Drifts and volatilities under measurement error: Assessing monetary policy shocks over the last century

Pooyan Amir-Ahmadi
Department of Money and Macroeconomics, Goethe University

Christian Matthes
Federal Reserve Bank of Richmond

Mu-Chun Wang
Department of Economics, University of Hamburg

How much have the dynamics of U.S. time series changed over the last century? Has the evolution of the Federal Reserve as an institution over the 100 years altered the transmission of monetary policy shocks? To tackle these questions, we build a multivariate time series model with time-varying parameters and stochastic volatility that features measurement errors in observables. We find substantial changes in the structure of the economy. There is also large variation in the impact of monetary policy shocks, but the majority of this variation is driven by changes in exogenous volatility.

Keywords. Bayesian VAR, time variation, measurement error, U.S. monetary policy.

1. Introduction

We study over 100 years of U.S. economic data on inflation, real output, and short- and long-term nominal interest rates as well as money growth through the lens of a time-varying parameter model to assess how the dynamics of the economy have changed and how the impact of monetary policy shocks has evolved over time.

Pooyan Amir-Ahmadi: amir@econ.uni-frankfurt.de
Christian Matthes: christian.matthes@rich.frb.org
Mu-Chun Wang: Mu-Chun.Wang@wiso.uni-hamburg.de

We would like to thank Luca Benati, Gabriel Fagan, Stefan Gerlach, Jochen Günther, Thomas Lubik, James Nason, Andrew Owens, Giorgio Primiceri, Ricardo Reis, Pierre Sarte, Frank Schorfheide, Felipe Schwartzman, Daniel Tracht, and Alexander Wolman as well as three anonymous referees and seminar participants at CREATEs (Aarhus), UPF, Banque de France, Kiel Institute for the World Economy, the Bundesbank, the FRBR-UVa Research Jamboree, and the Central Bank of Ireland for helpful comments. Parts of this paper were written while Matthes was visiting the Bundesbank, whose hospitality is gratefully acknowledged. The views expressed in this paper are those of the authors and do not necessarily reflect those of the Federal Reserve Bank of Richmond or the Federal Reserve System.

Our sample covers two world wars, the Great Depression, the Great Inflation, the Great Moderation, the recent financial crisis and the associated recession, technological revolutions, and the founding of the Federal Reserve, so there is ample reason to believe that indeed the dynamics and co-movement of the variables we consider might have changed over time.

To tackle these questions, we have to confront the measurement issues inherent in historical macroeconomic data, as discussed by Romer (1989). Long-run historical time series are usually compiled using a variety of sources for different time periods, so measurement issues (i.e., changes in the quality of the data) are unavoidable. We combine a model of possibly mismeasured historical data with a time-varying parameter vector autoregression (VAR) with stochastic volatility along the lines of Primiceri (2005) and Cogley and Sargent (2005) to jointly assess the importance of measurement error and time variation in the dynamics of historical macroeconomic time series. Our model of measurement error builds on the measurement error models used by Cogley, Sargent, and Surico (2015) and Cogley and Sargent (2015), who introduce measurement error in time series models of inflation, and Schorfheide, Song, and Yaron (2014), who model measurement errors in consumption. Romer (1989) emphasized that the large volatility we see in U.S. gross domestic product (GDP) data before the end of World War II (WWII) is substantially due to measurement error. To tackle the measurement issue Ritschl, Sarfraz, and Uebele (2016) employ a time-varying dynamic factor model for a long time series of U.S. economic activity indicators and find similar results. Our approach confirms the findings in Romer (1989). To our knowledge, this is the first paper to explicitly introduce measurement errors in a VAR framework, let alone a VAR with time-varying parameters and stochastic volatility.

To gauge how much the dynamics of the U.S. economy have changed during our sample period, we first calculate four different measures of time variation implied by our multivariate time-varying parameter model: variation in persistence, volatility, long-run averages, and co-movement. We find that along all these lines there is substantial variation, even after taking into account measurement error. The correlation structure between our variables of interest has changed dramatically over time.

One of the most pressing questions in macroeconomics is that of the effects of unanticipated changes in policy instruments, particularly for the case of monetary policy (Christiano, Eichenbaum, and Evans (1999)). We want to analyze both how the impact of unexpected movements in monetary policy has evolved across monetary regimes and how much those unexpected movements have contributed to overall volatility in the economy. Defining a monetary policy shock for post-WWII data is straightforward: many economists tend to think of the Federal Reserve after WWII as choosing a path for the short-term interest rate. If we were to have a model (or equation) for the short-term nominal interest rate, we could define the monetary policy shock as the residual after properly accounting for movements in all variables deemed relevant for the setting of the short-term interest rate. The same would hold true if the Federal Reserve consistently used changes in money growth as its policy instrument. However, in our sample we are faced with the difficulty that there has been no consistent conduct of monetary policy. For example, the Federal Reserve targeted monetary aggregates as recently as
the beginning of Paul Volcker’s tenure (Hetzel (2008)). We thus aim to identify monetary policy shocks not as identified shocks associated with a certain equation or variable, but rather by their impact on the economy through the use of sign restrictions. These sign restrictions identify the set of impulse responses consistent with the sign restrictions.

