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Obtaining consistent estimates of spillovers in an educational context is ham-
pered by at least two issues: selection into peer groups and peer effects emanat-
ing from unobservable characteristics. We develop an algorithm for estimating
spillovers using panel data that addresses both of these problems. The key inno-
vation is to allow the spillover to operate through the fixed effects of a student’s
peers. The only data requirements are multiple outcomes per student and hetero-
geneity in the peer group over time. We first show that the nonlinear least squares
estimate of the spillover parameter is consistent and asymptotically normal for a
fixed T . We then provide an iterative estimation algorithm that is easy to imple-
ment and converges to the nonlinear least squares solution. Using University of
Maryland transcript data, we find statistically significant peer effects on course
grades, particularly in courses of a collaborative nature. We compare our method
with traditional approaches to the estimation of peer effects, and quantify sepa-
rately the biases associated with selection and spillovers through peer unobserv-
ables.
Keywords. Panel data, fixed effects, peer effects, education.

JEL classification. C18, C23, I21.

Peter Arcidiacono: psarcidi@econ.duke.edu
Gigi Foster: gigi.foster@unsw.edu.au
Natalie Goodpaster: natalie.goodpaster@gmail.com
Josh Kinsler: joshua.kinsler@rochester.edu
We thank Joe Altonji, Pat Bayer, Jane Cooley, Paul Frijters, John Haltiwanger, Caroline Hoxby, Tom Nechyba,
Bruce Sacerdote, seminar participants at Duke University, University of Georgia, Yale University, and par-
ticipants at the 2004 Labour Econometrics Workshop held at the University of Auckland and the NBER’s
Higher Education Workshop for helpful comments, as well as the University of Maryland administrators
who have provided us with the data used in this paper. Shakeeb Khan and Nese Yildiz were particularly
helpful. Special thanks go to Chris Giordano and Bill Spann of the Maryland Office of Institutional Research
and Planning. We also thank Graham Gower for superior research assistance.

Copyright © 2012 Peter Arcidiacono, Gigi Foster, Natalie Goodpaster, and Josh Kinsler. Licensed under the
Creative Commons Attribution-NonCommercial License 3.0. Available at http://www.qeconomics.org.
DOI: 10.3982/QE145

http://www.qeconomics.org/
mailto:psarcidi@econ.duke.edu
mailto:gigi.foster@unsw.edu.au
mailto:natalie.goodpaster@gmail.com
mailto:joshua.kinsler@rochester.edu
http://creativecommons.org/licenses/by-nc/3.0/
http://www.qeconomics.org/
http://dx.doi.org/10.3982/QE145


422 Arcidiacono, Foster, Goodpaster, and Kinsler Quantitative Economics 3 (2012)

1. Introduction

The question of how peers affect student achievement underlies many debates in ap-
plied economics. Peer effects are relevant to the estimation of the impact of affirmative
action, school quality, and public school improvement initiatives such as school vouch-
ers, and are central to more immediate concerns such as how best to group students
to maximize learning.1 However, despite this wide field of potential relevance, the em-
pirical estimation of spillovers—whether in the education context or elsewhere— is not
straightforward.

There are at least two barriers that must be overcome when estimating spillovers on
student achievement.2 The first is the selection problem. When individuals choose their
peer groups, high-ability3 students may sort themselves into peer groups with other
high-ability students. With ability only partially observable, positive estimates of peer
effects may result even when no peer effects are present because of a positive corre-
lation between the student’s unobserved ability and the observed ability of his peers.
Researchers have undertaken a variety of estimation strategies to try to overcome the
selection problem,4 but significant empirical problems linger, both because researchers
only have access to incomplete measures of ability and because peer effects may operate
differently when peers are chosen rather than assigned.

A second barrier is that spillovers may work in part through characteristics or ac-
tions that are not observed by the econometrician. The importance of peer effects may
be significantly understated if the primary channel through which they operate is un-
observed. Peer effects through unobservables in education have received little attention
outside of Altonji, Huang, and Taber (2004) and Graham (2008).5

We introduce a new algorithm for estimating spillovers using panel data that over-
comes both these obstacles. Our key innovation is that the peer effects are captured
through a linear combination of individual fixed effects. Utilizing fixed effects to capture
the impact of peers is well suited to environments where time-varying peer unobserv-
ables do not affect individual choices. This can hold when the outcome of interest is a

1Epple, Romano, and Sieg (2003) showed that prices colleges charge differ by ability, suggesting the im-
portance of peer effects.

2A third barrier is measurement of the peer group. See Chandrasekhar and Lewis (2011) for a discussion
of circumventing measurement error in the peer group.

3For ease of exposition, we refer to the bundle of individuals’ performance-relevant characteristics as
ability.

4One set of papers uses proxy variables to break the link between unobserved and peer ability
(Arcidiacono and Nicholson (2005), Hanushek, Kain, Markman, and Rivkin (2003), and Betts and Morell
(1999)). Another set of papers relies on some form of random assignment (Sacerdote (2001), Zimmerman
(2003), Winston and Zimmerman (2003), Foster (2006), Lehrer and Ding (2007), Carrell and Hoekstra (2010),
Carrell, Fullerton, and West (2009), Carrell, West, and Malmstrom (2008), and Hoxby (2001)). Finally, re-
searchers have tried to circumvent the endogeneity problem with instrumental variables (Evans, Oates,
and Schwab (1992)). See Epple and Romano (2011) for a review of the different approaches.

5Graham (2008) required random assignment into classes and because his analysis is cross sectional,
must make stronger assumptions on the variance of the idiosyncratic term across classes. Mas and Moretti
(2009) estimated spillovers in the workplace through both observables and unobservables. They used a two-
stage method that yields inconsistent and downward-biased estimates of the spillover parameters when T

is fixed. This is likely to be unimportant in their setting because their data contain workers with many
observations over time.
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choice and individuals only have expectations of peer choices. The assumption on peer
unobservables is also valid when individuals only have partial control over their out-
comes, as is the case with test scores and grades, and either have expectations of peer
choices or peer choices are made based solely on observables.

Constructing the spillover as a linear combination of individual fixed effects results
in a nonlinear optimization problem. Estimating individual unobserved heterogeneity
in non-linear panel data models often results in biased estimates of the key parameters
of interest—the incidental parameters problem.6 As N goes to infinity for a fixed T , the
estimation error for the fixed effects often does not vanish as the sample size grows, con-
taminating the estimates of the parameters of interest.7 We show, however, that the non-
linear least squares estimate of the spillover parameter is consistent and asymptotically
normal as N → ∞ with T fixed, even though the fixed effects themselves are not con-
sistent.8 These consistency arguments also extend to the case where peer effects persist
over time.

While nonlinear least squares yields consistent estimates of the spillover parame-
ters, the dimensionality of the problem renders nonlinear least squares infeasible. We
develop an iterative algorithm that, under certain conditions, produces the same esti-
mates as nonlinear least squares. The algorithm toggles between estimating the individ-
ual fixed effects and the spillover parameters. Each iteration lowers the sum of squared
errors, with a fixed point reached at the nonlinear least squares solution to the full prob-
lem.

We customize the model for application to peer effects in education, using student-
level data from the University of Maryland. Six semesters of transcript data are available,
covering the semesters from the spring of 1999 to the fall of 2001. We observe grades for
every class each student took over the course of this period as long as the student lived
on campus during any one of the six semesters.

We estimate the model separately for each of three types of courses, finding signifi-
cant peer effects that vary by course type. A 1 standard deviation increase in peer ability
yields average returns similar to those from between a 3 percent and an 11 percent of
a standard deviation increase in own ability, depending on the course type and speci-
fication. The lowest returns are found in math and science, and the highest returns are
found in the social sciences.

Our model allows us to quantify selection both within and across course types.
Within course types, we compare the amount of selection with respect to observed and
unobserved student ability. To arrive at these measures, we decompose each of the esti-
mated student fixed effects, or what we label total ability, into an observed and an unob-
served component using typical observed ability measures, such as Scholastic Aptitude

6Neyman and Scott (1948) were the first to document the incidental parameters problem.
7Hahn and Newey (2004) provided two methods of bias correction: a panel jackknife and an analytical

correction. Woutersen (2002) and Fernandez-Val (forthcoming) considered estimators from bias-corrected
moment conditions. In a similar vein, Arellano and Hahn (2006) and Bester and Hansen (forthcoming)
considered bias-correcting the initial objective function.

8Other special cases where the incidental parameters problem does not require a bias correction are
Manski (1987), Honore (1992), and Horowitz and Lee (2004).
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Test (SAT) scores and high school performance. For all course types, we find greater se-
lection on unobserved ability than observed ability. However, selection is highest when
measured using total ability, a reflection of the significant correlation between peer ob-
served and unobserved ability within a section.9 Because we estimate our model sep-
arately for each course type, we can compare student ability in their primary course of
study to their ability in other fields, thereby quantifying selection across course types. We
find strong evidence of both comparative and absolute advantage. On average, students
select course types for which they are best suited. However, math and science students
show greater aptitude overall in every course type.

Finally, we compare our peer effect estimates to those that would be obtained us-
ing more conventional methods. In particular, we examine separately the two obstacles
present in traditional peer effects estimation: selection into peer groups and the effect
of peer unobservables. Controlling for selection only, which is what is accomplished us-
ing random assignment, we show that the estimated peer effects are lower than the peer
effects obtained using our method. This is because random assignment techniques rely
on incomplete measures of peer ability. We then reintroduce selection into the model
and show that the bias in the peer effect estimate can be either positive or negative when
both issues are present. For humanities courses, the peer effect estimate continues to be
biased downward since the peer unobservables problem dominates the selection prob-
lem. The opposite is true for math and science courses, where the peer effect estimate
using conventional methods is more than four times our original estimate. The differ-
ences across course types are due in part to the much higher correlation between indi-
vidual observed ability and peer unobserved ability in math and science relative to the
humanities.

The remainder of the paper proceeds as follows. Section 2 presents the baseline
model, the identification result, and the solution algorithm. Section 3 extends the
model to incorporate correlated effects, endogenous effects, and heterogeneity in peer
spillovers. Monte Carlo evidence on the performance of the algorithm is presented in
Section 4. Section 5 describes the University of Maryland data and Section 6 presents the
results. Section 7 explores selection within and across course types, and Section 8 illus-
trates the biases associated with traditional peer effect measures. Section 9 concludes.

2. Estimating spillovers with panel data

In this section, we present a model and estimation strategy for measuring achievement
spillovers using student fixed effects. The model is constructed keeping in mind that our
application is measuring peer effects in college, where we are interested in the interac-
tions that occur within discussion sections in large classes.

We first consider a case where one’s outcome depends only on one’s own fixed effect
and the fixed effects of the other individuals in a predefined peer group. We show that
it is possible to obtain consistent estimates of the spillover and that there is a computa-
tionally cheap way to obtain the solution. All proofs appear in the Appendix A.

9By construction, observed and unobserved ability are orthogonal in the population.
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2.1 Identifying spillovers using panel data

Our baseline model has individual i’s outcome at time t in peer group n, Yitn, depending
on his own observed and unobserved characteristics, Xit and uit , a linear function of
the observed and unobserved characteristics of each of the other students in his peer
group, and a transitory error, εitn. Denote as Mtn + 1 the total number of individuals
in peer group n at time t. Each member of peer group n at time t then has Mtn peers.
Denote as Mtn∼i the set of individuals (numbering Mtn) in peer group n at time t with
individual i removed. Our baseline specification can then be written

Yitn = Xitβ1 + uitβ2 + 1
Mtn

∑
j∈Mtn∼i

(Xjtγ1 + ujtγ2)+ εitn� (1)

In addition to the assumption of linearity, the specification in (1) is restrictive along
a number of dimensions. There are no endogenous effects, as peer choices do not enter
the outcome equation. There are also no correlated effects, as there are no variables to
capture the commonality of the environment faced by all members of student i’s time-t
peer group. Finally, this specification does not allow for heterogeneity in the suscepti-
bility to peer influence.

While each of these restrictions is relaxed in the next section, even in this special
case, estimation is problematic when peer groups are chosen. In particular, there may
be correlation between uit and the sum of observed peer characteristics, leading to bi-
ased estimates of γ1. Also, we are not able to capture the peer influence through unob-
servables, meaning that γ2 is inestimable without further assumptions. While random
assignment can remove the correlation between uit and observed peer characteristics,
the inability to capture spillovers through unobservables remains.10

We now make an additional assumption: the relevance to outcomes of peer charac-
teristics is proportional to that of own characteristics, meaning that we can write11

γ1 = γoβ1�

γ2 = γoβ2�

This implies, for example, that if two dimensions of an individual’s ability are equally im-
portant in their effect on Yitn, then those two dimensions of peer ability are also equally
important in determining Yitn. This same assumption is used in Altonji, Huang, and
Taber (2004).

Now define

αito =Xitβ1 + uitβ2�

10Using random assignment to identify the spillover also disregards the possibility that spillovers operate
differently in selected versus randomized contexts.

11For the remainder of the paper, we designate population parameters with an o subscript (γo) and des-
ignate estimates of the population parameters with a caret (γ̂).
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We can then rewrite equation (1) as

Yitn = αito + γo

Mtn

∑
j∈Mtn∼i

αjto + εitn� (2)

An individual’s outcome is then a function of the individual’s own ability at t plus the
mean ability of the other students in the peer group at t.

We are then interested in solutions to the nonlinear least squares problem

min
α�γ

N∑
i=1

T∑
t=1

(
Yitn − αit − γ

Mtn

∑
j∈Mtn∼i

αjt

)2

� (3)

If individual ability varies over time, as it does in the above specification, γo is not iden-
tified unless multiple observations per student are available in each time period. How-
ever, additional structure can be placed on the evolution of the αo’s to ensure that the
spillover parameter is identified even if multiple observations per time period are not
available. In the following discussion, we investigate the properties of our estimator of
γo under two common assumptions about how ability evolves:

A1 Static. Individual ability is assumed fixed over time, αito = αio. An individual’s out-
come is then a function of his own fixed effect plus the mean of the fixed effects of the other
students in the peer group.

