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A1. Entry and exit

Below we show how to add entry and exit to the continuous-time quality ladder model
in Section 4 of the main paper. Recall that ωi ∈ {1� � � � �M} describes the quality of firm i’s
product. To model entry and exit, we add M + 1 to the set of firm i’s feasible states and
assume that ωi = M + 1 designates firm i as being inactive in the product market game.
The state space thus becomes Ω = {1� � � � �M�M + 1}N . Once an incumbent firm exits
the industry, it transits from state ωi �= M + 1 to state (ω′)i = M + 1. It then becomes a
potential entrant that, upon entry, transits from state ωi = M + 1 to state (ω′)i �= M + 1.
The transitions are under the control of firms. Specifically, incumbent firm i’s action xi =
(xi�1�xi�2) is now a vector instead of a scalar, where xi�1 is incumbent firm i’s investment
in quality improvements and xi�2 governs exit. It is natural to assume that a potential
entrant cannot invest so as to improve the quality of its product before it has actually
entered the industry. Thus potential entrant i’s action is the scalar xi�2 that governs entry.
The set of feasible actions is

X
i(ω) =

{ [0� x̄1] × [0� x̄2]� ωi �= M + 1,
[0� x̄2]� ωi = M + 1,

(A1)

where the first line pertains to an incumbent firm and the second line pertains to a po-
tential entrant.

As we have noted in Section 2.1, discrete actions such as entry and exit in EP’s frame-
work are computationally challenging. In the remainder of this section, we outline two
possibilities for adding entry and exit to the continuous-time quality ladder model in
Section 4 that avoid this difficulty. In each case, entry and exit are governed by xi�2, a
continuous action. The interpretation of xi�2 varies with the formulation of entry and
exit.
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A1.1 Entry/exit intensity

In our first formulation, xi�2 ∈ [0� x̄2] is firm i’s “exit intensity” if it is an incumbent firm or
its “entry intensity” if it is a potential entrant. The exit (entry) intensity xi�2 translates into
a hazard rate h2(xi�2) of exiting (entering) the industry. If an incumbent firm exits the
industry, it receives a scrap value κ−xi�2. Note that we make the scrap value a decreasing
function of the exit intensity. That is, if a firm is in a hurry to exit, it receives less for its
assets. Hence, xi�2 can be thought of as reducing the firm’s reservation price for selling its
assets.1 Conversely, if a potential entrant enters the industry, it pays a setup cost κe+xi�2,
an increasing function of the entry intensity.

The discrete-time analog to our first formulation of entry and exit has an incum-
bent firm (potential entrant) choose an exit (entry) intensity in each period that trans-
lates into a probability of exiting (entering) the industry. The scrap value (setup cost) is
a decreasing (increasing) function of the exit (entry) intensity and thus indirectly also
of the exit (entry) probability. The computational difficulty with mixed entry/exit strate-
gies arises because an incumbent firm (potential entrant) that is indifferent between
exiting and not exiting (entering and not entering) may choose any value for the exit
(entry) probability. We break this indifference and avoid the need for mixed entry/exit
strategies by assuming that a higher probability is more costly than a lower probability.

Incumbent firm The details of entry and exit are as follows: Suppose first that firm i is
an incumbent firm (i.e., ωi �=M + 1). Jumps in firm i’s state occur according to a Poisson
process with hazard rate

φi(x�ω) = h1(xi�1)+ δ+ h2(xi�2)� (A2)

where h1(xi�1) is the hazard rate of an investment success, δ is the depreciation hazard,
and h2(xi�2) is the hazard rate of exiting the industry. When a jump occurs, firm i’s state
changes according to the transition probability

f i((ω′)i|ω�x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

h1(xi�1)

φi(x�ω)
� (ω′)i = ωi + 1,

δ

φi(x�ω)
� (ω′)i = ωi − 1,

h2(xi�2)

φi(x�ω)
� (ω′)i = M + 1,

(A3)

if ωi ∈ {2� � � � �M − 1}.2 Note that the last line captures the possibility of exit. Upon exit,
the incumbent firm receives a scrap value and the instantaneous change in wealth is

Φi(x�ωi�ω−i�M + 1� (ω′)−i) = κ− xi�2�

1More elaborate specifications are possible, for example, the scrap value of a firm’s assets may depend
on its state as in κ(ωi)− xi�2, where κ(ωi) is a (presumably increasing) function of ωi.