We find that effects of an “average” (1 standard deviation) shock have changed substantially. These changes could be driven by changes in both the average size of a shock (changes in the standard deviation) and the dynamic responses to shocks. We disentangle these possible causes and find that the size of the innovation is the major driver of the changes in the effects of a monetary policy innovation.

Our work is related to the growing literature on time-varying VARs, most notably Cogley and Sargent (2002), who were the first to use this class of models, and Primiceri (2005), who first identified monetary policy shocks in this class of models. Our finding of surprising stability of the effects of a monetary policy shock (once we condition on the size of the shock) has precedents in the literature: using a recursive identification scheme, Primiceri (2005) finds that there is not much time variation in impulse responses to shocks of a given size in post-WWII data. Sims and Zha (2006) argue that most of the time variation in post-WWII U.S. time series is driven by changes in the volatility of innovations. Canova and Gambetti (2009) argue that the transmission of monetary policy shocks has been relatively stable over the post-WWII period. Using a simple split sample analysis and not considering measurement error, Sims (1999) argues that the response to monetary policy shocks has not changed dramatically between the interwar and postwar periods. In line with our findings, Amir-Ahmadi and Ritschl (2013) use a factor-augmented VAR for the interwar period and find effects of monetary policy shocks on real activity that are comparable with the effects in post-WWII data. In comparison to those papers, our paper combines a long-run historical perspective, a careful treatment of measurement errors, and time variation in parameters and volatilities.

Analysis that focuses only on a sample split around 1980 will have difficulty identifying structural changes at other points in time. Focusing only on pre- or post-WWII data would not allow us to compare the monetary transmission mechanism for the Federal Reserve’s entire history. Finally, our analysis shows that different statistics (such as correlations, impulse responses, or forecasts) change substantially at different points in time, making an a priori choice of subsamples hard to defend. We thus find that building one model for the entire sample that explicitly tackles the issues of time variation, stochastic volatility, and measurement error seems to be the most straightforward way to answer the questions we are interested in.

2. The model

We are interested in modeling the dynamics of the vector of observables

\[\tilde{\mathbf{y}}_t = (\Delta gdp_t, \pi_t, i_t, \text{spread}_t, \Delta \text{money}_t)’, \]

where \(\Delta gdp_t \) is the 1-year difference in the log of real output, \(\pi_t \) is the 1-year inflation rate, \(i_t \) is a short-term nominal interest rate, \(\text{spread}_t \) is the spread between a long-term nominal interest rate and our short-term nominal interest rate, and, finally, \(\Delta \text{money}_t \)
is the 1-year difference in the log of a monetary aggregate. Our benchmark monetary aggregate is the monetary base.

Christina Romer’s work (see, for example, Romer (1986) and Romer (1989)) has brought the measurement issues associated with historical macroeconomic data front and center. We tackle measurement issues by building a model of measured data that allows for relatively general stochastic processes for the measurement errors. We use over 100 years of data and thus have to confront the possibility of not only measurement error, but also changes in the measurement process (as suggested by the work of Romer). To do this, we extend the framework of Cogley, Sargent, and Surico (2015). They built a univariate model for inflation, allowing for an autocorrelated measurement error process whose parameters can change when the underlying data source changes. Because this framework allows for time variation in the parameters of the measurement error only at those known break dates, we can, just as Cogley, Sargent, and Surico (2015), separately identify the changes in the measurement error process and the changes in the process of the underlying “true” data. We model the measurement error processes as independent across variables, while allowing for autocorrelation in each of the errors.

We assume that the observed data vector \tilde{y}_t is a function of a measurement error vector m_t and the true (unobserved) data y_t,

$$\tilde{y}_t = y_t + M(L)m_t.$$ (2)

The term $M(L)$ is a diagonal matrix where the ith diagonal element $M_i(L)$ is a polynomial in the lag operator whose role we will describe in detail below. Our model for the true unobserved data y_t follows Primiceri (2005) and models y_t as a time-varying VAR,

$$y_t = c_t + \sum_{j=1}^{L} A_{j,t}y_{t-j} + e_t,$$ (3)

where the intercepts c_t, the autoregressive matrices $A_{j,t}$, and the covariance matrix Ω_t of e_t are allowed to vary over time. We set the number of lags $L = 2$. To be able to parsimoniously describe the dynamics of our model, we define $X_t' \equiv I \otimes (1, y_{t-1}', \ldots, y_{t-L}')$ and rewrite (3) in the state-space form:

$$y_t = X_t'\theta_t + e_t,$$ (4)

$$\theta_t = \theta_{t-1} + u_t.$$ (5)

1While Romer’s work has emphasized mismeasurement issues in output and unemployment, Cogley, Sargent, and Surico (2015) and Cogley and Sargent (2015) have put their focus on inflation. It might be less clear why we also assume measurement error for interest rates. We do so because we combine different sources of interest rate data.

