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Appendix A: Model likelihood

Use the notation that y is the entire data set, yi is the data of subject i, and yig is the
data of subject i in game g. Also, τ(i) is the strategic behavior rule used by subject i.
Suppose that γig is the intended decision rule for subject i in game g. Neither τ(i) nor
γig is observed by the econometrician. Then the likelihood for observing subjects i =
1�2� � � � �N to take actions in games g= 1�2� � � � �G is
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where θ collects all of the parameters of the model. The sum over k corresponds to the
sum over the decision rules that subjects might use, per Assumption 2.1. It remains to
derive the form of P(yig|τ(i)= r�γig = k�θ) from the model specification.

For k= sunanch, for some s ∈ U ,

P
(
yig ≤ t|τ(i)= r�γig = sunanch� θ

) = Fgsunanch(t)�
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where Fgsunanch(·) is the cumulative distribution function of a random variable with den-
sity ζs1g(·)with respect to the appropriate dominating measure on Σs1g, per Section 2.2.2.

For k ∈ M, and letting mig be a binary variable to indicate whether subject i incor-
rectly computes the action associated with decision rule k in game g, which is not ob-
served by the econometrician,

P
(
yig ≤ t|τ(i)= r�γig = k�θ) = P(

yig ≤ t|τ(i)= r�γig = k�mig = 1� θ
)

× P(
mig = 1|τ(i)= r�γig = k�θ)

+ P(
yig ≤ t|τ(i)= r�γig = k�mig = 0� θ

)
× P(

mig = 0|τ(i)= r�γig = k�θ)
= Frgk(t)Δr + 1

[
t ≥ c1g(k)

]
(1 −Δr)�

where Frgk(·) is the cumulative distribution function of computational mistakes on
[αLg(1)�αUg(1)] ∩ [c1g(k)− Pr(αUg(1)− αLg(1))� c1g(k)+ Pr(αUg(1)− αLg(1))], per Sec-
tion 2.3.

Appendix B: Sufficient conditions for point identification except for the

magnitude of computational mistakes

This section establishes sufficient conditions for point identification of all unknown pa-
rameters except for those related to the magnitude of computational mistakes, under
weaker conditions than used by Theorem 4.1. The result does still allow that individu-
als might make computational mistakes. This can be interpreted as a partial identifica-
tion result, showing that some but not necessarily all of the parameters are point identi-
fied. Alternatively, this can be interpreted as a point identification result, showing that a
model without computational mistakes (or even a model with computational mistakes
with known magnitudes of computational mistakes) is point identified.

The identification result in this section uses a different definition of observational
equivalence of strategic behavior types. Essentially, the alternative definition treats the
magnitude of computational mistakes as irrelevant and is similar to Definition 1, except
the last condition involving P is dropped. There is a corresponding definition of point
identification, which ignores the magnitude of computational mistakes.

Definition 3 (Observational Equivalence of Strategic Behavior Types, Ignoring the
Magnitude of Computational Mistakes). The quantities Θ1 = (Λ1�Δ1�P1) and Θ2 =
(Λ2�Δ2�P2) are observationally equivalent, ignoring the magnitude of computational
mistakes, if

(i) it holds that Λ1 =Λ2,

(ii) it holds that Δ11[∑k∈MΛ1(k) > 0] = Δ21[∑k∈MΛ2(k) > 0].

Definition 4 (Point Identification of Model Parameters, Ignoring the Magnitude of
Computational Mistakes). The model parameters are point identified, ignoring the



Supplementary Material Non-equilibrium behavior in games 3

magnitude of computational mistakes, if for any specifications {Θ0r �π0(r)}R̃0
r=1 and

{Θ1r �π1(r)}R̃1
r=1 of the model parameters that satisfy the assumptions and also are such

that

(i) both specifications {Θ0r �π0(r)}R̃0
r=1 and {Θ1r �π1(r)}R̃1

r=1 generate the observable
data,

(ii) it holds that π0(·) > 0 and π1(·) > 0,

(iii) the strategic behavior rules Θ0r and Θ0r′ are not observationally equivalent, ig-
noring the magnitude of computational mistakes for all r �= r ′, and Θ1r and Θ1r′ are not
observationally equivalent, ignoring the magnitude of computational mistakes for all
r �= r′,
then R̃0 = R̃ = R̃1 and there is a permutation φ of {1�2� � � � � R̃} such that for each r =
1�2� � � � � R̃ it holds that π0(r)= π1(φ(r)) and Θ0r is observationally equivalent, ignoring
the magnitude of computational mistakes, toΘ1φ(r).