2As discussed in Section 4, if ωi = 1 or if ωi =M , then the hazard rate and the transition probability need
to be adjusted.
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Potential entrant Suppose next that firm i is a potential entrant (i.e., ωi = M+1). Jumps
in firm i’s state occur according to a Poisson process with hazard rate

φi(x�M + 1�ω−i) = h2(xi�2)� (A4)

where h2(xi�2) is the hazard rate of entering the industry. When a jump occurs, firm i’s
state changes according to the transition probability

f i(ωe|M + 1�ω−i� x) = 1� (A5)

where ωe ∈ {1� � � � �M} is the (exogenously given) initial quality of a firm’s product. Upon
entry, the potential entrant pays a setup cost and the instantaneous change in wealth is

Φi(x�M + 1�ω−i�ωe� (ω′)−i)= −(κe + xi�2)�

Finally, since a potential entrant is inactive in the product market game, its payoff flow
is

πi(x�M + 1�ω−i)= 0�

Bellman equation Suppose first that firm i is an incumbent firm (i.e., ωi �= M + 1). Its
Bellman equation is

ρV i(ω) = max
(xi�1�xi�2)∈Xi(ω)

πi(ω)− xi�1

+ h1(xi�1) · 1(ωi �=M)(V i(ωi + 1�ω−i)− V i(ω))

+
∑

{j �=i:ωj �=M+1}
h1(Xj�1(ω)) · 1(ωj �=M)(V i(ωj + 1�ω−j)− V i(ω))

+
∑

{j:ωj �=M+1}
δ · 1(ωj �= 1)(V i(ωj − 1�ω−j)− V i(ω)) (A6)

+ h(xi�2)(κ− xi�2 + V i(M + 1�ω−i)− V i(ω))

+
∑

{j �=i:ωj �=M+1}
h2(Xj�2(ω))(V i(M + 1�ω−j)− V i(ω))

+
∑

{j:ωj=M+1}
h2(Xj�2(ω))(V i(ωe�ω−j)− V i(ω))�

where 1(·) is the indicator function. In the first line, we use the fact that the payoff func-
tion πi(x�ω) is additively separable in incumbent firm i’s investment in quality improve-
ments to write it as πi(ω) − xi�1. The second and third lines pertain to an investment
success and the fourth to a depreciation shock. The fifth and sixth lines pertain to exit
and the seventh pertains to entry.

The maximization problem on the right-hand side of its Bellman equation deter-
mines the investment in quality improvements and the exit intensity of incumbent firm

i. For concreteness, let h1(xi�1) = αxi�1

1+αxi�1
be the success hazard as in Section 4.2 and let
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h2(xi�2)= (xi�2)η be the hazard rate for exiting the industry. Starting with investment, the
first-order condition for an interior solution is

−1 + α

(1 + αxi�1)2 · 1(ωi �=M)(V i(ωi + 1�ω−i)− V i(ω)) = 0�

Hence, the investment in quality improvements of incumbent firm i in state ω is

xi�1(ω) =

⎧⎪⎪⎨
⎪⎪⎩

min
{
x̄1�

1
α

(
−1 +

√
max

{
1�α(V i(ωi + 1�ω−i)− V i(ω))

})}
�

ωi �=M�

0� ωi =M�

(A7)

Turning to exit, the first-order condition for an interior solution is

η(xi�2)η−1(κ− xi�2 + V i(M + 1�ω−i)− V i(ω))− (xi�2)η = 0�

Hence, the exit intensity of incumbent firm i in state ω is

xi�2(ω) = max
{

0�min
{
x̄2�

η

1 +η
(κ+ V i(M + 1�ω−i)− V i(ω))

}}
� (A8)

Suppose next that firm i is a potential entrant (i.e., ωi = M + 1). Its Bellman equation
is

ρV i(ω) = max
xi�2∈Xi(ω)