2The modeling assumptions we make for this part of the model are widely used in empirical macroeconomics. An overview of the methods used and assumptions made in this literature is given by Koop and Korobilis (2010).

3The variable I denotes the identity matrix.
The observation equation (4) is a more compact expression for (3). The state equation (5) describes the law of motion for the intercepts and autoregressive matrices. The covariance matrix of the innovations in equation (4) is modeled after Primiceri (2005):

\[e_t = \Lambda_t^{-1} \Sigma_t e_t, \]

where \(\Lambda_t \) is a lower triangular matrix with 1s on the main diagonal and representative nonfixed element \(\lambda^i_t \) and \(\Sigma_t \) is a diagonal matrix with representative nonfixed element \(\sigma^j_t \). The dynamics of the nonfixed elements of \(\Lambda_t \) and \(\Sigma_t \) are given by

\[\lambda^i_t = \lambda^i_{t-1} + \zeta^i_t, \]

\[\log \sigma^j_t = \log \sigma^j_{t-1} + \eta^j_t. \]

To conclude the specification of the VAR for the true data, we need to make distributional assumptions on the innovations \(e_t, u_t, \eta_t, \) and \(\zeta_t \), where \(\eta_t \) and \(\zeta_t \) are vectors of the corresponding scalar innovations in the elements of \(\Sigma_t \) and \(\Lambda_t \). We assume that all these innovations are normally distributed with covariance matrix \(V \), which, following Primiceri (2005), we restrict as

\[V = \text{Var} \begin{pmatrix} e_t \\ u_t \\ \zeta_t \\ \eta_t \end{pmatrix} = \begin{pmatrix} I & 0 & 0 & 0 \\ 0 & Q & 0 & 0 \\ 0 & 0 & S & 0 \\ 0 & 0 & 0 & W \end{pmatrix}. \]

The variable \(S \) is further restricted to be block diagonal, which simplifies inference. We estimate this model using the Gibbs sampling algorithm described in Del Negro and Primiceri (2013)\(^4\) augmented with additional Gibbs steps for drawing the measurement errors and the parameters of the measurement error process. A summary of this algorithm can be found in the Supplement (available in supplementary files on the journal website, http://qeconomics.org/supp/475/supplement.pdf and http://qeconomics.org/supp/475/code_and_data.zip), where we also describe the priors, whose specification is standard in the literature.

Some variables that we use in our model are measured in year-over-year rates\(^5\) (GDP growth, inflation, and money growth). To capture the fact that it might actually be the levels of these variables that are measured with error (along the lines of Schorfheide, Song, and Yaron (2014)), we introduce the lag polynomials \(M_i(L) \), which are the diagonal elements of the diagonal matrix \(M(L) \). For variables that we assume are directly measured with error, we set \(M_i(L) = 1 \), so that the measurement error operates directly on this variable. If, instead, the measurement error for variable \(i \) is associated with the level of a variable that we include in annual growth rates in the VAR, we set \(M_i(L) = 1 - L^4 \). We use this specification for output growth, inflation, and money growth in the benchmark model. The benchmark model uses \(M_i(L) = 1 \) for interest rates and the interest

\(^4\)We use 100,000 draws.

\(^5\)Specifically we calculate the year-over-year rates as \(100 \times \ln(\frac{y_t}{y_{t-4}}) \).
Table 1. Break dates (if applicable) for parameters in the measurement error processes for all variables.

<table>
<thead>
<tr>
<th></th>
<th>$\Delta gdpt_t$</th>
<th>π_t</th>
<th>i_t^j</th>
<th>spread$_t$</th>
<th>$\Delta money_t$</th>
</tr>
</thead>
<tbody>
<tr>
<td>First break date</td>
<td>1930:Q1</td>
<td>1947:Q1</td>
<td>1920:Q1</td>
<td>1920:Q1</td>
<td>1918:Q1</td>
</tr>
<tr>
<td>Second break date</td>
<td>1947:Q1</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>1936:Q1</td>
</tr>
<tr>
<td>Third break date</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>1959:Q1</td>
</tr>
</tbody>
</table>

rate spread. In the Supplement we study a specification of the model in which we set $M_i(L) = 1$ $\forall i$, in line with the model used for inflation by Cogley, Sargent, and Surico (2015). We call that specification our growth rate specification.

