
to have strikingly large variances.”
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Appendix

Proof of Proposition 1

We show that Brouwer’s fixed point theorem applies to a suitably defined mapping from
the set of values and policies into itself.

Our first task is to show that we can restrict attention to a nonempty, compact, and
convex subset of values. By the extreme value theorem, Assumptions 2 and 3 imply that
the model’s primitives are bounded. Let

π = min
x�ω�i

πi(x�ω)� π = max
x�ω�i

πi(x�ω)�

Φ = min
x�ω�ω′�i

Φi(x�ω�ω′)� Φ= max
x�ω�i

Φi(x�ω�ω′)�

φ= min
x�ω

φ(x�ω)

be the lower and upper bounds on the model’s primitives. In equilibrium, V i(ω) is
bounded by the (loose) lower and upper bounds

V = 1
ρ
(π +φmin{0�Φ})� V = 1

ρ
(π +φmax{0�Φ})�

V is constructed by assuming that player i receives the lowest possible payoff flow π

forever and, in addition, is subjected to the lowest possible change in his/her stock of
wealth Φ (or zero, if the change in wealth is positive) at the highest possible hazard rate
φ. Similarly, V is constructed by assuming that player i receives the highest possible
payoff flow π forever and, in addition, is subjected to the highest possible change in
his/her stock of wealth Φ (or zero, if the change in wealth is negative) at the highest
possible hazard rate φ. Thus, in equilibrium, the value of player i in state ω must be an
element of the nonempty, compact, and convex set [V �V ].

Our second task is to define a mapping from the set of values and policies into itself.
To simplify the notation, recall that V i(·) is a (|Ω| × 1) vector of values of player i in the
various possible states. Define V (·) = (V 1(·)� � � � � V N(·)) to be a (|Ω|×N) matrix of play-
ers’ values. Analogously define Xi(·) and X(·) = (X1(·)� � � � �XN(·)). Pointwise define the

mapping Υ(·) = (ΥV (·)
ΥX(·)

)
from the set of values and policies by

ΥV �i�ω(V (·)�X(·)) =
{

max
{
V �min

{
V �

1
ρ

max
xi∈Xi(ω)

hi(xi�X−i(ω)�ω�V i(·))
}}}

�

ΥX�i�ω(V (·)�X(·)) =
{

arg max
xi∈Xi(ω)

hi(xi�X−i(ω)�ω�V i(·))
}

for each player i = 1� � � � �N in each state ω ∈Ω. To apply Brouwer’s fixed point theorem,
we have to show that Υ(·) is a continuous function from a nonempty, compact, and
convex set into itself. If so, then there must exist (V (·)�X(·)) such that (V (·)�X(·)) ∈
Υ((V (·)�X(·))).

Starting with ΥV (·), fix ω and i. Because of Assumptions 1 and 3, the theorem of
the maximum yields that maxxi∈Xi(ω) h

i(xi�X−i(ω)�ω�V i(·)) is a continuous function of
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X−i(ω) and V i(·). By Assumption 2, ΥV �i�ω(·) is thus a continuous function of V (·) and
X(·) that maps into [V �V ] by construction.

Turning from ΥV (·) to ΥX(·), fix ω and i. The theorem of the maximum also yields
that ΥX�i�ω(·) is a nonempty, compact-valued, and upper hemicontinuous correspon-
dence. Moreover, ΥX�i�ω(·) is single-valued by Assumption 4. Thus ΥX�i�ω(·) is a contin-
uous function of V (·) and X(·) that maps into X

i(ω).
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