A2 Cumulative. Ability accumulates according to the interactions between the individ-
ual and his peers. At the initial time period, ability is given by αio. When there is no depre-
ciation, from t = 2 onward ability accumulates according to

αito = αio +
t−1∑
t ′=1

γo

Mt ′n

∑
j∈Mt′n∼i

αjt ′o� (4)

Note that with only one observation per student available in each time period, it
would be difficult to allow for more flexible forms of time-varying ability.

The two approaches to the evolution of ability require estimating the same number
of parameters—an αio for each individual plus an estimate of the spillover parameter,
γo. Maintaining the assumptions of linearity and proportionality previously discussed,
we prove that the least squares solution to equation (3) is a consistent estimator of γo
under the following set of assumptions.

Theorem 1. Let N denote the number of individuals who are observed at least two times
and satisfy

∑
j∈Mtn∼i

(
αjto
Mtn

) �= ∑
j∈Mt′n∼i

(
αjto
Mt′n

) for some t� t ′. Suppose either A1 or A2 holds.
Additionally, suppose the following statements:

(i) We have E(εitnεjsk) = 0 ∀j �= i� t �= s�n �= k.

(ii) We have E(εitnαjto) = 0 ∀i� j� t� n.

(iii) We have E(α4
ito) <∞ ∀i� t� n.

(iv) We have E(εitn)= 0 and E(ε4
itn) < ∞ ∀i� t� n.
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(v) Either E(ε2
itn|n� t)=E(ε2

jtn|n� t) ∀i� j� t� n or Cov(ε2
itn�Ni) = 0, where Ni is the num-

ber of observations for individual i. Further, under A2, E(ε2
itn|t)= E(ε2

it ′n|t ′).

(vi) The parameter γo lies in the interior of a compact parameter space Γ , where the
largest element of Γ is given by γ. Furthermore, γ <M , where M is the smallest class size.

If (i)–(vi) hold, then γ̂ is
√

N consistent and an asymptotically normal estimator of γo for
fixed T .

While most of the above assumptions are standard, a few nonstandard assumptions
deserve closer inspection. Assumption (i) requires that the residuals across any two ob-
servations be uncorrelated. Any correlation across outcomes for the same individual is
captured by the individual fixed effect, while correlation in outcomes across individuals
in the same peer group is entirely captured by the peer effect.12 Assumption (v) requires
that either the residuals within a peer group have equal variance, implying that only
heteroskedasticity across peer groups can be accommodated, or, if heteroskedasticity
operates at the individual level, it is uncorrelated with the number of times the individ-
ual is observed in the data. This assumption is generally applied in virtually all papers
in the peer effects literature, as standard errors are typically clustered at the class level.
Assumption (v) does, however, have to be strengthened in the accumulation case, as the
variance in the error term cannot be correlated with time.

Because the estimates of the individual effects are inconsistent for fixed T , one
would expect the estimator of γo to be downward biased as a result of measurement er-
ror. Indeed, two-step approaches, such as that taken in Mas and Moretti (2009), in which
estimates of the individual effects are obtained in a first step and then taken as given in
the second-step estimation of the spillover parameter, do suffer from attenuation bias.13

Similarly, an approach that utilizes the average of the peer average grades over time to
measure peer ability also is downward biased as a result of measurement error.14 The
intuition for why measurement error does not lead to attenuation bias in our case fol-
lows directly from the structure of the consistency proof. The proof relies on solving for
each of the individual effects as a function of the data and γ, and then substituting these
functions for the individual effects in (3). The key is that when solving for αi as a function
of γ, we account for the direct effect of αi on own outcomes and the indirect effect of αi

on all the individuals who happen to be paired with i. The strength of the indirect effect
is determined by the spillover parameter, and as the spillover parameter moves, so too
do the implied estimates of the individual effects. Accounting for the relationship be-

12In the next section, we introduce a procedure for capturing correlated effects that do not work through
the peer effect.

13In Mas and Moretti (2009), measurement error is likely less of an issue due to the large number of time
periods per individual in their data. However, in other settings, particularly those in education, the number
of time periods per individual is likely to be small.

14Using the average of the peer average grades as a proxy for peer ability induces two types of measure-
ment error. The first source of measurement error is related to the fact that grades are a noisy signal of
student ability. The second source of measurement error arises from misspecification of the production
function, since there are now extra peer terms included in the average grades. When we estimate the model
taking this approach, the estimated spillover effect declines by approximately 25 percent.



428 Arcidiacono, Foster, Goodpaster, and Kinsler Quantitative Economics 3 (2012)

tween the estimate of the spillover parameter and the estimates of the individual effects
removes the measurement error issue. Minimizing the concentrated objective function
with respect to γ alone yields the desired result.

The structure of the proof suggests an obvious estimation strategy: minimize the
concentrated least squares problem with respect to γ. However, while concentrating out
the α’s is useful for proving consistency, the resulting formulas are quite cumbersome
and difficult to calculate. Directly solving (3) is also generally not possible because of
the dimensionality of the problem. Instead, we consider an iterative estimation strat-
egy that both circumvents the dimensionality problem and yields the same solution as
direct maximization. The next section introduces the computational procedure and dis-
cusses how it relates to the broader literature regarding estimation of high-dimensional
problems.

For the remainder of the paper, we focus on the case where αito does not vary over
time, since our empirical application investigates the existence of peer effects in a col-
lege setting—a setting where there is heterogeneity in both the number of courses taken
and the course topic. The accumulation of skill is likely to be less important here relative
to primary or secondary schooling, since college courses generally do not build directly
on one another. However, the methods we describe below can easily be adapted to the
accumulation case as well.

2.2 Computing spillovers with panel data

Before moving directly to the computation of the spillover model outlined in the pre-
vious section, we illustrate how our proposed procedure can ameliorate a somewhat
simpler computational problem prominently discussed in the literature. An outstand-
ing problem in applied microeconomics is how to estimate models that contain mul-
tiple types of fixed effects where each set of fixed effects is of a large dimension.15 We
begin with this econometric problem, since the iterative method we employ solves the
issue of multiple fixed effects en route to estimating spillovers. We focus on two papers
in particular—Rivkin, Hanushek, and Kain (2005) and Abowd, Kramarz, and Margolis
(1999)—to illustrate the difficulties in estimating large numbers of fixed effects.

Rivkin, Hanushek, and Kain (2005) modeled gains in test scores as a function of the
observed characteristics of the students, Xi, and teacher fixed effects, πjo, where i in-
dexes individuals and j indexes teachers.16 The change in test scores from time t − 1 to
t, given that the individual has teacher j at time t, 
Y, is then modeled as


Y = βoXi +πjo + εit � (5)

15Harris and Sass (2006, 2011) used our method in estimation of models with multiple classes of high-
dimensioned fixed effects. Burke and Sass (forthcoming) used our method to estimate peer effects in
Florida public schools.

16Our model is presented in levels, since we are working with collegiate data, where defining a baseline
of achievement is somewhat difficult. However, the model can be applied exactly as written if gains are
the outcome of interest. The key differences are that the outcome is now a gain and that the individual
fixed effects reflect heterogeneity in ability to improve. Peer effects in this case would also work through an
individual’s ability to improve. To the extent that gains are employed to eliminate time invariant unobserved
heterogeneity, our model can handle this directly by estimating fixed effects at multiple levels.
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Note that Xi includes characteristics of the students that do not vary over time. How-
ever, Xi may not include the full set of individual characteristics that are relevant for
achievement gains, and the omitted variables may be correlated with the πjo’s due to
streaming of students and/or systematic selection of certain teachers into classrooms
with higher- or lower-ability students. As an alternative, we could estimate the model
with both student and teacher fixed effects:


Y = θio +πjo + εit � (6)

However, estimating both sets of fixed effects simultaneously would be infeasible given
the large number of students and teachers in their data.

Abowd, Kramarz, and Margolis (1999) were interested in modeling wages as a func-
tion of both firm and worker fixed effects. The most basic model they were interested in
estimating contains just individual and firm-specific effects in a regression of log earn-
ings. A more interesting case occurs when there are tenure effects that vary across firms.
For simplicity, assume that the effects of tenure are linear. Labeling Xijt as the amount
of tenure individual i has in firm j at time t, the outcome equation is

Yijt = θio +πjo +φjoXijt + εijt � (7)

where φjo is the firm-specific return to tenure. Abowd and Kramarz (1999) recognized
that with over 1 million workers and 500,000 firms, they could not estimate the above
equation directly. Instead, they considered a number of estimation techniques, none
of which results in least squares estimates of the firm and worker fixed effects without
imposing additional assumptions on the data generating process.17

Our approach yields least squares estimates of both firm and worker effects in a com-
putationally feasible way without imposing any extraneous orthogonality conditions.
Estimating the firm–worker model by ordinary least squares (OLS) solves

min
θ�π�φ

N∑
i=1

T∑
t=1

(Yijt − θi −πj −φjXijt)
2� (8)

Minimizing this function in one step remains infeasible as a result of the large number
of firms and workers. Instead, we propose an iterative method that yields OLS estimates
of the parameters of interest while circumventing the dimensionality problem. Given
starting values for the θ’s, the algorithm iterates on two steps; the qth iteration uses the
following steps:

Step 1. Conditional on θq−1, estimate πq and φq by OLS.
Step 2. Conditional on πq and φq, estimate θq by OLS.

The process continues until the parameters converge. Because the sum of squared errors

17Abowd, Creecy, and Kramarz (2002) provided one way to recover the exact least squares estimates of
the firm and worker effects when both vectors are of a high dimension. Using the code provided on the
authors’ website, we compared the performance of our estimator to the new estimator in Abowd, Creecy,
and Kramarz (2002). With 500,000 firms, 1 million workers, and a linear returns-to-tenure parameter, our
algorithm produced the same parameter estimate and reduced the required computational time by 25 per-
cent.
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is decreased at each step, we eventually converge to the parameter values that minimize
the least squares problem in (8), regardless of which pair of parameters we guess first to
start the algorithm. The primary advantage of our method in applications such as those
described above is that it is capable of estimating extremely large sets of fixed effects in
a reasonable amount of time.

The model becomes slightly more complicated when the outcomes are allowed to
depend on functions of the individual effects themselves. The iterative estimation strat-
egy we employ involves toggling between estimating the spillover parameter by OLS and
estimating the individual effects. The additional complexity arises in the second step. In
the firm–worker example, the qth iteration estimate for θi does not depend on the qth
iteration estimate of θj . However, in the spillover model, i’s outcome is a function of αio

and αjo for all j ∈ Mtn. This suggests that we need to minimize the conditional likeli-
hood function over all of the α’s directly. We are able to avoid this by instead repeatedly
updating αi using the first-order condition from the least squares problem.

Consider the first-order condition of the nonlinear least squares problem with re-
spect to αi:

0 =
T∑
t=1

[(
Yitn − αi − γ

Mtn

∑
j∈Mtn∼i

αj

)
(9)

+
∑

j∈Mtn∼i

γ

Mtn

(
Yjtn − αj − γ

Mtn

∑
k∈Mtn∼j

αk

)]
�

Solving for αi yields

αi =
∑
t

[
Yitn − γ

Mtn

∑
j∈Mtn∼i

αj

(10)

+
∑

j∈Mtn∼i

γ

Mtn

(
Yjtn − αj − γ

Mtn

∑
k∈Mtn∼i∼j

αk

)]/(
T +

∑
t

γ2

Mtn

)
�

Note that we have extracted the αi terms from the last term in (9) to derive (10). We
establish in Theorem 2 the conditions under which, given any initial set of α’s, repeatedly
updating the α’s using (10) yields a fixed point.

Theorem 2. Denote f (α) as a function that maps from RN → RN , where the ith element
of f (α) is given by the right-hand side of (10) for all i ∈ N . A sufficient condition for f (α)
to be a contraction mapping is that the maximum value of γ is less than 0.4.

The restriction on the maximum value of γ is needed to ensure that the feedback
effects are not too strong. With Theorem 2 giving a solution method for the α’s condi-
tional on the γ’s, our algorithm iterates on estimating the α’s using f (α) (taking the γ’s
as given) and then estimating the γ’s taking the α’s as given. Each of these two steps low-
ers the sum of squared errors and, analogous to the estimator in Section 2, converges
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to the nonlinear least squares solution. In practice, we have found that the algorithm
performs substantially faster if the α’s are only updated until the sum of squared errors
falls before moving on to reestimating γ.18 To summarize, the algorithm is started with
an initial guess for the α’s and iterates on two steps until convergence; the qth iteration
is given by the following steps.19

Step 1. Conditional on αq−1, estimate γq by OLS.
Step 2. Conditional on γq, update αq according to (10).

3. Model extensions

The baseline model makes a number of simplifying assumptions regarding the channel
through which the spillover operates, the shared group environment, and the form of
the spillover effect. The following sections discuss extensions of the model to address
these complications.

3.1 Endogenous effects

Up to this point, we have ignored how individual and peer choices may affect outcomes:
endogenous effects.20 The peer effects literature that allows for endogenous effects can
be broken into two classes of models. In the first class, the outcome of interest is itself a
choice, and this choice is directly affected by the actual or expected choices of an indi-
vidual’s peers. In the second class of models, the outcome of interest is not completely
within the individual’s control. However, choices by both the individual and the indi-
vidual’s peers directly affect the outcome. In this case, it is own effort and the effort that
other individuals exert that affect own outcomes, but others’ outcomes per se do not ap-
pear in the own-outcome equation. Cooley (2009a) showed that identification is much
more complicated in this second class of models.21

In Appendix B, we consider the complications introduced by endogenous effects by
setting up a structural representation of each of these classes of models and showing
what our estimator is able to recover using reduced-form estimation in each case. The
key result is that in our empirical application, as well as a wide variety of endogenous-
effects settings, the fixed-effects-based approach itself does not restrict one’s ability to
separately identify the various peer effect channels when compared with the standard
observables-based approaches. However, one setting where the fixed effects approach
does not consistently identify the reduced-form peer effect occurs when individuals
have complete control over their own outcomes and peer outcomes enter directly into

18For most iterations of our models, updating the α’s just once led to a decrease in the sum of squared
errors.

19Note that since the model is nonlinear, local minima may be a possibility. We have not run into this
issue in practice, either in the Monte Carlo exercises or when using the real data.

20An emerging literature examines identification and estimation of endogenous and exogenous peer
effects in network models. See Bramoulle, Djebbari, and Fortin (2009), Giorgi, Pelizzari, and Redaellil (2007),
and Lin (2010).