Each element i of m_t follows an autoregressive (AR(1)) process:

$$m_t^i = \rho m_{t-1}^i + \sigma \varepsilon_{t}^m. \quad (10)$$

We allow the measurement error process for each variable to change whenever a data source changes over our sample. The data source for each variable is indexed by j. The coefficients for each measurement error process can thus change at points in time that can be different for each variable. Just as Cogley, Sargent, and Surico (2015), we assume that the latest source corresponds to data measured without error. This helps identify measurement error process parameters and is also (at least implicitly) the assumption underlying most of Romer’s work such as Romer (1989). The innovations ε_{t}^m are Gaussian with mean 0 and variance 1, and are independent over time and across i, as well as independent of all other innovations in the model.

The break points in the measurement error processes for the different variables are given in Table 1. The dates are motivated by changes in the sources of the data, which are described in detail in the Supplement. For robustness, we have included additional break data for real GDP growth in 1930 to account for possible measurement issues during the Great Depression. It turns out that adding this break date does not alter results in any meaningful way. After the last break date for each variable, that variable is assumed to be measured without error.

3. Data

In this section we briefly describe our data (plotted in Figure 1) and discuss the estimated measurement errors. Figure 1 focuses on the part of the sample where measurement error is present: a plot of the entire data set can be found in the Supplement. We use quarterly U.S. data covering the period from the first quarter 1876 to the second quarter of 2011. This time span is of specific interest as it covers the pre-Fed period...
as well as all chairmanships prior to Janet Yellen, which represent potentially different monetary policy regimes. Furthermore, the period covers 29 recessions, as measured by the National Bureau of Economic Research (NBER), of different duration and depth. In our application, we will use the first part of our constructed sample (up until 1913) to inform the prior for our VAR. The estimation of our time-varying VAR starts in 1914. The earlier part of our sample comes from Balke and Gordon (1986), whereas most of the post-WWII data is taken from the Federal Reserve Economic Data (FRED) data base at the St. Louis Fed.

3.1 Measurement errors in the data

Figure 1 plots the observed data as well as the estimated true data until 1960 (in percentages). To focus on the role of measurement error in the early part of the sample, we do not plot the more “standard” part of the sample, which consists of standard U.S. macroeconomic data after 1960. The Supplement shows a plot of the entire data set. Along the lines of Romer (1989), GDP growth is identified by our estimation as having significant amounts of measurement error during some periods before WWII.

Overall, our estimated median true GDP growth exhibits lower volatility than observed GDP growth up to 1947. Most notably, during the period from 1930 to 1947, observed GDP growth is almost four times more volatile than our estimated true GDP growth, which explicitly takes measurement errors into account. While still clearly visible, the severity and magnitude of the Great Depression in our true estimated GDP growth is substantially smaller and the corresponding expansion during WWII is estimated to be shallower. It is worth noting that our estimation procedure does not just automatically smooth out movements in the observed series: the large movements in
observed GDP before 1930 are estimated to be movements in the underlying true GDP growth process. Measurement error plays a substantially smaller role for all other variables.

To assess how important measurement error is during different periods, we focus on real GDP growth where we suspect measurement error is most important, as highlighted by Romer (1989). Table 2 shows the standard deviation of observed and estimated true real GDP growth for the period before the end of WWII, both in absolute terms and relative to post-WWII volatility. For simplicity, we focus on the median of the estimated GDP growth series.

The standard deviation of both observed and estimated GDP growth from 1915 to 1946 is higher than the standard deviation of what we assume to be perfectly observed GDP growth after WWII (1947–2006). We find that measurement error drives a substantial fraction of the GDP growth volatility between 1930 and 1946, and estimated true GDP growth is quite smooth. It is important to note that for the period 1930–1946 we do not find true GDP growth to be less volatile because observed GDP growth is less volatile; actually the standard deviation of observed GDP growth is higher. Rather, our model uses the VAR structure of the true data (and thus the relation between the variables in our data set) to conclude that true GDP growth must have been smoother during that period. While we do find more volatile true GDP growth before the end of WWII relative to the immediate postwar period, the differences relative to post-WWII data are substantially smaller than what one would expect from observed data; in particular, in spite of the Great Depression and WWII, true GDP growth between 1915 and 1946 was only 87% more volatile than after WWII, a far cry from the 268% difference implied by observed data. These findings are qualitatively in line with Romer (1986), who argues that the postwar stabilization was substantially less significant than generally believed.

4. Results

In this section we describe how the dynamics of our estimated VAR model have changed over time. The goals of this section are twofold: we are not only interested in these statistics in their own right, but also want to know if those changes will be reflected in changes in the impulse responses that we describe later.
4.1 Examining stochastic volatility

First, we study the estimated volatilities of the innovations hitting our model. We focus on the square roots of the diagonal elements of $\Omega_t = \text{Var}(e_t)$, which incorporate time variation in both Σ_t and Λ_t.