∑
{j:ωj �=M+1}

h1(Xj�1(ω)) · 1(ωj �=M)(V i(ωj + 1�ω−j)− V i(ω))

+
∑

{j:ωj �=M+1}
δ · 1(ωj �= 1)(V i(ωj − 1�ω−j)− V i(ω))

+
∑

{j:ωj �=M+1}
h2(Xj�2(ω))(V i(M + 1�ω−j)− V i(ω)) (A9)

+ h(xi�2)(−(κe + xi�2)+ V i(ωe�ω−i)− V i(ω))

+
∑

{j �=i:ωj=M+1}
h2(Xj�2(ω))(V i(ωe�ω−j)− V i(ω))�

The maximization problem on the right-hand side of its Bellman equation deter-
mines the entry intensity of potential entrant i. The first-order condition for an interior
solution is

η(xi�2)η−1(−(κe + xi�2)+ V i(ωe�ω−i)− V i(M + 1�ω−i))− (xi�2)η = 0�

Hence, the entry intensity of potential entrant i in state ω is

xi�2(ω)
(A10)

= max
{

0�min
{
x̄2�

η

1 +η
(−κe + V i(ωe�ω−i)− V i(M + 1�ω−i))

}}
�
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Existence The existence of a Markov perfect equilibrium in pure strategies follows from
Proposition 1. Assumption 1 is satisfied in light of equation (A1).3 Assumption 2 requires
ρ > 0 and our functional forms satisfy Assumption 3. Finally, it is obvious from equations
(A7), (A8), and (A10) that firm i’s maximization problem always has a unique solution as
required by Assumption 4.

A1.2 Random setup costs/scrap values

In our second formulation of entry and exit, xi�2 ∈ [0�1] is the probability that firm i

accepts an offer to sell assets and exit the industry if it is an incumbent firm or the prob-
ability that firm i accepts an offer to buy assets and enter the industry if it is a potential
entrant. If incumbent firm i exits the industry, it receives a scrap value κi drawn ran-
domly from a distribution G(·) with continuous and positive density. Scrap values are
independently and identically distributed and privately known, that is, while incumbent
firm i learns its own scrap value κi, those of its rivals remain unknown to it. Note that
since the exit decision is conditioned on the privately known scrap value, it is a random
variable from the perspective of other firms. Rather than actively searching for a buyer
for its assets as in our first formulation, we assume that buyers arrive at incumbent firm i

with hazard rate λ. Upon arrival, the buyer makes a take-it-or-leave-it offer. If the offered
scrap value κi is above a threshold κ̄i, then incumbent firm i accepts the offer and exits
the industry; otherwise, it rejects the offer and remains in the industry. This decision rule
can be represented either with the cutoff scrap value κ̄i itself or with the probability xi�2

of incumbent firm i accepting the offer because xi�2 = ∫
1(κi ≥ κ̄i) dG(κi) = 1 − G(κ̄i),

where 1(·) is the indicator function, is equivalent to κ̄i =G−1(1 − xi�2).4

Turning from exit to entry, if potential entrant i enters the industry, it pays a setup
cost κe�i drawn randomly from a distribution Ge(·) with continuous and positive den-
sity. Like scrap values, setup costs are independently and identically distributed and pri-
vately known. Potential entrant i has to acquire assets to enter the industry, and sellers
of assets arrive at potential entrant i with hazard rate λ. Upon arrival the seller makes a
take-it-or-leave-it offer that potential entrant i accepts if it is below a threshold κ̄e�i.

The discrete-time analog to our second formulation of entry and exit is developed
in Doraszelski and Satterthwaite (2010). There an incumbent firm (potential entrant)
randomly draws a scrap value (setup cost) in each period. These draws are independent
across firms and periods. Its scrap value (setup cost) is known to the firm but unknown
to its rivals. By building on Harsanyi’s (1973) insight that a perturbed game of incomplete
information can purify the mixed-strategy equilibria of an underlying game of complete
information, Doraszelski and Satterthwaite (2010) avoided the need for mixed entry/exit
strategies in EP’s framework.