21See Durlauf and Ioannides (2001) for a review of the identification problems in these models as well as
the different approaches to overcoming them.
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the choice equation. An example of this setting is smoking choices, where peer smoking
behavior is directly observed. The threat to identification in this case, namely correla-
tion in the reduced-form errors within a peer group, is not present in our application,
since own grades are not fully controlled and peer grades are unobserved.22

3.2 Correlated effects

We next discuss an extension to our baseline model in which common shocks—
correlated effects—influence outcomes. If each individual peer group is exposed to a
different environment, it is impossible to separate the correlated effects from the exoge-
nous effects without further parameterizations. A restriction that is easily imposed for
correlated effects in our context is a component to one’s grade that is course-specific.
This is important as grade inflation and where the curve lies affect one’s final grade irre-
spective of own and peer ability. Denote individual i’s outcome at time t, in peer group n,
and course c as Yitnc , and denote the set of students in course c at time t by Mtc . Placing
course fixed effects into the achievement equation yields

Yitnc = αio + γo

Mtn

∑
j∈Mtn∼i

αjo + δtco + εitnc� (11)

The δtco’s are then the course fixed effects, used to capture correlated effects, since all
peer groups are formed within courses. The nonlinear least squares problem we are now
interested in solving takes the form23

min
α�γ�δ

N∑
i

T∑
t=1

(
Yitnc − αi − γ

Mtn

∑
j∈Mtn∼i

αj − δtc

)2

� (12)

The estimation strategy is identical to the baseline model, with one additional step
for updating the course fixed effects. The updating equation for the course fixed effects
is derived from the first-order condition of equation (12) with respect to δ. Because each
outcome is associated with only one δ and because δ always enters linearly, the updating
equation boils down to a simple average.24 Adding other types of fixed effects simply
requires calculating an additional average.

3.3 Heterogeneous effects

The assumption that each student is affected in the same manner by their classmates
is restrictive and, as pointed out by Hoxby and Weignarth (2005), not particularly inter-
esting from a policy perspective. In particular, the linear-in-means model implies that,

22We do not pursue the endogenous effects extension further, since the conditions necessary to sepa-
rately identify exogenous and endogenous effects are not satisfied in our empirical application. As a result,
the estimates of our model can be interpreted as a combination of both exogenous and endogenous effects.

23While the consistency of γ̂ is unchanged regardless of whether we include other time-varying regres-
sors, it is particularly clear here since we can rewrite equation (12) without δtc by demeaning the dependent
variable at the course level.

24Note that the updating equations for α and γ need to be altered to account for the presence of the
course fixed effects.
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in terms of grades, any winners from reshuffling peers are perfectly balanced by those
who lose from the reshuffling. We now relax this assumption by extending our spillover
framework to allow for either heterogeneity in the response to peers or heterogeneity in
the influence of peers.

The first extension allows the effect of peers to vary with an individual’s own charac-
teristics, a model we refer to as heterogeneity in responsiveness to peers. A simple exam-
ple would be if female students are influenced more by peer ability than male students.
We can express a spillover model that incorporates heterogeneity in the responsiveness
to peers as

Yitn = αio +

∑
j∈Mtn∼i

αjo

Mtn
(Xi ∗ γo)+ δtco + εitn�

where Xi denotes the observable characteristics of individual i.
The second model, which we refer to as heterogeneity in peer influence, allows the

strength of the peer effect to depend on the interaction between own and peer char-
acteristics. For example, male students may be affected more by other male students
than they are by female students. For ease of exposition, assume that students can be
assigned to one of two groups, such as male or female, or black or white. Heterogeneity
in peer influence can then be easily incorporated as

Yitn = αio + 1
Mtn

(
γ1o

∑
j∈Mtng∼i

αjo + γ2o
∑

j∈Mtng′
αjo

)
+ δtco + εitn�

where Mtng∼i is the set of all students in peer group n at time t who are in the same group
as i, excluding individual i, and Mtng′ are all individuals in peer group n at time t who are
not in the same group as i.

The steps required to estimate either of the above models are identical to those out-
lined in the previous section, although each step becomes slightly more complicated.
Rather than estimating a single γ by OLS in Step 1, multiple γ’s need to be estimated.
Computationally, Step 2 is also more cumbersome, since the first-order condition for αi

likely depends on i’s type and the type of peers with whom i is grouped.

4. Monte Carlo simulations

To investigate the properties of our iterative estimator, we now run simulations using
different assumptions about the composition of and selection into the peer groups. To
mirror our empirical application, we focus on the case where peer effects are transitory,
although the performance of our estimators is quite good in the value added case as
well.25 In each setting, the model is simulated using 10,000 students. We simulate the
model 100 times under various states of the world constructed by varying four dimen-
sions of the problem:

25Results are available from the authors upon request.
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1. Observations per student. The number of outcomes observed per student varies
across simulations between 2, 5, and 10. Five observations is the maximum number a
researcher may have when analyzing grade school or high school test score data, and 10
observations is more likely when analyzing grades achieved in university-level courses.
More observations per student implies more accurate measurement of the αo’s.

2. Students per peer group. The number of students per peer group varies across simu-
lations between 2 and 15. Two observations is the minimum number required to identify
a spillover in this type of model; 15 students per peer group is in the range of what might
be observed in typical classroom-based data sets.

3. Selection into classes. To show that our estimator solves the selection problem, we
simulate the model under alternative assignment rules. Under random assignment, the
average standard deviation of the αo’s within a peer group equals the standard deviation
of αo in the population. We also simulate the model with selection such that the aver-
age standard deviation of the αo’s within a peer group is 75 percent of the population
standard deviation.

4. Transitory component. The noisier is the outcome measure, the noisier are the es-
timates of the αo’s. The distribution of the αo’s is set at N(0�1). The ε’s are distributed
with mean zero and standard deviation (σε) equal to 1.15 or 1.95. We also investigate the
impact of heteroskedasticity at the peer group level.

The common group-level shock used to model the correlated effect is not statistically
associated with the abilities of students in the classes. However, students are sorted into
classes based on ability. Thus, the average standard deviation of abilities within a class
is smaller than the standard deviation of abilities in the population.

Table 1 documents the model’s performance when the true value of γo is 0.15. Re-
gardless of assignment procedure or section size, γ̂ is centered around the truth. How-
ever, two interesting patterns emerge in the estimates and standard errors of γ̂. First,

Table 1. Baseline model, γo = 0�15.a

Random Assignment Selection
Obs. per Peer Group
Student Size σε = 1�95 σε = 1�15 σε = 1�95 σε = 1�15

2 2 γ̂ 0�151 0�151 0�140 0�151
(0�034) (0�016) (0�060) (0�024)

R2 0�706 0�822 0�713 0�828

5 10 γ̂ 0�150 0�150 0�146 0�149
(0�041) (0�021) (0�059) (0�033)

R2 0�482 0�686 0�494 0�697

10 10 γ̂ 0�150 0�148 0�148 0�152
(0�025) (0�012) (0�036) (0�018)

R2 0�415 0�644 0�429 0�659

aThe R2 values reported in this table pertain to the regression of grades onto the constructed fixed effect values. We alter the
random error added on to the constructed grade for each student so as to manipulate the amount of variation in performance
that is explained by the ability measure. Parameter values are averages over 100 simulations on a population of 10,000 students.
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Table 2. Varying class size and heteroskedasticity, γo = 0�15.a

Random Assignment Selection
Obs. per Peer Group
Student Size σε σε σε σε

5 U[5�15] 1�95 1�15 1�95 1�15
γ̂ 0�158 0�150 0�160 0�145

(0�041) (0�022) (0�059) (0�030)
R2 0�484 0�686 0�502 0�704

5 U[5�15] N(1�95�0�09) N(1�15�0�09) N(1�95�0�09) N(1�15�0�09)
γ̂ 0�148 0�151 0�146 0�149

(0�037) (0�022) (0�059) (0�026)
R2 0�480 0.67 0�497 0�692

5 U[5�15] N(0�95 + size
10 �0�09) N(0�15 + size

10 �0�09) N(0�95 + size
10 �0�09) N(0�15 + size

10 �0�09)
γ̂ 0�153 0�149 0�150 0�149

(0�049) (0�029) (0�061) (0�027)
R2 0�459 0�633 0�474 0�649

aThe R2 values reported in this table pertain to the regression of grades onto the constructed fixed effect values. We alter
the random error added on to the constructed grade for each student so as to manipulate the amount of variation in perfor-
mance that is explained by the ability measure. For the bottom two-thirds of the table, the standard deviation of the random
error varies across peer groups according to the distributions listed. Parameter values are averages over 100 simulations on a
population of 10,000 students.

γ̂ is more precisely measured when students are randomly assigned to classes. Selec-
tion in this case can be thought of as occurring at two levels: the classroom level and the
teacher level. Teacher-level sorting refers to the idea that teachers are often assigned stu-
dents of similar ability over time. These results reflect the fact that sorting at the teacher
level confounds the estimate of the correlated effect and reduces the precision of the
classroom-level peer effect estimate. In fact, if selection occurred only at the classroom
level, the peer effect estimates would be more precise than in the random assignment
case (ceteris paribus), since there would be greater variation in peer ability. Second, as
the peer group size increases, the precision of γ̂ decreases.26 This is again related to the
variation in peer ability across classes. With smaller class sizes, other things equal, there
is greater variation in peer ability across classes, which yields more precise estimates of
the spillover.

Many applications involving peer effects involve possible heteroskedasticity at the
class level. Table 2 shows the performance of the algorithm in the presence of het-
eroskedasticity, including the case when heteroskedasticity is a function of the size of
the class. The first panel of results illustrates that heterogenous class size does not af-
fect the performance of the peer effects estimator: γ̂ remains centered around 0.15 as

26This can be seen in Table 1, since as the number of observations per student increases, we should
naturally see an increase in precision. Yet we do not see that increase between the first and second rows,
because peer group size increases as well, driving standard errors up. We only see the increase in precision
between the second and third rows, when the number of observations per student rises as peer group size
is held constant. The negative association of peer group size and precision, as well as all other relationships
discussed here, have also been verified in numerous additional Monte Carlo exercises; results are available
upon request from the authors.
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Table 3. Heterogenous gamma models.a

Model Random Assignment Selection

Heterogeneity in responsiveness to peers γ1o = 0�15 0�151 0�146
(0�025) (0�029)

γ2o = 0�1 0�100 0�094
(0�033) (0�032)

R2 0�683 0�699

Heterogeneity in peer influence γ1o = 0�15 0�150 0�151
(0�029) (0�037)

γ2o = 0�1 0�102 0�098
(0�030) (0�039)

R2 0�687 0�684

aThe R2 values reported in this table pertain to the regression of grades onto the constructed fixed effect values. Parameter
values are averages over 100 simulations on a population of 10,000 students. Each student is observed 5 times with a total group
size of 10 students.

peer group size varies uniformly between 5 and 15. The second and third panels add
heteroskedasticity to the heterogenous class size case. In the second panel, σε is drawn
from a Normal distribution with a mean of 1.15 or 1.95 and a standard deviation of 0.3.
It is assumed that each peer group draws from the same distribution. In the third panel,
the mean of the distribution of σε shifts according to the size of the peer group. The peer
effects estimator continues to perform quite well regardless of the type of heteroskedas-
ticity. Across the various distributions of σε and sorting scenarios, we estimate a peer
effect centered on the truth.

As noted previously, the linear-in-means model may not be the most interesting case
from the policy maker’s perspective. We suggested two extensions to the baseline frame-
work that would relax this assumption. Table 3 illustrates the performance of the hetero-
geneous effect models, where the basic structure of the Monte Carlo experiments is kept
intact. In each case, we assume students are characterized by one binary variable. The
results indicate that the estimation framework previously outlined is amenable to het-
erogenous peer effects.

5. Data

With the model producing consistent estimates of the spillover parameter and perform-
ing well in our Monte Carlo simulations, we now turn to the data used in estimation. The
administrative data set used in this paper covers all undergraduates observed residing
in University of Maryland on-campus housing during any of the following six academic
semesters: Spring 1999 (S99), Fall 1999 (F99), Spring 2000 (S00), Fall 2000 (F00), Spring
2001 (S01), or Fall 2001 (F01). The data set includes students living off-campus in a given
semester as long as they were observed living on-campus during at least one of the six
semesters. Ninety percent of University of Maryland entering freshmen live on campus
in their first semester,27 so the data set includes at least 90 percent of the University

27This number is taken from publicly available statistics posted on the university’s web page.
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of Maryland undergraduate population who began study sometime in the six-semester
period.28 A “section” is a subset of students from an entire course that meets together
formally at least once a week. In these smaller groups, greater communication and in-
teraction is expected of students. Our section-level spillover captures how the influence
of the ability of other students in the same section impacts on own course grade.

To generate the student–section-level sample, we first placed two major restrictions
on the data set: students had to have valid A–F grade information for the given section
and they could not be the only student observed in the section that semester.29 Students
who withdrew from a course, audited, or received a nonletter grade (such as pass) were
excluded from the sample due to concerns that they might not have been present during
sections and classes.30 Dropping students with no letter grade reduced the sample from
351,940 to 324,181. We then deleted all observations on sections that were not in one of
three well defined academic subgroups: (i) humanities (86,844 observations), (ii) social
sciences (77,312 observations), and (iii) hard sciences and mathematics (82,675 obser-
vations).31 This left a combined sample of 246,831 student–section observations, repre-
senting 18,511 individual students. Sample sizes are provided in Table 4.

Table 4. Sample sizes.a

S99 F99 S00 F00 S01 F01 Total

1. Student–sections 27,900 37,231 37,109 45,991 45,054 53,546 246,831
2. Students 7126 9646 9458 11,760 11,393 13,662 63,045
3. Unique sections 3095 3388 3408 3628 3543 3754 20,816
4. Unique courses 1030 1079 1172 1189 1246 1252 6968
5. Single-section courses 632 682 733 752 778 795 4372
6. Student–sections 23,206 31,627 30,599 38,056 36,260 43,853 203,601

(only multisection courses)

aFigures represent the data set after applying the restrictions noted in the text. The unrestricted data set contained 351,940
student–section observations. Rows 3 and 4 show the total number of unique sections and courses, respectively, in which
anyone in the sample during the given semester was observed.