The main difference between the sufficient conditions of this section and the suffi-
cient conditions of Section 4 is that Assumption 4.1 is dropped in favor of the weaker
Assumption B.1. Moreover, Assumption 4.2 is dropped entirely.

Assumption B.1 (Conditions on the Games). The data set includes at least 2R − 1
games, such that each game g of those 2R − 1 games satisfies all of the following three
conditions:

(i) It holds thatΩ1g > 0.

(ii) For each k ∈ M and k′ ∈ M such that k �= k′, c1g(k) �= c1g(k
′).

(iii) For each k ∈ M and s ∈ U such that Σs1g is a finite set, c1g(k) /∈ Σs1g.

The data set includes at least 2R− 1 games, such that each game g of those 2R− 1 games
satisfies the following condition:

(iv) For each s ∈ U , R1g(s� s�ρ) > 0.

Assumption 4.1 requires that the same games satisfy all of the conditions stated in
Assumption 4.1, whereas Assumption B.1 allows that some games satisfy Conditions (i),
(ii), and (iii), and other games satisfy Condition (iv). However, it is allowed that the set
of games satisfying Conditions (i), (ii), and (iii) arbitrarily overlaps with the set of games
satisfying Condition (iv).

The next assumption disallows certain “knife-edge” cases and requires additional
notation. Use the notation that M(r) is the rth smallest element of M, with Nash equi-
librium the largest element by convention, and that U(r) is the rth smallest element of U .

Assumption B.2 (No Knife-Edge Strategic Behavior Rules). There are R̃ strategic behav-
ior rules used in the population, with π(r) > 0 for r = 1�2� � � � � R̃. For each r ′ �= r,
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(i) it holds that ((1 −Δr)Λr(M(1))� � � � � (1 −Δr)Λr(M(|M|))) �= ((1 −Δr′)Λr′(M(1))�
� � � � (1 − Δr′)Λr′(M(|M|))) and (Λr(U(1))� � � � �Λr(U(|U |))) �= (Λr′(U(1))� � � � �
Λr′(U(|U |))),

(ii) it holds that π(r) �= π(r ′).

Condition (i) rules out the knife-edge case that strategic behavior rules r and r ′,
despite being distinct, are such that ((1 − Δr)Λr(M(1))� � � � � (1 − Δr)Λr(M(|M|))) =
((1 − Δr′)Λr′(M(1))� � � � � (1 − Δr′)Λr′(M(|M|))) or (Λr(U(1))� � � � �Λr(U(|U |))) =
(Λr′(U(1))� � � � �Λr′(U(|U |))). Condition (ii) rules out the knife-edge case that two strate-
gic behavior rules are used with the same probability.

Theorem B.1. Under Assumptions 2.1, 2.2, B.1, and B.2, the parameters of the model are
point identified in the sense of Definition 4.

Appendix C: Identification of the selection rule on unanchored

strategic reasoning

It is possible to point identify the selection rule on unanchored strategic reasoning (in-
troduced in Section 2.2.2) under suitable restrictions on the class of admissible selection
rules. Per the discussion in Section 2.7, the discussion focuses without loss of gener-
ality on player 1 in the game. Specifically, consider player 1 in game g and the prob-
lem of identifying the function ψ1g(·) that characterizes the selection rule for player
1 in game g. As in the empirical application, suppose that Σs1g is Lebesgue measur-
able with nonzero and finite measure, for all s ∈ U . Suppose also that the class of
admissible selection rules is such that the selection rule has the derivatives used in
the following analysis. Based on ψ1g(·), for any s ∈ U , the selection rule from using s
steps of unanchored strategic reasoning as player 1 in game g has the ordinary den-

sity
ψ1g(·)
Ψ1g(Σ

s
1g)

on Σs1g. Per similar arguments as used to establish Lemma D.4(iv), based

on the set U1g(s) from condition (v) of Assumption 4.1, the observed ordinary density
of the data at an action a taken within any interval subset of U1g(s) is dsgψ1g(a), where
dsg = ∑R

r=1
∑s
s′=0�s′∈U 1

Ψ1g(Σ
s′
1g)
Λr(s

′
unanch)π(r). Hence, if a positive fraction of subjects use

a strategic behavior rule that uses s or fewer steps of unanchored strategic reasoning
with positive probability,ψ1g(a) is identified up to positive (and unknown) scale dsg > 0,
for all a in that interval subset of U1g(s) where the density exists. Under sufficient re-
strictions on the class of admissible ψ1g(·), which are equivalent to restrictions on the
class of admissible selection rules, this suffices to point identify the entire ψ1g(·) func-
tion. Intuitively, these restrictions must be such that knowledge of the identified prop-
erties of ψ1g(·) on a subset of the domain is enough to “extrapolate” to knowledge of the
entire ψ1g(·) function. Specifically, the following text discusses using the information

contained in the identified quantity
ψ′

1g(·)
ψ1g(·) on a subset of the domain.