While an incumbent firm chooses an exit intensity at each point in time in our first
formulation of entry and exit, in our second formulation, an incumbent firm decides
whether to accept or reject an offer the instant the offer is made. If instead we allowed

3In practice, we set the upper bounds x̄1 and x̄2 large enough to not be binding.
4If the support of G(·) is bounded, we define G−1(0) (G−1(1)) to be the infimum (supremum) of the

support.
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the incumbent firm to “sit” on the offer, then its rivals may make inferences about the
offer, that is otherwise unknown to them, from observing the reaction of the incumbent
firm to a change in the state of the industry. Hence, firms’ beliefs about each others’
offers become part of the state space.5 The advantage of our assumption that offers are
rejected or accepted right away is thus that the model remains tractable.

The disadvantage is that the possible timings of entry and exit are exogenous (al-
though, of course, whether entry and exit actually take place is endogenous). Again this
is similar to the discrete-time version of EP’s framework: There every period a firm re-
ceives another draw of its setup cost or scrap value and thus another opportunity to
enter or exit. Here a firm receives another offer and thus another opportunity to enter or
exit on average every 1

λ periods. Moreover, in the continuous-time model, we can ensure
that these opportunities arise more frequently by making λ larger. For example, if the
unit of time is a year, then the opportunities to enter or exit arise on average once per
year if λ= 1 and once per day if λ= 365.

Incumbent firm The details of entry and exit are as follows: Suppose first that firm i

is an incumbent firm (i.e., ωi �= M + 1). φi(x�ω) and f i((ω′)i|ω�x) are as in equations
(A2) and (A3), respectively, except that the hazard rate of exiting the industry is given
by h2(xi�2) = λxi�2, because exit requires first that a buyer arrives (hazard rate λ) and
second that the offer is accepted (probability xi�2). Upon exit, the instantaneous change
in wealth is

Φi(x�ωi�ω−i�M + 1� (ω′)−i) = 1
xi�2

∫
κi≥G−1(1−xi�2)

κi dG(κi)�

because an optimizing incumbent cares about the expectation of the scrap value condi-
tional on receiving it,

E{κi|κi ≥ κ̄i} = 1
1 −G(κ̄i)

∫
κi≥κ̄i

κi dG(κi)

= 1
xi�2

∫
κi≥G−1(1−xi�2)

κi dG(κi)�

rather than its unconditional expectation E{κi}.

Potential entrant Suppose next that firm i is a potential entrant (i.e., ωi = M + 1).
φi(x�M + 1�ω−i) and f i(ωe|M + 1�ω−i� x) are as in equations (A4) and (A5), respec-
tively, except that the hazard rate of entering the industry is given by h2(xi�2) = λxi�2.
Upon entry, the instantaneous change in wealth is

Φi(x�M + 1�ω−i�ωe� (ω′)−i) = − 1
xi�2

∫
κe�i≤Ge�−1(xi�2)

κe�i dGe(κe�i)�

5A similar difficulty arises in the discrete-time version of EP’s framework if the assumption that the draws
of scrap values and setup costs are independent across periods is relaxed.
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because an optimizing entrant cares about the expectation of the setup cost conditional
on paying it,

E{κe�i|κe�i ≤ κ̄e�i} = 1
Ge(κ̄i)

∫
κe�i≤κ̄e�i

κe�i dGe(κe�i)

= 1
xi�2

∫
κe�i≤Ge�−1(xi�2)

κe�i dGe(κe�i)�

rather than its unconditional expectation E{κe�i}.