28There is a less complete representation for upperclassmen, some of whom entered before our obser-
vation period and may not have lived on campus during the period. However, our identification of peer
effects comes from large, multisection courses in which freshmen predominate. In tests of whether classes
that were underrepresented had lower estimated peer effects than those with a complete representation,
we found no meaningful differences.

29Numeric grade equivalents were assigned as follows: A = 4, B = 3, C = 2, D = 1, and F = 0.
30If two separate grades were recorded for the student for a given section, the highest grade was used. We

dropped students who did not receive a final grade in a given course, which assumes that these students
did not affect the outcomes of their peers. We could have treated those who attrit as full members of the
class provided we observed a grade for these individuals in another course. The other course would then
pin down the individual’s fixed effect.

31Excluded courses include those that are generally more vocationally oriented, but very diverse; for
example, journalism, nutrition and food science, landscape architecture, and library science. Because our
model estimates a homogeneous underlying ability for each course type, we did not include these courses
in a separate category due to our concern that the underlying ability necessary to succeed in them is not
sufficiently homogeneous across the category.
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Finally, while our method does not require the presence of observable characteristics
about individuals, the data set to which we apply it does offer an array of observable
measures about each student. We examine later in the paper how characteristics such
as SAT scores correlate with our estimates of student ability.

6. Estimates of classroom spillovers

We now turn to our model specifications and estimates. We first describe and estimate
a model that restricts the peer effect such that the spillover depends only on the mean
ability in the section. The second specification allows the size of the spillover to depend
on one’s own characteristics. For example, those who have high SAT verbal scores may
receive higher benefits from their peers than those who have low SAT verbal scores. With
the results of the two models in hand, we then show how predictable ability is given ob-
servable measures such as SAT scores, high school grade point average, and demograph-
ics.

6.1 Homogeneous gamma model

With n, c, and t indexing sections, courses, and semesters, we have the same specifica-
tion as in equation (11) except that now, with the number of individuals in each section
varying, we restrict the spillover to depend on the mean fixed effect of the other individ-
uals in the same section of a course:

Yitnc = αio + γo

Mtn

∑
j∈Mtn∼i

αjo + δtco + εitnc� (13)

Because grades are assigned at the course level, there is a relationship between students
who share a course but are not in the same section that cannot be captured by the sec-
tion peer effect, γo. We might expect, for example, that if the course is graded on a curve
and the entire class is extremely able, a mediocre student’s grade may suffer. By includ-
ing fixed effects at the course level, the δtco’s, we can make the outcome measure com-
parable across classes.

Consistent with the data section, we split courses into three types: humanities, so-
cial sciences, and math and science. A student’s performance in each type of course will
differ according to the particular student’s strengths and weaknesses. Therefore, instead
of encapsulating all the attributes of a student into one ability measure, we allow stu-
dents to have separate ability measures for each course type in which they are enrolled.
As noted above, all courses used in our analysis are classified as belonging to one of the
following course types: humanities, social sciences, or math and science. We estimate an
independent ability measure for each type of course for each student, conditional on the
student’s enrollment in at least one class within that course type.32 Another supporting
rationale for the empirical division into course types is that the amount of interaction,
and therefore the size of the peer effect, may differ by course type. The algorithm is then

32Information as to which courses were assigned to which course types is available from the authors
upon request.
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run separately for each type of course, yielding three sets of peer and class effects esti-
mates, as well as separate student ability measures for each course type taken.33

Table 5 shows the results from estimating equation (13) for each of the three types of
courses. Standard errors are calculated using a wild bootstrap procedure.34 The results
indicate positive and significant section peer effects for all course types. The magnitudes
of the section-level peer effects suggest that peer effects are most important in the social
sciences and least important in math and science. This pattern may reflect the amount
of collaborative work required in each course type as well as the differing amounts of
discussion that occur in the sections.

To understand the importance of peer ability relative to own ability, we need to take
into account the differences in variation of peer and own ability. There is likely to be less
variation in peer ability than in own ability, as peer ability averages over a cross section of
students, leading to some heterogeneity canceling out. The second and third columns of
Table 6 show the standard deviation of mean peer ability and the standard deviation of
individual ability, respectively. The fourth column then shows the fraction of a standard
deviation of own ability that is equivalent, in terms of its effect on grades, to a 1 standard
deviation increase in peer ability. This is calculated by dividing the standard deviation

Table 5. Peer effects results by course type: homogeneous gamma model.a

Humanities Soc. Sci. Math/Sci.

Section peer ability 0�1613 0�1960 0�0483
(0�016) (0�019) (0�013)

N 86,844 77,312 82,675
R2 0�6373 0�6321 0�6861

aThe dependent variable is the grade in the class. Class fixed effects are estimated in all specifications. Standard errors are
obtained using a wild bootstrap.

Table 6. Standard deviations of estimated ability and marginal effects: homogeneous gamma
model.a

Course Type Section SD Population SD Marginal Effect Ratio

Humanities 0�2823 0�6804 0�0669
Social science 0�3103 0�7125 0�0853
Math and science 0�5952 0�9498 0�0302

aSection SD is the standard deviation of average peer ability across the sample of student–section observations of the given
course type. Population SD is the standard deviation of ability across the sample of student–section observations in courses of
the given course type. These calculations are both based on the fixed effects estimated by the homogeneous gamma model.
Marginal Effect Ratio shows the ratio of the effect on grades from a 1 standard deviation increase in peer ability to the effect on
grades from a 1 standard deviation increase in own ability.

33Note that while classes with only one section do not help in the estimation of the spillover parameter
directly, these classes are still useful in pinning down the student fixed effects.

34The wild bootstrap is advantageous in this setting since it allows for heteroskedasticity of an unknown
form and does not require any resampling. For additional details on the wild bootstrap, see Davidson and
MacKinnon (2006).
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of mean peer ability by the standard deviation of individual ability and multiplying this
number by the estimated γ.

The gap evident in the raw marginal effects between math and science and the other
course types is somewhat mitigated because there is relatively more heterogeneity in
peer ability in math and science courses than in humanities or social science courses.
A 1 standard deviation increase in peer ability is shown to be equivalent to a maximum
of 9 percent of the effect of a 1 standard deviation increase in individual ability in the
social sciences, and to a minimum of 3 percent of the effect of a 1 standard deviation
increase in individual ability in math and science courses.

6.2 Heterogeneous gamma model

Table 7 shows the results of a peer effect model that allows for heterogeneity in the re-
sponse to peers.35 Response to peer ability is allowed to vary according to an individual’s
gender, race, and SAT scores. The qualitative results for humanities and social sciences
are the same. Relative to white males, Asians see less of a return to peer ability, while
females and other nonwhite students see higher returns. Both SAT math and SAT verbal
scores are associated with higher returns to peer ability. While Asians in math and sci-
ence again see lower returns to peer ability, females and other nonwhites also see lower
returns relative to their white male counterparts. The interaction of the peer effect with
SAT verbal score is once again positive, but the sign on the SAT math interaction is now
negative.

The differences in the SAT interactions across fields suggest that two competing
forces may be at play. First, those who have higher test scores may have skills that make

Table 7. Peer effects results by course type: heterogeneous gamma model.a

Section Peer Ability Humanities Soc. Sci. Math/Sci.

Overall 0�2058 0�2227 0�0940
(0�020) (0�025) (0�018)

Female 0�0970 0�0584 −0�0517
(0�019) (0�021) (0�018)

Asian −0�0098 −0�0347 −0�0346
(0�035) (0�030) (0�023)

Other nonwhite 0�0375 0�0252 −0�0420
(0�028) (0�031) (0�025)

SAT math 0�0410 0�0507 −0�0560
(0�012) (0�016) (0�011)

SAT verbal 0�0222 0�0147 0�0635
(0�011) (0�014) (0�009)

N 86,844 77,312 82,675
R2 0�6376 0�6323 0�6864

aThe dependent variable is the grade in the class. Class fixed effects are estimated in all specifications. Standard errors are
obtained using a wild bootstrap.

35We also allowed for peer effects to be stronger for those of similar races and genders, with little change
in the results. Standard errors were obtained using the wild bootstrap.
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Table 8. Standard deviations of estimated ability and marginal effects: heterogeneous gamma
model.a

Course Type Section SD Population SD Avg. Marginal Effect Marginal Effect Ratio

Humanities 0�2383 0�6368 0�2595 0�0970
(0�0622)

Social science 0�2849 0�6747 0�2480 0�1048
(0�0554)

Math and science 0�6028 0�9660 0�0555 0�0347
(0�0636)

aSection SD is the standard deviation of average peer ability across the sample of student–section observations of the given
course type. Population SD is the standard deviation of ability across the sample of student–section observations in courses of
the given course type. These calculations are both based on the fixed effects estimated by the heterogeneous gamma model.
The fourth column shows the marginal effect on grades from a 1-point increase in peer ability. Marginal Effect Ratio shows
the ratio of the effect on grades from a 1 standard deviation increase in peer ability to the effect on grades from a 1 standard
deviation increase in own ability. The numbers in parentheses are standard deviations of the marginal effects of a 1-point
increase in peer ability that are estimated to occur in the sample.

them better able to benefit from their peers. Working against this, however, is that there
is more scope for students to benefit the lower they are in the ability distribution. SAT
verbal and math scores may not be highly correlated with the ability to perform well
in the humanities and social sciences, implying that the first effect dominates in these
course types. However, the SAT math score may be highly correlated with the ability to
perform well in math and science classes, leading to the second effect dominating.

Averaging across all individuals within a course type, the relative magnitude of the
peer effects is unchanged from the homogeneous gamma model. Peer ability is most
important in social science courses and least important in math and science courses.
However, the overall magnitude of the peer effects is significantly higher, increasing by
an average of over 40 percent across course type. Relative to a 1 standard deviation in-
crease in own ability, the effects of a 1 standard deviation increase in peer ability are also
higher in the heterogeneous gamma model as shown in the final column of Table 8. The
ratio of the effects of a 1 standard deviation increase in mean peer ability to a 1 standard
deviation increase in own ability range from a low of 3.5 percent for math and science to
a high of 10.5 percent in the social sciences.

6.3 Analysis of ability

Next, we explore the extent to which the fixed effects from our iterative algorithm are
predictable using the observed proxies for ability that are consistently used in related
literature, and the extent to which the fixed effects estimated using the two methods
differ. To facilitate this comparison, we use SAT scores, high school performance, and
a host of other observable student attributes as regressors to construct a conglomerate
observable measure of ability. This approach is analogous to the creation of an academic
index (as employed by Sacerdote (2001)). For each course type, we regress our estimated
student fixed effects on an array of previous performance measures and demographics.
These results are presented Table 9.
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Table 9. Regression of fixed effects on observed ability.a

Homogeneous Gamma Model Heterogenous Gamma Model

Hum. Soc. Sci. Math/Sci. Hum. Soc. Sci. Math/Sci.

SAT math 0�00 0�11 0�36 −0�20 −0�04 0�51
(0�01) (0�01) (0�01) (0�01) (0�01) (0�01)

SAT verbal 0�08 0�11 0�00 −0�04 0�06 −0�19
(0�01) (0�01) (0�01) (0�01) (0�01) (0�01)

HS GPA 0�49 0�49 0�73 0�49 0�49 0�72
(0�01) (0�02) (0�02) (0�01) (0�02) (0�02)

Honors 0�14 0�15 0�17 0�14 0�15 0�17
(0�02) (0�02) (0�02) (0�02) (0�02) (0�02)

Sports −0�07 −0�14 0�01 −0�08 −0�14 0�00
(0�02) (0�03) (0�03) (0�02) (0�03) (0�03)

In state 0�05 0�08 0�12 0�05 0�08 0�12
(0�03) (0�03) (0�03) (0�03) (0�03) (0�04)

N 17,332 15,264 16,077 17,332 15,264 16,077
R2 0�22 0�24 0�34 0�13 0�17 0�36
Race/gender dummies Y Y Y Y Y Y

aThe dependent variable in the second through fourth columns is the student-level fixed effects estimated in the homo-
geneous gamma model; the dependent variable in the last three columns is the student-level fixed effects estimated in the
heterogeneous gamma model. All regressions also include a female dummy variable and dummy variables for Black, Hispanic,
Asian, and American Indian. Standard errors are robust to heteroskedasticity.

The second through fourth of Table 9 show results when we use the fixed effects es-
timated in our homogeneous gamma model as the dependent variable. The statistical
significance and magnitudes of the coefficients on SAT math and SAT verbal scores vary
across the four different course types in predictable ways. For example, SAT math scores
are insignificant when explaining ability in humanities courses, but are a better proxy for
math and science ability. The opposite is true for SAT verbal scores, with higher SAT ver-
bal scores associated with higher ability in the humanities, but uncorrelated with ability
in math and science.

The last three columns in Table 9 show the corresponding results for the hetero-
geneous gamma model. Recalling the results found in Table 7 regarding the positive
association of SAT verbal scores with stronger peer effects across all course types, it is
unsurprising that the coefficient on own SAT verbal score is smaller and even negative
for some course types when predicting own ability.36 Combining these findings with the
results presented here suggests that SAT verbal scores have very little to do with ability
in the absolute, but rather reflect how capable an individual is at extracting rents from
others.

The R2 for these regressions ranges from 0.13 to 0.36, depending on the course type
and whether we use the homogeneous or heterogeneous gamma model to generate the
individual fixed effects. That these observable characteristics only explain a small por-
tion of our estimated ability measures suggests the possibility of large biases associated

36Previous works such as Arcidiacono (2004), Arcidiacono and Vigdor (forthcoming), and Arcidiacono,
Cooley, and Hussey (2008) have all found no returns to verbal test scores in the labor market.
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with the unobserved ability problem when following a selection-on-observables, or ran-
dom assignment, approach. At the same time, because our estimated fixed effects are
noisy estimates of unobserved ability, the R2 of these regressions is biased downward.
As a result, we likely overstate the role of unobserved ability.