For example, suppose that ψ1g(·) is known by the econometrician to be the density
of a normal distribution with unknown mean μ1g and unknown variance σ2

1g > 0. As
already discussed in Section 2.2.2, because that distribution is unimodal with mode μ1g,
the resulting selection rule tends to be biased toward actions around μ1g and biased
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against actions away fromμ1g. The “degree” of that bias is measured by the variance σ2
1g,

where relatively large σ2
1g result in relatively small biases, since relatively large σ2

1g result
in ψ1g(·) that approaches a constant function. Since ψ1g(a) is identified up to positive
(and unknown) scale for all a in that interval subset of U1g(s) where the density exists,
also ψ′

1g(a) is identified up to the same positive (and unknown) scale for all a in that
same interval subset ofU1g(s)where the density exists, based on any s ∈ U such that the
corresponding dsg > 0 as discussed above. It is a simple exercise to establish, based on

the functional form of the normal distribution, that σ2
1g
ψ′

1g(a)

ψ1g(a)
= μ1g−a. Hence, based on

the above identification of
ψ′

1g(a)

ψ1g(a)
at two distinct points a = a(1) and a = a(2), where the

positive (and unknown) scale cancels in the ratio, it is possible to identify μ1g and σ2
1g

by solving the system of equations σ2
1g
ψ′

1g(a
(1))

ψ1g(a(1))
= μ1g − a(1) and σ2

1g
ψ′

1g(a
(2))

ψ1g(a(2))
= μ1g − a(2)

for the unknown μ1g and σ2
1g. Hence, under this restriction on the class of admissible

ψ1g(·), it is possible to identify the entire ψ1g(·) function.

Appendix D: Proof of point identification

Use the notation that M(r) is the rth smallest element of M with Nash equilibrium the
largest element by convention, U(r) is the rth smallest element of U , Ug(s) = U1g(s),
Rg(s� s

′� ε)=R1g(s� s
′� ε), andΩg = αUg(1)− αLg(1). Additionally,

Mg(k�ε�Pr)=

⎧⎪⎨
⎪⎩

∫ c1g(k)+εΩg

c1g(k)−εΩg
ω1g�c1g(k)�Pr (a)da if Pr > 0�

1 if Pr = 0�

Let the set of nonzero unique values of {Pr1[Δr > 0]1[∑k∈MΛr(k) > 0] ×
1[π(r) > 0]}Rr=1 together with ρ be {P̃w}Ww=1, and without loss of generality assume that
0 ≤ P̃1 < P̃2 < · · ·< P̃W and that 1 ≤W ≤R+ 1. By Assumption 2.2, P̃W = ρ.

For any decision rule k ∈ M, let Cg(k�ε) be the event that a subject takes an action
weakly within εΩg of the action predicted by decision rule k in game g, but excluding
the action exactly predicted by decision rule k in game g. For any decision rule k ∈ M,
let Cg(k) be the event that a subject takes the action exactly predicted by decision rule k
in game g. Note that Cg(k) �= Cg(k�0).

Use the generic notation that Pθ refers to the distribution of observables based on
strategic behavior rule θ and that Pg�θ refers to the distribution of observables based on
strategic behavior rule θ in game g. By some abuse of notation, let Pg�θ be the (|M| +
|U | +W |M|)× 1 vector:

(i) The first |M| rows are (Pg�θ(Cg(M(1)))� � � � �Pg�θ(Cg(M(|M|)))).
(ii) The next |U | rows are (Pg�θ(Ug(U(1)))� � � � �Pg�θ(Ug(U(|U |)))).

(iii) The final W |M| rows are (Pg�θ(Cg(M(1)� P̃1))� � � � �Pg�θ(Cg(M(1)� P̃W ))�
Pg�θ(Cg(M(2)� P̃1))� � � �).