Bellman equation Suppose first that firm i is an incumbent firm (i.e., ωi �= M + 1). Its
Bellman equation is similar to equation (A6) in our first formulation of entry and exit
except that the fifth line is replaced by

λxi�2
(

1
xi�2

∫
κi≥G−1(1−xi�2)

κi dG(κi)+ V i(M + 1�ω−i)− V i(ω)

)
�

The investment in quality improvements of incumbent firm i in state ω is given by equa-
tion (A7). Turning from investment to exit, the first-order condition

−λG−1(1 − xi�2)G′(G−1(1 − xi�2))
−1

G′(G−1(1 − xi�2))

+ λ(V i(M + 1�ω−i)− V i(ω)) = 0

implies that the probability of incumbent firm i accepting the offer and exiting the in-
dustry in state ω is

xi�2(ω) = 1 −G(V i(ω)− V i(M + 1�ω−i))� (A11)

Suppose next that firm i is a potential entrant (i.e., ωi = M + 1). Its Bellman equation
is similar to equation (A9) except that the fourth line is replaced by

λxi�2
(

− 1
xi�2

∫
κe�i≤Ge�−1(xi�2)

κe�i dGe(κe�i)+ V i(ωe�ω−i)− V i(ω)

)
�

The first-order condition

−λGe�−1(xi�2)Ge′(Ge�−1(xi�2))
1

Ge′(Ge�−1(xi�2))

+ λ(V i(ωe�ω−i)− V i(M + 1�ω−i)) = 0

implies that the probability of potential entrant i accepting the offer and entering the
industry in state ω is

xi�2(ω) =Ge(V i(ωe�ω−i)− V i(M + 1�ω−i))� (A12)
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Existence Similar to our first formulation of entry and exit, the existence of a Markov
perfect equilibrium in pure strategies follows from Proposition 1. In particular, it is ob-
vious from equations (A7), (A11), and (A12) that firm i’s maximization problem always
has a unique solution as required by Assumption 4.

Remark. Both of the above formulations of entry and exit differ from the one proposed
by PM1. In the background of their model is an infinite pool of potential entrants. Among
these potential entrants, one is selected at random in each period and given a chance
to enter the industry. The potential entrant is therefore short-lived and bases its entry
decision solely on the value of immediate entry; it does not take into account the value
of deferred entry. In addition, PM1 assumed that by exiting the industry, an incumbent
firm de facto exits the game. In contrast, we assume that there is a fixed number of firms
and that each firm may be either an incumbent firm or a potential entrant at any given
point in time. Moreover, when exiting, the firm takes into account the possibility that
it may enter the industry at some later point; conversely, when entering, the firm takes
into account the possibility that it may exit the industry at some later point. Exiting is
thus tantamount to “mothballing” and entering is tantamount to resuming operations.
The advantage of this formulation of entry and exit is that it leads to a game with a finite
and constant number of players. Whether one uses our formulation or the one proposed
by PM1 is immaterial for the purposes of this paper since the computational advantages
of continuous time are exactly the same in both.

A2. Industrywide depreciation shock

PM1 assumed that firm i’s state evolves according to the law of motion in equation (8) in
the main paper. Below we reformulate the quality ladder model from Section 4 with an
industrywide instead of a firm-specific depreciation shock—first in discrete time, then
in continuous time.

Discrete-time model

Firm i’s state ωi represents the quality of its product in the present period. The quality of
firm i’s product in the subsequent period is governed by its investment xi ≥ 0 in quality
improvements τi ∈ {0�1} and by depreciation η ∈ {0�1}. If the investment is successful,

then the quality of firm i increases by one level. The probability of success is αxi

1+αxi
, where

α > 0 is a measure of the effectiveness of investment. With probability δ ∈ [0�1], the in-
dustry is hit by a depreciation shock and the qualities of all firms decrease by one level.

Conditional on the industry not being hit by a depreciation shock, an event denoted
by η= 0, the quality of firm i’s product changes according to the transition probability

Pri((ω′)i|ω�x�η = 0) =

⎧⎪⎪⎨
⎪⎪⎩

αxi

1 + αxi
� (ω′)i = ωi + 1,

1
1 + αxi

� (ω′)i = ωi,
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if ωi ∈ {1� � � � �M − 1} and Pri(M|M�ω−i� x�η = 0)= 1. Conditional on the industry being
hit by a depreciation shock, an event denoted by η = 1, the quality of firm i’s product
changes according to the transition probability

Pri((ω′)i|ω�x�η= 1)=

⎧⎪⎪⎨
⎪⎪⎩

αxi

1 + αxi
� (ω′)i =ωi,

1
1 + αxi

� (ω′)i =ωi − 1,

if ωi ∈ {2� � � � �M} and Pri(1|1�ω−i� x�η = 1) = 1. Since the state-to-state transitions are
conditionally independent, the law of motion is

Pr(ω′|ω�x) = (1 − δ)

N∏
i=1

Pri((ω′)i|ω�x�η = 0)+ δ

N∏
i=1

Pri((ω′)i|ω�x�η = 1)�

To see that the expectation over successor states consists of 2N+1 terms, note that it is
the sum of two conditional expectations, each of which consists of 2N terms.