Figure 2 plots the median as well as the 16th and 86th percentile bands of these time-varying standard deviations of the reduced-form residuals. The residuals associated with real GDP growth, inflation, and money growth are substantially more volatile during the first part of our sample, whereas the residuals of short-term interest rates and the spread are more volatile after World War II, in particular around the Volcker disinflation of 1980. The residual in money growth, on the other hand, does not have a substantially larger volatility around the Volcker disinflation. One important takeaway from this exercise is that relative to the decrease in volatility of real GDP and inflation after the Great Depression and World War II, the “Great Moderation” is almost invisible in the estimated volatilities because the overall level of volatility is so much higher in the earlier part of the sample.\(^8\)

The volatility of the reduced-form error in the equation for the spread shows a discrete jump in 1980. Interestingly, while average volatility in that error has come down in the 1980s and 1990s, the levels remain elevated relative to pre-1980 values. Since the reduced-form residuals are the one-quarter-ahead forecast errors, our model implies that one-quarter-ahead forecasts of the slope of the yield curve have thus become less precise since 1980, an interesting hypothesis for future work.

\(^8\)The Great Moderation refers to decreases of volatility in observables, not necessarily residuals, but it seems natural to expect part of this decrease to be reflected in residuals with smaller variance.
4.2 Time t approximations to moments of forecasts

To analyze the estimated time variation further, we ask what the first and second moments of our observables would be if the dynamics of the observables were governed by parameter estimates that are fixed at the level estimated at one particular time t.\footnote{Cogley and Sargent (2005) have used this approach.} Since we do not impose stationarity on our VAR, we cannot compute the unconditional moments under the assumption that the time t parameter estimates do not change in the future. Instead, we compute time t moments for different forecast horizons, which do not require the (smoothed) time t estimates of the companion form matrix of the VAR having all eigenvalues (except for the eigenvalue associated with the intercept) being less than 1 in absolute value. Following the suggestion of Sims (2001) and the work by Cogley and Sargent (2005), we calculate summary statistics that help us understand how the economy has changed over time using all available information (since we use smoothed estimates).

Figure 3 plots the posterior medians and the 16th and 86th percentile bands of the evolution of these forecast means at the 20-years-ahead horizon. A substantial part of the time variation is actually in the uncertainty surrounding the forecast means rather than in the median, which does not move too much for long periods of time for the observables we consider.

The period from 1920 to 1940 (which encompasses the Great Depression) is represented in Figure 3 as a time of substantial uncertainty surrounding long-run values, but it is (maybe surprisingly) not associated with substantial movement in the median of

Figure 3. Evolving forecast means: 20 years ahead.
the forecasts. Our model thus attributes a substantial part of the Great Depression to temporary changes in volatilities. Benati and Lubik (2014) have a similar finding using inventory and sales data.10

The 1970s instead are viewed by our model as a time in which the long-run outlook was quite bleak in terms of GDP growth and inflation.

The Volcker disinflation around 1980 is seen as a major structural break in our model. Average forecasted inflation dropped dramatically, average forecasted output growth increased by 1 percent in annual terms, and the uncertainty surrounding these long-run forecasts shrank. The recent financial crisis does not dramatically manifest itself in these long-run averages.

We use the h-step-ahead forecast variance $\text{Var}_t[y_{t+h}]$11 to construct time t approximations of the forecast correlations between our observables, which are depicted in Figure 4. For the sake of brevity, we focus on the 5-year horizon for these plots. Other horizons are qualitatively similar. There is substantial time variation in these correlations. The error bands are in general quite wide. A substantial number of these correlations feature large movements in the 1970s and then a structural break at the time of the Volcker disinflation. Starting with the output growth/inflation correlation, we see that

\textbf{Figure 4. Forecast correlations: 5 years ahead.}

10The estimates are based on all sample information. Out-of-sample forecasts using only information up to that time period would presumably look quite different.

11Lütkepohl (2010) describes how to construct this variance.
inflation and output growth are substantially negatively correlated when looking at the median correlation, but that this correlation is significantly different from 0 only in the 1940s. A similar pattern can be observed for the output growth/interest rate relationship. The 68 percent error bands for the output growth/spread correlation contain 0 for the entire sample. Note though that the median correlation decreases substantially in magnitude after 1980. The mid-1980s have been identified before as a point in time after which yield curve information does not carry much information for forecasting output growth.12 Inflation and interest rates have not been significantly correlated until 1960 (the “Gibson Paradox” studied by Cogley, Surico, and Sargent (2012)). The correlation then grew throughout the 1960s and was close to 1 during the 1970s. Revisiting the by now common theme, the correlation falls dramatically with the disinflation of the early 1980s.13 A possible explanation for the disappearance of a significant correlation could be that during periods of low correlation between inflation and nominal interest rates, inflation expectations are “well anchored” in that they do not move much in response to movements in variables at the time when the forecast is made. Inspecting our long-run forecast of inflation, we do indeed see little movement in forecasted inflation during times of low correlation between forecasted inflation and forecasted short-term interest rates.