7. Quantifying selection

In this section we quantify how much selection is taking place within course types with
respect to both observed and unobserved ability.37 For ease of exposition, we refer to
the predicted values of the regressions in Table 9 as observed ability and to the residuals
of those regressions as unobserved ability. Thus, by construction, observed and unob-
served ability are uncorrelated at the individual level. However, unobserved individual
ability and observed peer ability will be correlated if students sort by total ability. By
decomposing ability into its observed and unobserved components, we can calculate
the correlation between unobserved individual ability and observed peer ability, which
is the crux of the selection problem. We also examine selection across course types.
Because we estimate separate abilities for each course type, we are able to determine
whether students choose to take more courses in areas where they are comparatively
more able.

7.1 Selection within course types

Table 10 provides information by course type on the selection evident with respect to
both observed and unobserved ability. We use the underlying ability as estimated by
the homogeneous gamma model and the heterogeneous gamma model, as well as the
observed and unobserved portions of this ability. The first row for every course type
shows the section-size-weighted average of the sectionwide standard deviation of the
variable in question, across all sections in the particular course type; the second row
for every course type shows the simple standard deviation of the variable in question
across the sample of students taking courses of the given course type. The third row
provides the ratio of the two. The smaller are the numbers in the third row, the tighter is
the distribution of the variable within sections relative to the unsorted distribution and,
therefore, the more selection is evident with respect to that variable.

For all three course types, there is more selection on unobserved ability than on ob-
served ability. In the social sciences and, in particular, for the humanities, there is more
selection on the estimated α’s as a whole than on either observed ability or unobserved
ability separately, with the highest levels of selection found in math and science. These
patterns are driven by the correlation between peer observed and unobserved ability.
For the homogeneous gamma specification, the correlation coefficients between peer
observed and unobserved ability are 0.03, 0.07, and 0.35 in the humanities, social sci-
ences, and math and science, respectively. The selection on the estimated α’s in math
and science is particularly strong relative to selection on either observed or unobserved

37See Altonji, Elder, and Taber (2005) for more discussion of selection on observed and unobserved fac-
tors.
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Table 10. Selection based on observables and estimated ability.a

Homogeneous Gamma Heterogenous Gamma

Course Type α α̂ αu α α̂ αu

Humanities
Avg. section-level SD 0�6154 0�3372 0�5385 0�5849 0�2487 0�5415
Population SD 0�8046 0�3773 0�7106 0�7619 0�2711 0�7121
Ratio 0�7649 0�8937 0�7578 0�7677 0�9174 0�7604

Social science
Avg. section-level SD 0�6365 0�3750 0�5667 0�6056 0�2994 0�5688
Population SD 0�8618 0�4228 0�7510 0�8226 0�3343 0�7517
Ratio 0�7386 0�8869 0�7546 0�7362 0�8956 0�7567

Math and science
Avg. section-level SD 0�7475 0�5036 0�6666 0�7636 0�5323 0�6649
Population SD 1�0567 0�6165 0�8583 1�0719 0�6432 0�8575
Ratio 0�7074 0�8169 0�7767 0�7124 0�8276 0�7754

aEach set of rows corresponds to sections in one course type; each set of columns corresponds to one version of the model
(homogeneous gamma versus heterogeneous gamma). Variables under analysis appear in the heading row: α is ability as esti-
mated by our model, α̂ is observed ability, and αu is unobserved ability. Avg. section-level SD is the average (across all sections,
and weighted by section size) of the standard deviation of the variable within a section. Population SD is the standard deviation
of the variable in the population of students taking courses of the given course type. Ratio is the ratio of the first of these to the
second, and shows the degree of selection into sections with respect to each variable displayed.

ability, which is consistent with a high correlation between peer observed and unob-
served ability.

With the observed and unobserved ability measures, it is also to possible to estimate
the correlation between unobserved individual ability and observed peer ability, which
feeds directly into the bias associated with the selection problem. The correlation co-
efficients for unobserved individual ability and observed peer ability are 0.03, 0.06, and
0.20 for humanities, social sciences, and math and science, respectively. The high cor-
relation coefficient for math and science suggests that the upward bias associated with
peer effect estimation using a selection-on-observables approach might be quite large.

7.2 Selection across course types

Because the vast majority of students are observed in courses of multiple types dur-
ing their tenure at Maryland, we obtain multiple estimates of ability for most students.
Calculating the correlations between estimated ability levels illuminates the extent to
which good performance in each of the three course types is driven by similar student
attributes as performance in the other course types and, therefore, provides an empiri-
cal index of the academic similarity of course types.38

Panel A of Table 11 shows the correlation coefficients among estimated ability levels
across the three course types from the homogeneous gamma model. These correlations
are created using estimated abilities from students observed in all course types.39 The

38For ease of exposition, we focus on the homogeneous gamma model for the rest of the paper.
39Correlations among estimated abilities were also calculated for all students who were observed in each

pair of course types. Similar coefficients resulted.
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Table 11. Correlations of estimated abilities across course types.a

Course Type Humanities Social Science

A. Abilities
Humanities 1�0000
Social science 0�6875 1�0000
Math and science 0�6469 0�6776

B. Predicted Abilities
Humanities 1�0000
Social science 0�9643 1�0000
Math and science 0�8808 0�9593

aThe abilities used in these correlation matrices are those of the 12,715 students who took classes in all three course types;
they are estimated by the homogeneous gamma model. Panel A displays correlations among the full abilities, while panel B
displays correlations among the predicted values from regressing the estimated abilities from the homogeneous gamma model
on observable variables (as shown in the second through fourth columns of Table 9).

correlation coefficients are all quite large and close together, ranging from 0.65 to 0.69.40

Panel B of Table 11 displays analogous results using only the portion of estimated abili-
ties for each student that is predictable using our observable variables. While the relative
relationships among observable abilities by course type are the same, the strength of the
relationships is much stronger. The differences across the panels suggest that ability is
much more heterogeneous than can be captured by observed ability measures.

With this information as background, Table 12 illustrates the degree to which in-
dividual students are observed to be sorting into the types of courses for which they
appear, based on our model, to be best suited. In particular, we label a student as spe-
cializing in a particular course type if the number of courses taken in that course type is
higher than the number of courses taken in either of the other two course types. Panel A
of this table displays results using the estimated abilities from our homogeneous gamma
model standardized to a N(0�1) distribution, and panel B displays results using only the
portion of those estimated abilities that could be predicted based on observable char-
acteristics, also standardized to N(0�1). The rows correspond to the sets of students
who specialize in humanities, social sciences, and math and science, respectively. The
numbers along the rows give the mean (normalized) fixed effect for each of the different
course types.

We see two striking patterns in panel A. First, students who specialize in humanities
courses are estimated to be less able across the board than those who specialize in either
the social sciences or math and science. Students specializing in math and science are
the most able across the board, with higher average fixed effects in each course type.
Even more interesting, students in each specialization group appear to have specialized
in the area for which they are most suited.41 Panel B of Table 12, where we use only

40The pattern of correlations for the heterogenous gamma model is similar, although the correlation
coefficients are slightly lower: 0.64 for social sciences and humanities, 0.62 for social sciences and math
and science, and 0.54 for math and science and humanities.

41Paglin and Rufolo (1990) found similar sorting patterns using Graduate Record Exam data and tran-
script data from the University of Oregon and Oregon State University. They found that students with high
math ability tend to take courses in which there is a high return to this skill.
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Table 12. Specialization of students into course types by relative aptitude.a

Humanities Soc. Sci. Math/Sci. N

A. Abilities
Humanities specializers −0�08 −0�19 −0�26 3978
Social science specializers 0�04 0�10 −0�07 3547
Math and science specializers 0�14 0�21 0�43 3745

B. Predicted Abilities
Humanities specializers −0�04 −0�13 −0�21 3977
Social science specializers −0�11 −0�10 −0�11 3547
Math and science specializers 0�18 0�27 0�36 3745

aIn panel A, each cell shows the mean of the deviations of students’ ability to perform in the course type of that column (as
estimated by our homogeneous gamma model, and standardized to a normal (0�1) distribution) from the sample standardized
mean of estimated ability across the course type, for the population of that row. “Specializers” are students who are observed
to take more courses in the given course type than in either of the other two course types.

observed ability to examine selection, also illustrates both absolute and comparative
advantage, but reflects more attenuated distributions of abilities and less heterogeneity
than panel A.

8. Comparing the method to conventional methods

To compare our estimated peer effects to those that would be obtained using conven-
tional techniques, we first conceptualize the estimation problem as follows. Given a
model where the ability of each student can be decomposed into observed versus un-
observed portions, there are two econometric obstacles to the accurate estimation of
the spillover. The first obstacle is a positive correlation between the student’s own unob-
served ability and his peer group’s observed ability, which also leads in any given sample
to a correlation between the peer group’s observed ability and the peer group’s unob-
served ability. This problem leads to an upward bias of the spillover parameter. The sec-
ond obstacle is that when only observables are used to form the peer ability measures,
the underlying distribution of peer ability is attenuated, leading to downward pressure
on the estimated impact of a 1 standard deviation change in peer ability.

To examine the quantitative impact of these two problems separately, we first arti-
ficially eliminate the correlation between the student’s own unobserved ability and the
peer group’s observed ability by differencing out our estimated individual fixed effects
and course effects from student grades. We regress these adjusted grades on observed
peer ability, rather than total peer ability. This enables us to examine the consequences
for estimation of using an incomplete measure of peer ability in a case where the link
between individual unobservables and peer observables is broken.

The second row of Table 13 for each course type presents the results of this first exer-
cise, where we use total ability (our estimated α’s) for the individual and observed ability
for peers. For comparison, the first row of the table for each course type gives the orig-
inal spillover estimate produced using our algorithm. Looking at the fourth column of
the table, we can see that the estimated effects of a 1 standard deviation increase in ob-
served peer ability are at most two-thirds the size of a 1 standard deviation increase in
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Table 13. Comparing the method to conventional results: homogeneous gamma model.a

Own Section Peers’ Effect of 1 SD Own Peers’
Ability Ability Change in Peer Ability Ability Ability

Humanities 1 0�1613 0�0455 Total Total
(—) (0�0007)

1 0�1642 0�0285 Total Observed
(—) (0�0008)

0�9349 0�2502 0�0435 Observed Observed
(0�0076) (0�0077)

Social science 1 0�1960 0�0608 Total Total
(—) (0�0008)

1 0�2061 0�0370 Total Observed
(—) (0�0009)

0�8518 0�4085 0�0733 Observed Observed
(0�0077) (0�0077)

Math and science 1 0�0483 0�0287 Total Total
(—) (0�0008)

1 0�0516 0�0193 Total Observed
(—) (0�0009)

0�7784 0�3519 0�1313 Observed Observed
(0�0062) (0�0063)

aThe dependent variable is grade in the class. When own ability is restricted to equal 1, class effects are removed before
estimation by demeaning using the “true” values of the class effect as estimated by our homogeneous gamma model. When
own ability is unrestricted, class fixed effects are absorbed in estimation. For the purposes of this table, we ignore the sampling
variation in the parameter estimates used to construct our observed ability measures.

total peer ability. This first-order decrease in effect magnitude is evident because the
impact of unobserved peer ability is not captured in the second row except through the
correlation between observed and unobserved peer ability.42

We next investigate what happens when the econometrician additionally assumes
that students select into peer groups based only on observable characteristics (the
selection-on-observables approach). In the third row of Table 13, we again use observed
peer ability, but now we use observed ability for the individuals as well rather than the
estimated fixed effects. The positive correlation between unobserved individual ability
and observed peer ability biases the selection-on-observables estimate of the spillover
parameter upward. While the estimate of the spillover parameter is biased upward, the
effect of a 1 standard deviation increase in peer ability may still be smaller because the
variance in observed peer ability is smaller than the variance in peer ability as a whole.
As can be seen in the fourth column, this is indeed the case for humanities, the course
type with the smallest correlation between unobserved individual ability and observed

42Under random assignment, a 1 standard deviation increase in peer ability would produce even smaller
effects than those shown in the second row of Table 13. There are two reasons for this. First, peer observed
ability and peer unobserved ability are positively correlated in our data, but would not be correlated un-
der random assignment. The second reason why random assignment leads to even lower estimates of a 1
standard deviation increase in peer ability is that random assignment itself leads to less heterogeneity in
mean peer ability across sections than when higher ability students choose sections with other high ability
students.
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peer ability. For the social sciences, the selection-on-observables estimate of a 1 stan-
dard deviation increase, although higher than our original estimate, is still closer than
the estimates given in the second row that mitigate the selection problem. However, for
math and science, the estimated effect of a 1 standard deviation increase in peer abil-
ity is significantly higher using the selection-on-observables approach than using our
algorithm. This is driven by (i) the high correlation between unobserved individual abil-
ity and observed peer ability in math and science, (ii) the fact that observed ability is a
greater fraction of total ability in math and science, and (iii) the fact that the underlying
peer effect estimate from our method is smallest in math and science, which mitigates
the underestimation of a 1 standard deviation increase in peer ability.43

9. Conclusion

Accurate estimation of peer effects in the classroom is plagued by at least two issues,
both of which have to do with ability not being fully observed. First, there is selection
into the peer group, which leads to a positive correlation between unobserved individ-
ual ability and observed peer ability. If ignored, this correlation leads to upward-biased
estimates of peer effect parameters. On the other hand, underestimation of the effects
of peers may result from ignoring peer effects that operate through unobservables.

We present a new iterative method for estimating educational peer effects that over-
comes both these obstacles. Our methodology rests on two primary assumptions: out-
comes are linear in peer characteristics and the relevance to outcomes of peer charac-
teristics is proportional to that of own characteristics. Under these assumptions, all that
is required from a data standpoint is that there are multiple observations per student,
with the peer group changing over time. We control for individual effects and allow the
peer effect to operate through a linear combination of the other individual effects. We
show that our estimator is consistent and asymptotically normal for fixed T as N goes
to infinity. Consistency is shown in the case where the effects are transitory and when
they are persistent. We also develop an iterative algorithm that is computationally much
cheaper than direct nonlinear least squares minimization, yet produces the nonlinear
squares results upon convergence. Monte Carlo results suggest that the model performs
quite well, even when the number of observations per student is small.

We estimate the model on transcript data from the University of Maryland. Small
but significant peer effects are found, with evidence of heterogeneity by course type.
Social science courses show the largest peer effects, whereas grades in math and science
courses rely least on peer ability and most heavily on a student’s own ability.