Continuous-time model

To make the continuous- and discrete-time models easily comparable, we take the haz-

ard rate for the investment project of firm i being successful to be αxi

1+αxi
and take the

depreciation hazard to be δ.
Jumps in the state of the industry occur according to a Poisson process with hazard

rate

φ(x�ω) =
N∑
i=1

αxi

1 + αxi
· 1(ωi �= M)+ δ · 1(ω �= (1� � � � �1))�

where 1(·) is the indicator function. When a jump occurs, the state changes according to
the transition probability

f (ω′|ω�x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

αx1

(1 + αx1)φ(x�ω)
� ω′ = (ω1 + 1�ω−1)�ω1 �= M,

���
αxN

(1 + αxN)φ(x�ω)
� ω′ = (ωN + 1�ω−N)�ωN �=M,

δ

φ(x�ω)
� ω′ = (max{ω1 − 1�1}� � � � �max{ωN − 1�1}),

ω �= (1� � � � �1).

Hence, we need to sum over a total of N + 1 terms in the continuous-time model com-
pared to 2N+1 in the discrete-time model.

A3. Stopping rules

Below we provide a more detailed comparison between the ad hoc and the adaptive
stopping rule. Tables A1 and A2 assume prespecified tolerances of ε = 10−4 and ε = 10−8,
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Table A1. Stopping rules.a

Discrete Time Continuous Time

Ad Hoc Rule Adaptive Rule Ad Hoc Rule Adaptive Rule

Number Discount Terminal Distance Terminal Distance Convergence Terminal Distance Terminal Distance Convergence
of Firms Factor Iteration to Truth Iteration to Truth Factor Iteration to Truth Iteration to Truth Factor

3 0�925 99 8�16 (−4) 120 7�95 (−5) 0�8962 131 2�43 (−3) 218 7�84 (−5) 0�9676
3 0�98 304 3�04 (−3) 414 9�26 (−5) 0�9694 313 9�93 (−3) 775 1�00 (−4) 0�9899
3 0�99 519 6�21 (−3) 785 9�46 (−5) 0�9848 455 2�01 (−2) 1483 1�27 (−4) 0�9937
3 0�995 923 1�26 (−2) 1551 9�36 (−5) 0�9926 589 4�05 (−2) 2778 1�92 (−4) 0�9953
6 0�925 99 8�16 (−4) 119 8�73 (−5) 0�8913 220 3�84 (−3) 370 8�42 (−5) 0�9777
6 0�98 387 3�03 (−3) 495 9�39 (−5) 0�9685 742 1�78 (−2) 1689 9�17 (−5) 0�9948
6 0�99 743 5�75 (−3) 985 9�53 (−5) 0�9836 1198 3�66 (−2) 3454 8�15 (−5) 0�9978
6 0�995 1362 1�12 (−2) 1906 9�40 (−5) 0�9916 1832 7�41 (−2) 6766 1�04 (−4) 0�9986
9 0�925 100 7�68 (−4) 120 8�20 (−5) 0�8962 232 4�45 (−3) 407 9�18 (−5) 0�9791
9 0�98 386 3�03 (−3) 493 9�42 (−5) 0�9681 1100 2�30 (−2) 2387 9�01 (−5) 0�9961
9 0�99 751 5�73 (−3) 991 9�45 (−5) 0�9835 1927 4�87 (−2) 5091 7�84 (−5) 0�9984
9 0�995 1469 1�11 (−2) 2009 9�40 (−5) 0�9916 3129 1�00 (−1) 10,358 8�10 (−5) 0�9992