Inflation and money growth are not significantly correlated before the mid-1960s, when the correlation becomes positive. The strength of this correlation disappears immediately with the beginning of the Volcker chairmanship and the associated disinflation. This again points to a positive relationship at high levels of inflation, but not at the substantially lower levels we have observed since the 1980s.

We see a substantially negative relationship between the short-term interest rate and the spread before 1980. This correlation has since become much closer to 0, meaning forecasted long-run movements in the short rate do not feed (linearly) into the slope of the yield curve. This might have implications for monetary policy: policymakers hope to influence long-term interest rates by moving the short-term interest rate. These correlations, however, are not conditional on specific shocks hitting the economy.

Finally, the correlation between money growth and the spread has moved into positive territory after 1980. Only at the very end of the sample do these correlations move

12Wheelock and Wohar (2009) state that “[s]everal studies find that the spread has been less useful for forecasting output growth since the mid-1980s, at least for the United States.”

13To see why a 0 correlation between inflation and the nominal interest rate may be surprising, remember the Fisher equation in its approximate linear form:

\[i_t^n = r_t + E_t \pi_{t+1}. \]

If we think about the real interest rate \(r_t \) being roughly constant in the distant future, then this equation tells us that in the long run, short-term interest rates and inflation should move one-for-one. In our model we cannot subtract our inflation measure from our measure of the short-term nominal interest rate to get a measure of the ex post real rate because our short-term interest rate is a 3-month (annualized) interest rate, whereas we use an annual inflation measure. In terms of long-run forecasts, the difference between an annual interest rate and an annualized 3-month interest rate for a safe asset like we consider should be small. Also, we plot the correlation between inflation and the nominal interest rate 20 years in the future, whereas the Fisher equation would call for the correlation between the nominal interest rate in 20 years and the inflation rate in 20 years and 1 quarter. Given our long forecast horizon, this seems inconsequential.
toward 0 again. Taken at face value, this implies that from 1980 to the early 2000s money growth could have been useful in predicting movements of the yield curve.

The correlations described in this section share common themes: substantial changes around 1980 and correlations that are larger in absolute value when some of the time series themselves are relatively large (such as the inflation/GDP growth correlation). This points to substantial nonlinearity in reduced-form Phillips curve relationships, for example.

It is worth pointing out that even though 1980 is identified as a break point in many correlations, there are other break points, many of them in the early 1960s. We interpret this as evidence that a simple split sample analysis using pre- and post-Volcker data is bound to miss interesting aspects of time variation in the economy. Furthermore, many analyses using post-WWII U.S. data only use data starting in the late 1950s or early 1960s (Primiceri (2005) and Sims and Zha (2006) are two prime examples) and will thus not be able to detect those changes.

4.3 Impulse responses to a monetary shock over the last century

Having characterized the substantial changes in the reduced-form dynamics of U.S. time series over the last century, we now turn to the question of the effects of monetary policy on the economy and changes of those effects over time.

This section will first describe the impact of a 1 standard deviation monetary policy shock on the economy. Then we will examine the relative importance of fluctuations in volatility when compared to changes in the dynamic response to shocks.

The following assumption summarizes our sign restrictions:

Assumption 1. A monetary policy impulse vector at time t is an impulse vector a_t, so that the impulse responses to a_t of the price level, the level of output, and money growth are not positive, and the impulse responses for the short-term interest rate are not negative, all at horizons $k = 0, \ldots, K$.\[^{14}\]

Our benchmark specification does not restrict the impulse responses of the spread. Setting $K = 2$, we impose the sign restrictions at each point in time for the specified contemporaneous responses and for the first and second quarters.\[^{15}\] This is in line with Uhlig (2005), who uses 5 months in a monthly model, and Benati (2010), who imposes the restrictions on impact and for the two following quarters. In contrast to the benchmark case in Uhlig (2005), we do restrict the response of output not to react positively following a contractionary monetary policy shock. Most theoretical macroeconomic models feature meaningful output responses to monetary policy shocks, a feature that we use to guide our identification restrictions (see Canova and Paustian (2011) for an introduction to this approach). The candidate time t impulse vector a_t is given by

$$a_t = \Lambda_{t|T}^{-1} \sum_{t|T} \alpha_t, \quad (12)$$

\[^{14}\]Imposing the restrictions on inflation and output growth, instead of the price level and the level of output, leads to quantitatively very similar results.

\[^{15}\]Our results are robust to restricting the response of output growth and inflation instead of the level of output and the price level.
where α_t is a column vector of conformable size drawn from the unit sphere of norm 1, which we vary across draws to capture the uncertainty implied by the sign restrictions. To compute one draw of the impulse response vector, we simulate data from our model under two scenarios: one in which all random innovations are drawn from their estimated distributions, and the other where all innovations are drawn from their estimated distribution except for one time period, where we impose a monetary shock of a given size.