Previous efforts to estimate spillover effects in education that do not rely on random
assignment are often plagued by concerns regarding selection on unobservables. Our
data suggest that this is a valid issue. Students select into sections based more on un-
observable factors than on observable factors. This leads to correlation in unobserved
own ability and both observed and unobserved peer ability that, if ignored, biases the
spillover parameter upward. There is also much selection across course type. Students

43Indeed, if the spillover parameter were zero, there would be no scope for the attenuation effect.
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sort into course types where their relative abilities are highest, suggesting comparative
advantage is important in the selection of courses. However, absolute advantage is also
present, as those who primarily choose math and science course are more able in both
humanities and social sciences than those who choose to specialize in one of the other
areas.

Our method allows us to quantify the effects of both the selection problem and the
problem of not being able to estimate peer effects through unobservables. Estimation
using data on different course types illustrates how the setting dictates which of these
problems is more important. For math and science courses, the estimated spillover pa-
rameter from our model is small. This, coupled with abundant selection into math and
science courses, leads to estimates from a selection-on-observables approach that sig-
nificantly overstate the importance of peers. However, for humanities courses, the es-
timated spillover parameter is larger than in math and science, and this fact coupled
with much less selection than in math and science makes the selection-on-observables
approach yield a peer effects estimate similar to that estimated by our model. We also
show that a random assignment approach, which removes the correlation between in-
dividual unobserved ability and peer observed ability, but ignores peer effects through
unobservables, significantly understates the impact of peers on achievement.

Appendix A: Proofs

A.1 Proof of Theorem 1

For ease of exposition, we illustrate the proof assuming that students are grouped with
at most one other student at any point in time. We also focus only on case A1 where
there is no accumulation. The proof for general class sizes and accumulation (case A2)
are straightforward extensions and are provided in a supplementary file on the journal
website.44 Keeping with the literature, we also assume a homogeneous peer effect that
is proportional to the ability of a student’s peer. The proof can be readily expanded to
multiple γ’s.

We consider the following limiting case:

1. We observe students for at most two time periods.

2. Within each class, there is only one student who is observed for two periods. The
other student is observed for only one time period.

Remark 1. Clearly if the estimator is consistent for T = 2, it is also consistent for T > 2.
The second simplification is equivalent to allowing all but one of the individual effects
in a class to vary over time. For example, suppose there were 2N students observed for
two periods, implying that 2N individual effects would be estimated. We could, however,
allow the individual effect to vary over time for one student in each group, making sure
to choose these students in such a way that they are matched with someone in both
periods whose individual effect does not vary over time.45 Then 3N individual effects

44See http://qeconomics.org/supp/145/supplement.pdf.
45To see how these assignments work, consider a two period model where the groups in period 1 are

{A�B} and {C�D}, and the groups in period 2 are {A�C} and {B�D}. We could let the individual effects vary

http://qeconomics.org/supp/145/supplement.pdf
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would be estimated. Having one individual whose effect varies over time is equivalent
to estimating two individual effects—it is the same as having two different individuals
who were each observed once. If the estimator is consistent in this case, then it is also
consistent under the restricted case when all of the individual effects are time invariant
(fixed effects).

Consider the set of students who are observed for two time periods. Each of these
students has one peer in period 1 and one peer in period 2. Denote a student block as
one student observed for two periods plus his two peers. There are then N blocks of
students, one block for each student observed twice, with three students in each block.
Denote the first student in each block as the student who is observed twice, where α1n is
the individual effect. The individual effect for the first classmate in block n is α2n, while
the individual effect for the second classmate in block n is α3n.

The optimization problem is then

min
α�γ

1
N

N∑
n=1

(
(y11n − α1n − γα2n)

2 + (y12n − α1n − γα3n)
2

(14)

+
3∑

i=2

(yin − αin − γα1n)
2

)
�

Within each block, there are four terms: two residuals for the student observed twice
and a residual for the peer in each period.

Remark 2. Note that, conditional on γ, the estimates of individual effects in one block
will not affect the estimates of the individual effects in another block. Hence, we are able
to focus on individual blocks in isolation from one another when concentrating out the
α’s as a function of γ.

Our proof then consists of the following five lemmas, each of which is proven later
in this appendix.

We first show that the α’s can be written as closed form expressions of γ and the data.

Lemma 1. The vector of unobserved student abilities, α, can be concentrated out of the
least squares problem and written strictly as a function of γ and y. Ability for the student
in block n observed in both periods is given by

α1n = y11n + y12n − γ(y2n + y3n)

2(1 − γ2)
�

while the abilities for the peers in block n are given by

α2n = y2n + γ2y3n − γy12n − γ3y11n

1 − γ4

for either {A�D} or {B�C}. In both these cases, each group in each time period would have one student
observed twice and one student observed once. The number of individual effects would then increase from
four to six.
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and

α3n = y3n + γ2y2n − γy11n − γ3y12n

1 − γ4 �

We then show the form of the minimization problem when the α’s are concentrated
out.

Lemma 2. Concentrating the α’s out of the original least squares problem results in an
optimization problem over γ that takes the form

min
γ

1
N

N∑
n=1

(y11n − y12n + γ(y3n − y2n))
2

2(1 + γ2)
�

Our nonlinear least squares problem now has only one parameter, γ. We are now in a
position to investigate the properties of our estimator of γo. For ease of notation, define
q(w�γ) as

q(w�γ) = (y11 − y12 + γ(y3 − y2))
2

2(1 + γ2)
�

where w ≡ y. We let W denote the subset of R
4 representing the possible values of w. Our

key result is then Lemma 3, which establishes identification.

Lemma 3. We have

E
[
q(w�γo)

]
<E

[
q(w�γ)

] ∀γ ∈ Γ�γ �= γo�

Theorem 12.2 of Wooldridge (2002) establishes that sufficient conditions for consis-
tency are identification and uniform convergence. Having already established identifi-
cation, Lemma 4 shows uniform convergence.

Lemma 4. We have

max
γ∈Γ

∣∣∣∣∣ 1
N

N∑
n=1

q(wn�γ)−E
[
q(w�γ)

]∣∣∣∣∣ p→ 0�

Consistency then follows from Theorem 12.2 of Wooldridge: γ̂
p→ γo.

Finally, we establish asymptotic normality of γ̂. Denote s(w�γo) and H(w�γo) as the
first and second derivatives of q(w�γ) evaluated at γo. Then Lemma 5 completes the
proof.

Lemma 5. We have

√
N (γ̂ − γo)

d→N
(
0�A−1

o BoA
−1
o

)
�
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where

Ao ≡E
[
H(w�γo)

]
and

Bo ≡E
[
s(w�γo)

2] = Var
[
s(w�γo)

]
�

Proof of Lemma 1. Our objective is to show that the system of equations obtained by
differentiating equation (14) with respect to α can be expressed as a series of equations
in terms of γ and y, and that these expressions are as given in Lemma 1. Again, condi-
tional on γ, the estimates of individual effects in one block will not affect the estimates
of the individual effects in another block. Thus, we can work with the system of first-
order conditions within one block and then generalize the results to the full system of
equations. The first-order condition for α1n (student in each block who is observed in
both time periods) is given by

0 = −2
N

[
(y11n − α1n − γα2n)+ (y12n − α1n − γα3n)+ γ

3∑
i=2

(yin − αin − γα1n)

]
�

while the first-order condition for α2n and α3n are, respectively, given by

0 = −2
N

[
(y2n − α2n − γα1n)+ γ(y11n − α1n − γα2n)

]
and

0 = −2
N

[
(y3n − α3n − γα1n)+ γ(y12n − α1n − γα3n)

]
�

Within each block, this yields a relatively simple system of three equations and three
unknown abilities. The first-order conditions for α2n and α3n can be rearranged such
that

α2n = y2n + γy11n − 2γα1n

1 + γ2

and

α3n = y3n + γy12n − 2γα1n

1 + γ2 �

Notice that the equation for α2n depends only on the own outcome, the outcome of
individual 1 when grouped with individual 2, and the ability of individual 1. A similar
result occurs for α3n. Thus, the only thing linking individuals 2 and 3 within a block is
the ability of individual 1.

Rearranging the first-order condition for α1n such that the α1n are grouped on the
left-hand side of the equation results in

α1n
(
2 + 2γ2) = y11n + y12n + γ(y2n + y3n)− 2γ(α2n + α3n)�
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and substituting for α2n and α3n using the previously derived formulas yields

α1n
(
2 + 2γ2) = y11n + y12n + γ(y2n + y3n)

− 2γ
1 + γ2

(
y2n + y3n + γ(y11n + y12n)− 4γα1n

)
�

Moving all the α1n terms to the left side and finding common denominators on both
sides of the equation results in

α1n((2 + 2γ2)(1 + γ2)− 8γ2)

1 + γ2

= (1 + γ2)(y11n + y12n + γ(y2n + y3n))− 2γ(y2n + y3n + γ(y11n + y12n))

1 + γ2 �

Canceling out the denominators and simplifying both sides of the equation yields

α1n
(
2
(
1 − γ2)2) = (

1 − γ2)(y11n + y12n)− γ
(
1 − γ2)(y2n + y3n)�

Dividing both sides of the equation by 2(1 − γ2)2 yields the desired result that

α1n = y11n + y12n − γ(y2n + y3n)

2(1 − γ2)
�

The solution for α1n can now be substituted back into the first-order conditions for
α2n and α3n to yield solutions strictly as functions of γ and y. Substituting α1n into the
equation for α2n and finding a common denominator yields

α2n = 2(1 − γ2)(y2n + γy11n)− 2γ(y11n + y12n − γ(y2n + y3n))

2(1 − γ2)(1 + γ2)
�

Factoring out the 2 in the numerator and expanding the resulting expression yields

α2n = (1 − γ2 + γ2)y2n + (γ(1 − γ2)− γ)y11n − γy12n + γ2y3n

(1 − γ2)(1 + γ2)
�

Some simple manipulation leads to the final result that

α2n = y2n + γ2y3n − γy12n − γ3y11n

1 − γ4 �

Obtaining the solution for α3n proceeds in exactly the same way, and yields a formula
that mirrors the solution for α2n with the appropriate indices changed to reflect when
individual 3 is grouped with individual 1. The result is

α3n = y3n + γ2y2n − γy11n − γ3y12n

1 − γ4 � �

Proof of Lemma 2. Lemma 1 provides a solution for α strictly as a function of y and γ.
We can substitute this solution back into the original optimization problem to derive the
result in Lemma 2.
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Consider minimizing the sum of squared residuals within a particular block n. There
are four residuals within each block: two for the student observed twice and one each
for the corresponding peer. We begin by simplifying the residual for the first observation
of the student observed twice, which is given by the expression

e11n = y11n − α1n − γα2n�

Substituting for α1n and α2n in e11n with the results from Lemma 1 results in

e11n = y11n − y11n + y12n − γ(y2n + y3n)

2(1 − γ2)
− γ(y2n + γ2y3n − γy12n − γ3y11n)

1 − γ4 �

Finding a common denominator and combining like terms in the numerator yields

e11n = ((
2
(
1 − γ4) − (

1 + γ2) + 2γ4)y11n − ((
1 + γ2) − 2γ2)y12n

+ (
γ
(
1 + γ2) − 2γ

)
y2n + (

γ
(
1 + γ2) − 2γ3)y3n

)/(
2
(
1 − γ4))�

Simplifying the numerators on each of the y terms and factoring the denominator yields

e11n = (1 − γ2)y11n − (1 − γ2)y12n − γ(1 − γ2)y2n + γ(1 − γ2)y3n

2(1 − γ2)(1 + γ2)
�

Finally, we can cancel all the (1 − γ2) terms to arrive at

e11n = y11n − y12n + γ(y3n − y2n)

2(1 + γ2)
�

The expression for e12n as a function of γ and y can be similarly derived by substi-
tuting in α1n and α3n. However, the expressions for e12n and α3n are mirror images of the
expressions for e11n and α2n. Thus, e12n will take the exact same form as e11n except the
subscripts denoting the period or classmate are swapped. The expression is

e12n = y12n − y11n + γ(y2n − y3n)

2(1 + γ2)
�

The residuals for the one observation individuals in each block, e2n and e3n, are given
by

e2n = y2n − α2n − γα1n

and

e3n = y3n − α3n − γα1n�

To write these strictly as functions of γ and y, we again use the results of Lemma 1.
Substituting for α1n and α2n in e2n yields

e2n = y2n − y2n + γ2y3n − γy12n − γ3y11n

1 − γ4 − γ(y11n + y12n − γ(y2n + y3n))

2(1 − γ2)
�
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Finding a common denominator and simplifying the resulting expressions yields

e2n = γ(y12n − y11n + γ(y2n − y3n))

2(1 + γ2)
�

The expression for e3n is similar to that of e2n, except the subscripts differ to reflect the
time period in which individual 3 is grouped with 1. Thus the solution for e3n will mirror
the solution for e2n, except that the appropriate subscripts are swapped across terms.
The final expression for e3n is

e3n = γ(y11n − y12n + γ(y3n − y2n))

2(1 + γ2)
�

The original optimization problem written as a function of the residuals in each
block n takes the form

min
α�γ

1
N

N∑
n=1

(
e2

11n + e2
12n + e2

2n + e2
3n

)
�

Now we can substitute in for each residual using the formulas previously derived. How-
ever, a cursory glance at the formulas for e11n, e12n, e2n, and e3n reveals that

e11n = −e12n = −γe2n = γe3n�

Using these relationships, we can rewrite the least squares problem as

min
α�γ

1
N

N∑
n=1

((
2 + 2γ2)e2

11n
)
�

Substituting in with our solution for e11n yields

min
γ

1
N

N∑
n=1

((
2 + 2γ2)(y11n − y12n + γ(y3n − y2n))

2

(2(1 + γ2))2

)
�

Canceling terms results in the optimization problem

min
γ

1
N

N∑
n=1

(y11n − y12n + γ(y3n − y2n))
2

2(1 + γ2)
�

�

Proof of Lemma 3. The population objective function as a function of γ is given by

E
[
q(w�γ)

] =E

[
(y11 − y12 + γ(y3 − y2))

2

2(1 + γ2)

]
�

Substituting for y with the data generating process yields

E
[
q(w�γ)