12 0�925 227 4�73 (−3) 411 1�02 (−4) 0�9781
12 0�98 1276 2�58 (−2) 2751 8�89 (−5) 0�9966
12 0�99 2447 5�59 (−2) 6185 7�48 (−5) 0�9987
12 0�995 4217 1�16 (−1) 12,994 7�01 (−5) 0�9994

aTerminal iteration, distance to truth at terminal iteration, and estimated convergence factor are shown. The prespecified tolerance is 10−4 . Quality ladder model with M = 9 quality

levels per firm. (k) is shorthand for ×10k .
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Table A2. Stopping rules.a

Discrete Time Continuous Time

Ad Hoc Rule Adaptive Rule Ad Hoc Rule Adaptive Rule

Number Discount Terminal Distance Terminal Distance Convergence Terminal Distance Terminal Distance Convergence
of Firms Factor Iteration to Truth Iteration to Truth Factor Iteration to Truth Iteration to Truth Factor

3 0�925 182 8�16 (−8) 203 7�93 (−9) 0�8962 364 2�45 (−7) 446 9�62 (−9) 0�9611
3 0�98 594 3�05 (−7) 703 9�57 (−9) 0�9690 1238 9�88 (−7) 1700 9�85 (−9) 0�9901
3 0�99 1104 6�21 (−7) 1368 9�71 (−9) 0�9845 2320 2�01 (−6) 3394 9�91 (−9) 0�9951
3 0�995 2100 1�27 (−6) 2720 9�90 (−9) 0�9922 4343 4�05 (−6) 6780 9�97 (−9) 0�9975
6 0�925 182 7�65 (−8) 202 8�18 (−9) 0�8962 581 3�86 (−7) 726 9�55 (−9) 0�9747
6 0�98 673 3�06 (−7) 781 9�45 (−9) 0�9681 2395 1�78 (−6) 3325 9�90 (−9) 0�9944
6 0�99 1286 5�77 (−7) 1527 9�66 (−9) 0�9832 4593 3�66 (−6) 6762 9�97 (−9) 0�9973
6 0�995 2408 1�13 (−6) 2946 9�88 (−9) 0�9912 8729 7�41 (−6) 13,638 9�98 (−9) 0�9987
9 0�925 182 7�95 (−8) 202 8�48 (−9) 0�8962 647 4�45 (−7) 819 9�77 (−9) 0�9779
9 0�98 670 3�01 (−7) 776 9�66 (−9) 0�9681 3235 2�30 (−6) 4494 9�93 (−9) 0�9957
9 0�99 1289 5�74 (−7) 1527 9�74 (−9) 0�9830 6447 4�88 (−6) 9470 9�97 (−9) 0�9980
9 0�995 2509 1�12 (−6) 3043 9�85 (−9) 0�9912 12,452 1�00 (−5) 19,366 9�98 (−9) 0�9990

12 0�925 669 4�67 (−7) 855 9�63 (−9) 0�9793
12 0�98 3668 2�58 (−6) 5107 9�94 (−9) 0�9961
12 0�99 7637 5�59 (−6) 11,182 9�97 (−9) 0�9982
12 0�995 15,085 1�16 (−5) 23,305 9�99 (−9) 0�9991

aTerminal iteration, distance to truth at terminal iteration, and estimated convergence factor are shown. The prespecified tolerance is 10−8 . Quality ladder model with M = 9 quality

levels per firm. (k) is shorthand for ×10k .
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respectively. As can be seen, the adaptive rule outperforms the ad hoc rule in all cases.
Moreover, its performance improves as the iterations progress. In particular, while the
adaptive rule with ε = 10−4 prematurely terminates the continuous-time algorithm in
some cases, with ε = 10−8 it always terminates once the distance to the true solution is
less than the prespecified tolerance.

Two remarks are in order regarding the convergence factor. First, the discrete-time
convergence factor is less than the discount factor β because we are using a Gauss–
Seidel instead of a Gauss–Jacobi scheme to compute the equilibrium. Second, for any
given N and β, the continuous-time convergence factor exceeds its discrete-time coun-
terpart. This is in line with the “iteration penalty” of the continuous-time algorithm.6
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