This approach builds on Uhlig (2005), Faust (1998), Canova and Nicolo (2002), and Canova and Gambetti (2009). Additional details regarding implementation and normalization are provided in the Supplement. The impulse responses we show follow Canova and Gambetti (2009) and Benati and Mumtaz (2007), and take into account all sources of uncertainty in our model, including the uncertainty associated with the rotation α_t (which is not point-identified) and the uncertainty associated with parameters changing in the future; we calculate generalized impulse responses along the lines of Koop, Pesaran, and Potter (1996).

Using sign restrictions to identify a monetary policy frees us from having to make an assumption about what variable is used as the monetary policy instrument. With these sign restrictions, we aim to capture the effects of an unanticipated monetary shock for the different policy regimes in place throughout our sample. Before the Great Depression, the Fed adhered to the Real Bills doctrine. While this represented a policy regime that a priori could be viewed as featuring a different systematic part of monetary policy, there does not seem to be ample reason to think that the sign restrictions we use were not valid during that period. Even though the Gold Standard was in place during that time, Bernanke (2013) identifies it as not binding. After the Great Depression the Federal Reserve was substantially influenced by the Treasury until the 1951 Fed–Treasury accord. This is another episode where the systematic part of monetary policy could be different from other periods, but we do not have substantial reason a priori to doubt that unexpected effects of monetary policy followed our identifying assumptions during that period.

Nonetheless, we cannot rule out that our identification restrictions are too strong in that a monetary policy shock might not have the effects we ascribe to it during certain periods. To give an example, Lubik and Schorfheide (2003) show that in a New Keynesian model under indeterminacy, some (but not all) equilibria display dynamics where inflation rises with a positive (i.e., contractionary) monetary policy shock. Incorporating this kind of information, while at the same time not giving up on our reasonable identifying assumptions for most of the sample, would force us to make substantially stronger assumptions such as when exactly those dynamics are in place and what exactly the identification assumptions in those periods are. We feel that the associated costs outweigh the benefits given that our assumptions seem standard for most of our sample.

4.3.1 A historical assessment of consequences of monetary policy shocks

In a model with time-varying parameters, we could compute impulse response paths for each variable at each point in the sample. To keep this overwhelming amount of information manageable, we organize our discussion by dividing our sample into seven time periods that together span our entire sample and each stands for a succinct time period in the Federal
Reserve’s history. We borrow these time periods from the Federal Reserve itself, which used the same time line to summarize its history during the celebration of its centennial.16 For each of those seven periods we calculate generalized impulse response functions that take into account all sources of uncertainty in our model. We generate impulse response paths to 1 standard deviation shocks for every time period t and all posterior draws, and then compute the average response for each of the seven periods, which can be seen in Figure 5. Since the standard deviations of shocks in our model change over time, the responses we show in this section are best interpreted as the response to an average sized shock during each time period, where the average size of the shock can change across time periods. The black vertical line displays the horizon until which the sign restrictions are imposed. Even though we impose sign restrictions on the level of output and the price level, we plot the impulse responses in terms of inflation and output growth. First focusing on possible policy instruments of the Federal Reserve, we

\textbf{Figure 5.} One standard deviation impulse responses across time. The solid bold line is the median response, the shaded area represents the 68\% posterior probability bands centered at the median.

16http://www.federalreservehistory.org/Events.
see that the median responses of the interest rate and the money base vary substan-
tially over regimes, both in their median responses and in the variability around those
responses. The variability of the money growth response has decreased monotonically
over the different time periods for each response horizon, whereas the response of the
nominal rate increased in variability before it started decreasing. The median response
of inflation decreases until 1982, but then increases again. The median response of the
nominal rate has decreased somewhat over time for each horizon, but those changes
are small compared to the variability implied by the error bands. The median response
of money growth has decreased more substantially over time. Our main takeaway here is
that the impact of monetary policy shocks on policy instruments of the Fed has changed
substantially over time, especially when it comes to the uncertainty surrounding the im-

Before the Great Inflation period, monetary policy shocks had a significantly neg-
ative effect on the spread. While the median impact of monetary policy shocks on the
spread has remained negative throughout, the magnitude of the response has decreased
over time for every horizon and the error bands include 0 for every horizon starting with
the Great Inflation period.