] = E
[(
α1o + γoα2o + ε11 − (α1o + γoα3o + ε12)

+ γ
(
α3o + γoα1o + ε3 − (α2o + γoα1o + ε2)

))2/(
2(1 + γ2)

)]
�
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Canceling the appropriate terms and combining like terms in the numerator leaves

E
[
q(w�γ)

] =E

[
((γo − γ)(α2o − α3o)+ (ε11 − ε12)+ γ(ε3 − ε2))

2

2(1 + γ2)

]
�

Opening up the square term leaves

E
[
q(w�γ)

] = E

[
1

2(1 + γ2)

(
(γo − γ)2(α2o − α3o)

2 + (ε11 − ε12)
2 + γ2(ε3 − ε2)

2

+ 2(γo − γ)(α2o − α3o)(ε11 − ε12)

+ 2γ(γo − γ)(α2o − α3o)(ε3 − ε2)

+ 2γ(ε11 − ε12)(ε3 − ε2)
)]
�

By Theorem 1(i) and (ii), the final three terms in the numerator all have expectation 0.
Similarly, any covariance terms associated with the first three terms in the numerator
will have expectation 0. The final simplified expression is given by

E
[
q(w�γ)

] = (γo − γ)2E[(α2o − α3o)
2] +E[ε2

11] +E[ε2
12] + γ2(E[ε2

3] +E[ε2
2])

2(1 + γ2)
�

which we can rewrite in the manner

E
[
q(w�γ)

] = (γo − γ)2E[(α2o − α3o)
2]

2(1 + γ2)
+ E[ε2

11] +E[ε2
12] + γ2(E[ε2

3] +E[ε2
2])

2(1 + γ2)
�

Note that by Theorem 1(v) E[ε2
11] = E[ε2

2] and E[ε2
12] = E[ε2

3], implying that we can
rewrite the above equation as

E
[
q(w�γ)

] = (γo − γ)2E[(α2o − α3o)
2]

2(1 + γ2)
+ (

E
[
ε2

11
] +E

[
ε2

12
])
/2�

The first term in the above expression is strictly greater than 0 for all γ �= γo and the
second term does not depend upon γ. As a result, E[q(w�γo)] <E[q(w�γ)] for all γ ∈ Γ

when γ �= γo. �

Proof of Lemma 4. Uniform convergence, requires that

max
γ∈Γ

∣∣∣∣∣ 1
N

N∑
n=1

q(wn�γ)−E
[
q(w�γ)

]∣∣∣∣∣ p→ 0�

Theorem 12.1 in Wooldridge states four conditions that the data and q must satisfy so
that the above condition holds.

1. The parameter Γ is compact. This condition is satisfied by Theorem 1(vi).

2. For each γ ∈ Γ , q(·�γ) is Borel measurable on W . Since q(·�γ) is a continuous
function of w, it is also Borel measurable.
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3. For each w ∈ W , q(w� ·) is continuous on Γ . Our concentrated objective function
is continuous in γ.

4. For all γ ∈ Γ , |q(w�γ)| ≤ b(w), where b is a nonnegative function on W such that
E[b(w)] < ∞. Note that q(w�γ) is always positive, so we can ignore the absolute value.
We derive a bounding function b(w) in the manner

q(w�γ) = (y11 − y12 + γ(y3 − y2))
2

2(1 + γ2)

= (y11 − y12)
2 + γ2(y3 − y2)

2 + 2γ(y3 − y2)(y11 − y12)

2(1 + γ2)

≤ 2(y11 − y12)
2

2(1 + γ2)
+ 2γ2(y3 − y2)

2

2(1 + γ2)

≤ (y11 − y12)
2 + (y3 − y2)

2�

where the third line follows from the triangle inequality. Our bounding function is then

b(w) = (y11 − y12)
2 + (y3 − y2)

2�

where we have shown that b(w) ≥ q(w�γ) for all y.
We now show that E[b(w)]<∞, completing the proof. Note that E[b(w)] is given by

E
[
b(w)

] =E
[
(y11 − y12)

2 + (y3 − y2)
2]�

Using the triangle inequality, we can rewrite the above expression as

E
[
b(w)

] ≤ E
[
2y2

11 + 2y2
12 + 2y2

3 + 2y2
2
]

≤ 2
(
E

[
y2

11
] +E

[
y2

12
] +E

[
y2

3
] +E

[
y2

2
])
�

Next we substitute in for y using the data generating process. Consider E[y2
11], which is

given by

E
[
y2

11
] =E

[
(α1o + γoα2o + ε11)

2]�
Applying the triangle inequality again yields

E
[
y2

11
] ≤ 3

(
E

[
α2

1o
] + γ2

oE
[
α2

2o
] +E

[
ε2

11
])
�

Theorem 1(iii) and (iv) ensure that all of the terms on the right-hand side of the inequal-
ity in the above equation are finite. Thus, E[y2

11] is finite. By a similar argument, it can be
shown that all the terms in E[b(w)] are finite. �

Proof of Lemma 5. Theorem 12.3 in Wooldridge (2002) states six conditions that must
hold for γ̂ to be distributed asymptotically normal. Many of these conditions involve the
first and second derivatives of q(w�γ). We begin our proof of asymptotic normality by
deriving the first and second derivatives of the objective function.
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The first derivative of the objective function, or the score, is given by

s(w�γ) = 1
4(1 + γ2)2

[
2
(
1 + γ2)(2(y3 − y2)

(
y11 − y12 + γ(y3 − y2)

))
− 4γ

((
y11 − y12 + γ(y3 − y2)

)2)]
�

Expanding the square and grouping on the γ terms yields

s(w�γ) = 1
(1 + γ2)2

[(
1 − γ2)(y11 − y12)(y3 − y2)+ γ

(−(y11 − y12)
2 + (y3 − y2)

2)]�
The Hessian of the objective function is simply the derivative of the score, ∂s(y�γ)

∂γ ,
and is written

H(w�γ) = 1
(1 + γ2)4

× ((
1 + γ2)2(

(y3 − y2)
2 − (y11 − y12)

2 − 2γ(y3 − y2)(y11 − y12)
)

− 4γ
(
1 + γ2)

× (
γ
(
(y3 − y2)

2 − (y11 − y12)
2) + (

1 − γ2)(y3 − y2)(y11 − y12)
))
�

Factoring out a (1 + γ2) and combining like terms greatly simplifies the above expres-
sion, leaving

H(w�γ) = 1
(1 + γ2)3

((
1 − 3γ2)((y3 − y2)

2 − (y11 − y12)
2)

− 2γ
(
3 − γ2)(y3 − y2)(y11 − y12)

)
�

We now show that the six conditions of Theorem 12.3 in Wooldridge (2002) are sat-
isfied. We will refer to the above formulations of the score and Hessian throughout.

1. The parameter γo must be in the interior of Γ . This condition is satisfied by The-
orem 1(vi).

2. The function s(w� ·) is continuously differentiable on the interior of Γ for all w ∈
W . Since H(w�γ) is continuous in γ, s(w� ·) is continuously differentiable.

3. Each element of H(w�γ) is bounded in absolute value by a function b(w), where
E[b(w)]<∞. We derive a bounding function b(w) in the manner

H(w�γ) = (1 − 3γ2)((y3 − y2)
2 − (y11 − y12)

2)− 2γ(3 − γ2)(y3 − y2)(y11 − y12)

(1 + γ2)3 �

∣∣H(w�γ)
∣∣ ≤ ∣∣(1 − 3γ2)((y3 − y2)

2 − (y11 − y12)
2)

− 2γ
(
3 − γ2)(y3 − y2)(y11 − y12)

∣∣�∣∣H(w�γ)
∣∣ ≤ ∣∣(1 − 3γ2)((y3 − y2)

2 − (y11 − y12)
2)∣∣

+ ∣∣2γ(
3 − γ2)(y3 − y2)(y11 − y12)

∣∣�
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∣∣H(w�γ)
∣∣ ≤ (

1 + 3γ2)((y3 − y2)
2 + (y11 − y12)

2)
+ (

3 + γ2)∣∣2γ(y3 − y2)(y11 − y12)
∣∣�∣∣H(w�γ)

∣∣ ≤ (
1 + 3γ2)((y3 − y2)

2 + (y11 − y12)
2)

+ (
3 + γ2)∣∣γ(

(y3 − y2)
2 + (y11 − y12)

2)∣∣�∣∣H(w�γ)
∣∣ ≤ (

1 + 3γ2)((y3 − y2)
2 + (y11 − y12)

2)
+ (

3 + γ2)|γ|((y3 − y2)
2 + (y11 − y12)

2)�
where the second to last line utilizes the fact that (y3 −y2)

2 +(y11 −y12)
2 > 2(y3 −y2)(y11 −

y12) as ((y3 −y2)−((y11 −y12))
2 > 0. Let γ and γ denote the largest and smallest elements

of the set Γ . The γ that maximizes the right-hand side is given by γ∗ = max{γ�−γ} < ∞.
Our bounding function is then

b(w) = (
1 + 3γ∗2)((y3 − y2)

2 + (y11 − y12)
2)

+ γ∗(3 + γ∗2)((y3 − y2)
2 + (y11 − y12)

2)
= (

1 + γ∗(γ∗2 + 3γ∗ + 3
))(

(y3 − y2)
2 + (y11 − y12)

2)�
where we have shown that b(w) ≥ H(w�γ) for all w. Notice that the absolute value of γ
is no longer necessary, since by definition γ∗ is always positive.

We now show that E[b(w)]<∞, completing the proof:

E
[
b(w)

] = (
1 + γ∗(γ∗2 + 3γ∗ + 3

))
E

[
(y3 − y2)

2 + (y11 − y12)
2]�

When deriving the bounding function for q(w�γ), we showed that E[(y3 − y2)
2 + (y11 −

y12)
2]<∞. Since γ∗ is also finite, E[b(w)]<∞.

4. The equality Ao ≡ E[H(w�γo)] is positive definite. We first note that we can in-
terchange the expectations and the partial derivatives: E[H(w�γ)] = ∂2E[q(w�γ)]/∂γ2.
From Lemma 3, we know that we can write

E
[
q(w�γ)

] = (γ − γo)
2E[(α2o − α3o)

2]
2(1 + γ2)

+ (
E

[
ε2

11
] +E

[
ε2

12
])
/2�

Note that γ affects two terms: (γ − γo)
2 and the denominator. However, because we are

going to evaluate the expected Hessian at γo, we only need the second derivative of the
first term, (γ − γo)

2. All of the other partial derivatives will either be multiplied by (γ −
γo)

2 or (γ − γo), both of which are zero when γ = γo. The second derivative of (γ − γo)
2

with respect to γ is positive. This second derivative is then multiplied by the expectation
of a squared object in the numerator and divided by the sum of squared objects in the
denominator. Thus, the expectation of the Hessian evaluated at γo is strictly positive.

5. We have E[s(w�γo)] = 0. Note that E[s(w�γ)] = ∂E[q(w�γ)]/∂γ. Differentiating
E[q(w�γ)] with respect to γ leaves terms that are multiplied by (γ − γo) or by (γ − γo)

2,
implying that if we evaluate the derivative at γ = γo, then the expected score is zero.
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6. Each element of s(w�γo) has finite second moment. Given that the score has only
one element, this condition boils down to E[s(w�γo)

2] < ∞. To show this, we square the
score function, repeatedly apply the triangle equality, and evaluate the expected value
at the true γ:

E
[
s(w�γo)

2] = E

(
1

(1 + γ2
o)

4

[(
1 − γ2

o

)
(y11 − y12)(y3 − y2)

+ γo
(−(y11 − y12)

2 + (y3 − y2)
2)]2

)
�

Repeatedly applying the triangle inequality yields

E
[
s(w�γo)

2] ≤ E

(
1

(1 + γ2
o)

4

[
2
(
1 − γ2

o

)2
(y11 − y12)

2(y3 − y2)
2

+ 2γ2
o

(−(y11 − y12)
2 + (y3 − y2)

2)2])

≤ E

(
4

(1 + γ2
o)

4

[
2
(
1 − γ2

o

)2(
y2

11 + y2
12

)(
y2

3 + y2
2
)

+ γ2
o

(
(y11 − y12)

4 + (y3 − y2)
4)])

≤ E

(
4

(1 + γ2
o)

4

[
2
(
1 − γ2

o

)2(
y4

11 + y4
12 + y4

3 + y4
2
)

+ 4γ2
o

((
y2

11 + y2
12

)2 + (
y2

3 + y2
2
)2)])

≤ E

(
8

(1 + γ2
o)

4

[(
1 − γ2

o

)2(
y4

11 + y4
12 + y4

3 + y4
2
)

+ 4γ2
o

(
y4

11 + y4
12 + y4

3 + y4
2
)])

≤ E

(
8

(1 + γ2
o)

2

[
y4

11 + y4
12 + y4

3 + y4
2
])

≤ 8
(1 + γ2

o)
2E

(
y4

11 + y4
12 + y4

3 + y4
2
)
�

Now we substitute for y with the data generating process. Consider E[y4
11], which is given

by

E
[
y4

11
] =E

[
(α1o + γoα2o + ε11)

4]�
Repeatedly applying the triangle inequality yields

E
[
y4

11
] ≤ 9E

[(
α2

1o + γ2
oα

2
2o + ε2

11
)2]

≤ 27
(
E

[
α4

1o
] + γ4

oE
[
α4

2o
] +E

[
ε4

11
])
�
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Theorem 1(iii) and (iv) ensure that all of the terms on the right-hand side of the inequal-
ity in the above equation are finite. Thus, E[y4

11] is finite. By a similar argument, it can be
shown that all the terms in the expectation of the squared score are finite. �

A.2 Proof of Theorem 2

The first-order condition for αi can be written as

0 =
T∑
t=1

(
Yitn − αi − γ

Mtn

∑
j∈Mtn∼i

αj

)
(15)

+
T∑
t=1

∑
j∈Mtn∼i

γ

Mtn

(
Yjtn − αj − γ

Mtn

∑
k∈Mtn∼j

αk

)
�

Solving for αi and collecting terms, we have

αi =
T∑
t=1

[
Yitn − γ

Mtn

∑
j∈Mtn∼i

αj

(16)