The response of GDP growth over time becomes more muted as well as substan-
tially less uncertain. This response is remarkably stable between 1929 and 1951 (or, to
amost the same extent, until 1965). The median response starts to become smaller in
magnitude and less uncertain after the Fed–Treasury Accord that gave the Fed substan-
tial independence.17 This pattern is more pronounced with our alternative specification
of measurement error (see the Supplement for the corresponding figures). However, it
is important not to lose sight of the big picture: the patterns of impulse responses to
monetary policy shocks have remained surprisingly stable throughout our sample.

Given that we set-identify the responses to a monetary policy shock (that is, even
if we knew the reduced-form parameters with certainty, we could still not exactly pin
down the impulse responses), readers might be interested in the amount of uncertainty
coming only from the partial identification of the impulse response function. Following
Moon, Granziera, and Schorfheide (2013), we report in Figure 6 the full set of identified
impulse responses conditional on the posterior mean estimates of all reduced-form pa-

17The Fed–Treasury Accord removed the Fed’s obligation to maintain a low-interest rate peg on govern-
ment securities.
in our model. We now disentangle the effects of changes in contemporaneous volatility and changes in response parameters. This allows us to identify changes in the monetary policy transmission rather than changes in the effects of monetary policy that are driven by changes in the volatilities of exogenous disturbances. To do so, we want to isolate the effects of changes in Σ_t on the impulse responses. To do so, we follow Canova and Gambetti (2009), who normalize their sign-restriction-based impulse responses by fixing the contemporaneous effect on the nominal interest rate. In Figure 7 we consider a 25 basis point increase in the nominal rate (but any other normalization would just rescale the impulse responses we show). This does not mean that we think the nominal rate was the policy instrument throughout our sample; we just normalize the impact of the monetary policy shock through time. As mentioned before, our sign restriction approach allows us to not take a stand on the nature of the policy instrument. For the sake of brevity, we report the median response as well as the 68% posterior bands, but omit the identified set of impulse responses. Again focusing first on possible policy instruments, we see only small changes in the median response for money growth and only

Figure 6. Full identified set at the posterior mean (lighter shaded area) along with the 90% posterior bands (darker shaded area), one standard deviation impulse responses.
Figure 7. Impulse responses normalized on nominal rate impact across time. The solid bold line is the median response, the shaded area represents the 68% posterior probability bands centered at the median.

mild reductions in uncertainty. It now becomes clear that the nominal rate response has become more persistent over time, a fact that had been masked by the changes in the impact of a monetary policy shock on the nominal rate on impact and the uncertainty surrounding that impact effect.

After 1982, the median response of inflation has become larger across horizons, and the probability of a strong negative response of inflation to a 25 basis point increase in the nominal rate has increased substantially.

The response of the spread to a monetary policy shock shows the same pattern as in the previous section: the median response is negative throughout, but the error bands include 0 for every horizon starting with the Great Inflation period. Monetary policy in the latter part of the sample thus shifts the entire yield curve without changing the slope. The impact of monetary policy on long-term rates has increased over time, consistent with a narrative that attributes more credibility to the Fed in the latter part of the sample.

The median impact of monetary policy shocks for a given size on real GDP growth has decreased over time (similar to what we found for the 1 standard deviation shock),
but this decrease is small compared to the width of the error bands at any point in time. For real GDP growth, we do not see a substantial difference in the response before and after Volcker. One feature that we do find for both shocks of fixed size and 1 standard deviation shocks, is that the downside risk associated with a contractionary monetary policy shock has become smaller over time: the 16th percentile error band for the GDP growth response has become smaller in magnitude over time for all horizons.

While the reaction of policy instruments to a monetary policy shock of a given size has changed over time, we do find more similarities than differences in the responses of real GDP growth and inflation across the different time periods we consider. While there is substantial time variation in reduced-form moments, as we documented in previous sections, our identification scheme for monetary policy shocks implicitly attributes a substantial part of those changes to changes not associated with monetary policy shocks.

5. Conclusion

To study changes in the dynamics of the U.S. economy over the last century, we enrich a time-varying parameter VAR model along the lines of Primiceri (2005) to allow for possibly mismeasured data. We find substantial evidence of measurement error before and during WWII (particularly in GDP, in line with Romer (1989)), time variation in volatilities of reduced-form innovations, and substantial time variation in the correlations between the macroeconomic variables we consider. In particular, the early 1980s were a time period that our model associates with substantial shifts in the structure of the economy.

Changes in the responses to a monetary policy shock are clearly present, but once we condition on the size of the shock (i.e., the initial impact on short-term nominal interest rates), the most noteworthy finding is that of surprising stability over the past century.

References

Co-editor Frank Schorfheide handled this manuscript.