+ γ

Mtn

∑
j∈Mtn∼i

(
Yjtn − αj − γ

Mtn

∑
k∈Mtn∼j∼i

αk

)]/(
T +

T∑
t=1

γ2

Mtn

)
�

Now we stack these equations, such that the N × 1 vector of α’s runs down the left-
hand side of the stack. To apply our iterative method, we make a first guess at this vec-
tor and then use this guess to generate OLS-derived estimates of the other parameters
appearing in the model. Once obtained, these estimates are then plugged into the right-
hand side of these equations and we update our guess of the α vector. Let the first of
any two consecutive guesses of the α vector be called simply α, and let the second (up-
dated) guess be called α′. We would like to show that our mapping, call it f , from α → α′
is a contraction mapping; that is, ρ(f (α)� f (α′)) < βρ(α�α′) for some β < 1, where ρ is
a valid distance function. Using a Euclidean distance function for ρ, our task is then to
show the conditions under which, for a chosen β< 1,

(
N∑
i=1

(
−

T∑
t=1

[
γ

Mtn

∑
j∈Mtn∼i

α̃j

(17)

+ γ

Mtn

∑
j∈Mtn∼i

(
α̃j + γ

Mtn

∑
k∈Mtn∼j∼i

α̃k

)]/(
T +

T∑
t=1

γ2

Mtn

))2)1/2

will be less than

β

(
N∑
i=1

α̃2
i

)1/2

� (18)
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where α̃ = α − α′ and N again refers to the total student population. Factoring out the

α’s, this requirement can be rewritten as

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

N∑
i=1

⎛
⎜⎜⎜⎜⎜⎜⎝

−

T∑
t=1

[(
2γ
Mtn

+ γ2(Mtn − 1)
M2

tn

) ∑
j∈Mnt∼i

α̃j

]

T +
T∑
t=1

γ2

Mtn

⎞
⎟⎟⎟⎟⎟⎟⎠

2
⎞
⎟⎟⎟⎟⎟⎟⎟⎠

1/2

<β

(
N∑
i=1

α̃2
i

)1/2

� (19)

Expanding the inner square on the left-hand side of the inequality and repeatedly ap-

plying the triangle inequality yields

⎛
⎜⎜⎜⎜⎜⎜⎝

N∑
i=1

⎛
⎜⎜⎜⎜⎜⎜⎝

T∑
t=1

T

[(
2γ
Mtn

+ γ2(Mtn − 1)
M2

tn

)2( ∑
j∈Mnt∼i

α̃j

)2]
(
T +

T∑
t=1

γ2

Mtn

)2

⎞
⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎠

1/2

<β

(
N∑
i=1

α̃2
i

)1/2

� (20)

Expanding the square on the sum of the α̃j ’s and applying the triangle inequality leaves

⎛
⎜⎜⎜⎜⎜⎜⎝

N∑
i=1

⎛
⎜⎜⎜⎜⎜⎜⎝

T∑
t=1

T

[(
2γ
Mtn

+ γ2(Mtn − 1)
M2

tn

)2

Mtn

∑
j∈Mnt∼i

α̃2
j

]
(
T +

T∑
t=1

γ2

Mtn

)2

⎞
⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎠

1/2

<β

(
N∑
i=1

α̃2
i

)1/2

� (21)

Inside the square brackets of equation (22), there are no α̃i, since this term reflects the

purged first-order condition from individual i. However, α̃i will be present in the first-

order condition from all of i’s classmates over time. Because the Mtn in the denomina-

tor reflect the peer group sizes experienced by individual i over time, all the terms on

the left-hand side of the inequality containing an α̃i will have different denominators.

Substituting M for Mtn in the denominator ensures a common denominator across the

terms containing an α̃i:

⎛
⎜⎜⎜⎜⎜⎜⎝

N∑
i=1

⎛
⎜⎜⎜⎜⎜⎜⎝

T∑
t=1

T

[(
2γ
Mtn

+ γ2(Mtn − 1)
M2

tn

)2

Mtn

∑
j∈Mtn∼i

α̃2
j

]

T 2
(

1 + γ2

M

)2

⎞
⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎠

1/2

<β

(
N∑
i=1

α̃2
i

)1/2

� (22)
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This substitution is valid, since it shrinks the denominator for every term on the left-
hand side of the inequality, making it less likely to hold. Now we can easily collect all the
terms containing an α̃i, yielding

⎛
⎜⎜⎜⎜⎜⎝

N∑
i=1

⎛
⎜⎜⎜⎜⎜⎝

T∑
t=1

T

[(
2γ
Mtn

+ γ2(Mtn − 1)
M2

tn

)2

M2
tnα̃

2
i

]

T 2
(

1 + γ2

M

)2

⎞
⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎠

1/2

<β

(
N∑
i=1

α̃2
i

)1/2

� (23)

The additional Mtn term in the numerator comes from the fact that α̃i will show up once
for each of the Mtn peers at time t. Bringing the M2

tn inside the parentheses in the nu-
merator yields

⎛
⎜⎜⎜⎜⎜⎝

N∑
i=1

⎛
⎜⎜⎜⎜⎜⎝

T∑
t=1

T

[(
2γ + γ2 − γ2

Mtn

)2]

T 2
(

1 + γ2

M

)2

⎞
⎟⎟⎟⎟⎟⎠ α̃2

i

⎞
⎟⎟⎟⎟⎟⎠

1/2

<β

(
N∑
i=1

α̃2
i

)1/2

� (24)

Notice that we can again substitute for Mtn with M , since this will strictly increase the
coefficient on α̃i, making it less likely that the inequality is satisfied. Making this substi-
tution and canceling the T 2 terms leaves

⎛
⎜⎜⎜⎝

N∑
i=1

⎛
⎜⎜⎜⎝

(
2γ + γ2 − γ2

M

)2

(
1 + γ2

M

)2

⎞
⎟⎟⎟⎠ α̃2

i

⎞
⎟⎟⎟⎠

1/2

<β

(
N∑
i=1

α̃2
i

)1/2

� (25)

which can be rewritten as

2γ + γ2 − γ2

M

1 + γ2

M

(
N∑
i=1

α̃2
i

)1/2

<β

(
N∑
i=1

α̃2
i

)1/2

� (26)

As long as the γ’s are such that (26) is satisfied, we have a contraction mapping. The
denominator of the leading term is strictly greater than 1, implying that if the numera-
tor is strictly less than 1 then the contraction holds for some β < 1. If 2γ + γ2 < 1, the
numerator will be strictly less than 1, which is true for γ ≤ 0�4.46

46An identical restriction on γ is required in the case of an unbalanced panel. To derive this, simply define
ρ as a weighted Euclidean distance where the individual weights are given by the number of observations
for student i, Ti.
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Appendix B: Endogenous effects

In this section, we show how our framework can be incorporated to allow for endoge-
nous effects. We introduce a new variable, Zitn, that affects the choices of the individual
but affects his peers only through the individual’s choice. Throughout, we assume that
Zitn is uncorrelated with all the ε’s. For ease of notation, we also focus on the case where
peer groups consist of only two individuals.47 We first consider the case where individ-
uals have total control of the outcome: the outcome of interest is a choice. We then con-
sider the case that is most relevant to our empirical work, where individuals only have
partial control over the outcome.

B.1 Total control

We first consider the case where Yitn is directly affected by Yjtn. In this case, the linear
model is

Yitn = αio + γoαjo +φoYjtn + θoZitn + εitn� (27)

Substituting the expression for Yjtn into (27) and solving for Yitn yields

Yitn =
(

1 +φoγo

1 −φ2
o

)
αio +

(
γ0 +φo

1 −φ2
o

)
αjo

(28)

+ θoZitn

1 −φ2
o

+ φoθoZjtn

1 −φ2
o

+ εitn +φoεjtn

1 −φ2
o

�

Note that the last term—the reduced-form error—has both εitn and εjtn. The reduced-
form errors will then be correlated between individuals who share a peer group, vio-
lating Theorem 1(iii). In estimation, this correlation is partially absorbed by the peer
fixed effects, which in turn prohibits consistent estimation of the coefficient on αjo. Our
conclusion is that when the outcome variable is a choice that is affected by the actual
choices of one’s peers, we cannot obtain a consistent estimate of the parameter on the
peer fixed effects for fixed T . Note, however, that if the spillovers operated only through
observables, which would imply replacing the αio’s with Xβ, then all of the structural
parameters would be identified.

We now consider the case where individuals only have expectations about what their
peers will choose. This situation maps well to a wide variety of outcomes where the be-
havior of others either is not perfectly observed or occurs at exactly the same time as
own behavior and, therefore, cannot be a direct input to own behavior. In particular,
suppose that εjt is unknown to individual i and has mean zero. The outcome equation
is then

Yitn = αio + γoαjo +φoE(Yjtn)+ θoZitn + εitn� (29)

Again substituting in for Yjtn and solving for Yitn yields

Yitn =
(

1 +φoγo

1 −φ2
o

)
αio +

(
γ0 +φo

1 −φ2
o

)
αjo + θoZitn

1 −φ2
o

+ φoθoZjtn

1 −φ2
o

+ εitn

1 −φ2
o

� (30)

47Results for larger peer groups are available upon request.
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Theorem 1(iii), which states that the reduced-form error is uncorrelated between peer
group members, is no longer violated by the model. We can then write (30) as

Yitn = α∗
io + γ∗

oαjo + θ∗
oZitn +φ∗

oZjtn + ε∗
itn� (31)

where

α∗
io =

(
1 +φoγo

1 −φ2
o

)
αio�

γ∗
o =

(
γ0 +φo

1 +φoγo

)
�

θ∗
o = θo

1 −φ2
o

� φ∗
o =φoθ

∗
o� ε∗ = εitn

1 −φ2
o

�

Estimating the reduced form then makes it possible to recover all the structural param-
eters, as would also hold in the standard case where the αio’s were replaced by a set of
observables multiplied by a vector of coefficients. We can recover φ̂ and θ̂ from φ̂∗ and
θ̂∗. Next, given φ̂, we can obtain γ̂ using γ̂∗ as γ̂ = (γ̂∗ − φ̂)/(1 − γ̂∗φ̂).

One key identifying assumption in this case is that the expected choices of the in-
dividual’s peers are formed on the basis of observed characteristics and the peer fixed
effects, both of which are uncorrelated with the structural errors. Identification of the
underlying parameters using our fixed-effects approach also requires Zitn to be time-
varying. If it is not, then Zitn would be absorbed into the reduced-form individual effect
and we would be back to using two coefficients to recover three parameters. We would
be left with the same estimating equation as the baseline model, and the reduced form
would be a linear combination of own and peer fixed effects plus the Z values of the
peers, but we could not separate out the endogenous effects from the exogenous effects.
Note that in the case that spillovers operate only through observable characteristics, Zitn

is only required to vary across individuals, not within person.

B.2 Partial control

As pointed out by Cooley (2009a, 2009b), the estimation issues become much more com-
plicated when individuals only have partial control over their outcomes. For example, in
educational settings where grades are the outcome of interest, it is not the grades of the
other students in the class that affect the student’s grades, but the effort the other stu-
dents exert. Moreover, students cannot directly choose their grades, but can only choose
effort levels, which in turn combine with other forces (including peer effort) to deter-
mine their grades. Separating out endogenous and exogenous effects is much harder in
this case.

We now show what we can identify when individuals make choices that only partially
affect their outcome, and where the choices of others influence both own choices and
own outcomes. Let eitn indicate the continuous choice individuals make to affect out-
come Yitn. Adding eitn and ejtn to the baseline model as direct influences on outcomes
yields

Yitn = αio +φ1oeitn + γoαjo +φ2oejtn + εitn� (32)
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The utility associated with choosing a particular value of eitn depends on the individ-
ual’s fixed effect, αio, as well as on the choices of the other individual and their individual
effect. Similar to the previous case, we assume that there is an additional variable, Zitn,
that affects the choice of effort. We assume that the utility function takes the form

U
(
eitn�E(Yitn)

)
(33)

=E(Yitn)+ eitn(λ1oαio + λ2oZitn + λ3oejtn + λ4oαjo)− e2
itn/2�

where we have normalized the coefficient on the squared term. The first-order condition
from maximizing (33) with respect to eitn and solving for eitn implies that own optimal
effort can be written as

eitn = φ1o + λ1oαio + λ2oZitn + λ3oejtn + λ4oαjo� (34)

Substituting for ejtn from j’s maximization problem then yields:

eitn = (
(1 + λ3o)φ1o + (λ1o + λ3oλ4o)αio

(35)
+ (λ4o + λ3oλ1o)αjo + λ2oZitn + λ3oλ2oZjtn

)/(
1 − λ2

3o
)
�

Substituting for eitn and ejtn in equation (32) and collecting terms implies we can
rewrite (32) as

Yitn = α∗
io +φ∗

1oZitn + γ∗
oα

∗
jo +φ∗

2oZjtn + ε∗
it � (36)

where

α∗
io = C +

(
1 + φ1o(λ1o + λ3oλ4o)+φ2o(λ4o + λ3oλ1o)

1 − λ2
3o

)
αi�

γ∗
o = ((1 − λ2

3o)γo +φ2o(λ1o + λ3oλ4o)+φ1o(λ4o + λ3oλ1o))

(1 − λ2
3o +φ1o(λ1o + λ3oλ4o)+φ2o(λ4o + λ3oλ1o))

�

φ∗
1o = λ2(φ1o + λ3oφ2o)

1 − λ2
3o

� φ∗
2o = λ2(φ2o + λ3oφ1o)

1 − λ2
3o

� ε∗
itn = εitn

1 − λ2
3o

�

and where C is the adjustment to α∗
io coming from the φo terms that are not multiplying

a regressor.
Reduced-form estimation then yield estimates of three coefficients, φ̂∗

1, φ̂∗
2, and γ̂∗,

that are functions of six underlying parameters. What we can say is that φ̂∗
1 > 0 implies

that individual effort either directly affects the outcome or affects the outcome through
the other individual’s effort, which in turn affects the individual’s outcome. Similarly, if
the coefficient on Zjtn, φ̂∗

2, is greater than zero, we can conclude that peer effort matters
in some form, either directly or through affecting the individual’s own effort. Once again,
these results are essentially identical to those in Cooley (2009b), subject to replacing
observable characteristics with individual effects.
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