Use the notation that
⊗n b= b⊗ b⊗ · · · ⊗ b︸ ︷︷ ︸

n times

, for n ∈N.
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Lemma D.1. The following claims are true:

(i) For a game g that satisfies Assumption 4.1(i) and for ρi > 0, the density ωjg�c�ρi(a)
has discontinuities at, and only at, min{αUg(j)� c + ρi(αUg(j)− αLg(j))} and max{αLg(j)�
c− ρi(αUg(j)− αLg(j))}.

(ii) For a game g that satisfies the conditions of Assumption 4.2 and for Pr > 0, for any
k ∈ M and 0< ε< ρ,Mg(k�ε�Pr) has a kink at, and only at, ε= Pr .

(iii) For a game g that satisfies conditions (i) and (iv) of Assumption 4.1, for any k ∈ M,
Mg(k�ε�Pr)=Mg(k�Pr�Pr) if ε≥ Pr andMg(k�ε1�Pr) <Mg(k�ε2�Pr) if 0 ≤ ε1 < ε2 ≤ Pr .

Proof. Because the game g satisfies Assumption 4.1(i) and ρi > 0, the density
ωjg�c�ρi (a) does not involve dividing by zero and, therefore, is well defined.

(i) Because ξ(·) is continuous on [−1�1], discontinuities inωjg�c�ρi(a) can occur only
at a such that the argument of ξ(·) in the definition of ωjg�c�ρi(a) is either −1 or 1.
Therefore, discontinuities can occur only at a= min{αUg(j)� c+ρi(αUg(j)−αLg(j))} and
a = max{αLg(j)� c − ρi(αUg(j)− αLg(j))}. Moreover, by assumption, ξ is bounded away
from zero on [−1�1], but equals zero off [−1�1], and, therefore, indeed ωjg�c�ρi(a) does
have discontinuities at the claimed points.

(ii) By part (i), the integrand in Mg(k�ε�Pr) = ∫ c1g(k)+εΩg
c1g(k)−εΩg ω1g�c1g(k)�Pr (a)da has dis-

continuities at, and only at, a = min{αUg(1)� c1g(k) + Pr(αUg(1) − αLg(1))} and a =
max{αLg(1)� c1g(k)−Pr(αUg(1)−αLg(1))}. Because the game g satisfies the conditions of
Assumption 4.2, 0< PrΩg < ρΩg < αUg(1)− c1g(k) or 0< PrΩg < ρΩg < c1g(k)− αLg(1)
by Assumption 4.1(iv). Therefore, either min{αUg(1)� c1g(k) + Pr(αUg(1) − αLg(1))} =
c1g(k)+ PrΩg or max{αLg(1)� c1g(k)− Pr(αUg(1)− αLg(1))} = c1g(k)− PrΩg. Therefore,
Mg(k�ε�Pr) has a kink at ε = Pr . Moreover, there can be no other kinks in Mg(k�ε�Pr)
for any k ∈ M and 0 < ε < ρ, by Assumption 4.2. That follows because any other kink

would be located at ε = c1g(k)−αLg(1)
Ωg

or ε = αUg(1)−c1g(k)

Ωg
. But by Assumption 4.2 evalu-

ated at s = 0, such ε would equal either 0 or 1 under Assumption 4.2(iii) or 4.2(iv), or
would be weakly greater than ρ under Assumption 4.2(i). However, 0< ε< ρ and by As-
sumption 4.1(iv), ρ < 1.

(iii) Note that Mg(k�ε�Pr) = ∫ c1g(k)+εΩg
c1g(k)−εΩg ω1g�c1g(k)�Pr (a)da, where the integrand is

0 for a > min{αUg(1)� c1g(k) + PrΩg} and a < max{αLg(1)� c1g(k) − PrΩg}. Therefore,

Mg(k�ε�Pr) = ∫ min{c1g(k)+εΩg�min{αUg(1)�c1g(k)+PrΩg}}
max{c1g(k)−εΩg�max{αLg(1)�c1g(k)−PrΩg}} ω1g�c1g(k)�Pr (a)da. Therefore, since

the bounds of integration are [max{αLg(1)� c1g(k) − PrΩg}�min{αUg(1)� c1g(k) + PrΩg}]
for ε ≥ Pr , it follows that Mg(k�ε�Pr) = Mg(k�Pr�Pr) if ε ≥ Pr . Since the bounds of
integration are [max{αLg(1)� c1g(k) − εΩg}�min{αUg(1)� c1g(k) + εΩg}] for ε ≤ Pr , and
the integrand is positive over that range for all ε ≤ Pr , and by Assumption 4.1(iv), ei-
ther the lower bound equals c1g(k) − εΩg or the upper bound equals c1g(k) + εΩg,
which both depend nontrivially on ε by Assumption 4.1(i), it follows thatMg(k�ε1�Pr) <
Mg(k�ε2�Pr) if 0 ≤ ε1 < ε2 ≤ Pr . �

Lemma D.2. Let R ∈ N and m ∈ N satisfy m≥ R− 1. Let C(m�n)= ∑m
p=0 n

p. Let γp�n(·) :
R
n → R

np be defined by γp�n(z)= ⊗p z. Let Γm�n(·) :Rn → R
C(m�n) be defined by Γm�n(z)=



Supplementary Material Non-equilibrium behavior in games 7

(1�γ1�n(z)� � � � � γm�n(z)). Thus, Γm�n(z) gives all monomials of the argument vector z, of
order between 0 and m, in ascending order (i.e., the order 0 monomial in the first row,
then order 1 monomials in the next rows, etc.). Suppose b1� � � � � bR ∈ R

n are distinct. Let
B∗ = (Γm�n(b1) Γm�n(b2) · · · Γm�n(bR)) ∈R

C(m�n)×R. Then B∗ has full column rank.

Proof. The following argument establishes that since bk �= bl for k �= l, there exists a
t ∈ R

n such that t ′bk �= t ′bl for all k �= l. Let D(t) = {(k� l) : t ′bk = t ′bl�k �= l}. Let t0 ∈ R
n.

If |D(t0)| = 0, then the claim is established. Otherwise, for some k∗ and l∗ such that
k∗ �= l∗, t ′0bk∗ = t ′0bl∗ . By slightly perturbing t0 in the element of t0 corresponding to the
element where bk∗ and bl∗ are not equal (which must exist since bk∗ �= bl∗ ), there exists
t1 ∈ R

n such that t ′1bk∗ �= t ′1bl∗ . If the perturbation is sufficiently small, then t ′1(bk − bl)≈
t ′0(bk − bl) uniformly for all k and l. Therefore, for any (k� l) such that t0bk �= t0bl, also
t1bk �= t1bl. Therefore, |D(t1)|< |D(t0)|. Similarly, it is possible to perturb t1 to construct
t2 such that |D(t2)| < |D(t1)| if |D(t1)| > 0. Necessarily, this process terminates at t ∈ R

n

such that t ′bk �= t ′bl for all k �= l.
Then there is an (m + 1) × C(m�n) matrix T such that TB∗ has full column rank.

The matrix T is defined constructively, using the notation that z ∈ R
n is a free variable.

For each integer p ∈ {0�1� � � � �m}, row p+ 1 of T has C(p − 1� n) leading zeros, then is
equal to

⊗p t ′, and then has trailing zeros. Therefore, row p + 1 of TΓm�n(z) is (t ′z)p,
since (t ′z)p = ⊗p(t ′z) = ⊗p t ′

⊗p z. In particular, for p = 0, use the convention that
(t ′z)0 = 1. So since the first element of Γm�n(z) is 1, the first row of T has a 1 along the
diagonal and is equal to 0 everywhere else. Since t ′z is the sum of n terms, there are np

terms in the series expansion of (t ′z)p. Therefore, the last nonzero term in row p+ 1 is
in column C(p− 1� n)+ np =C(p�n). Hence, as claimed, T has C(m�n) columns.

By construction of T , the element of TB∗ in row p+1 and column c is (t ′bc)p. There-
fore, TB∗ is a Vandermonde matrix of dimension (m + 1) × R, in terms of the powers
of (t ′bc) for c = 1� � � � �R. Since m + 1 ≥ R, in particular one submatrix of TB∗ is the
Vandermonde matrix of dimension R × R. Since t ′bc �= t ′bc′ for c �= c′ by construction
of t, this Vandermonde matrix is based on distinct parameters, which implies that the
square Vandermonde submatrix is nonsingular. So TB∗ contains an R × R nonsingu-
lar submatrix. Since TB∗ is (m + 1) × R, this implies that TB∗ has full column rank.
Because of the general result on the rank of products of matrices, R = rank(TB∗) ≤
min{rank(T)� rank(B∗)}, so B∗ has full column rank. �

Lemma D.3. Let P̃ = {P̃w}Ww=1 be a set of possible magnitudes of computational mistakes
with P̃1 < P̃2 < · · ·< P̃W . Based on P̃, define vector-valued mappings η1, η2, and η3 of the
strategic behavior rulesΘ= (Λ�Δ�P).

(i) Define η1(Θ)= ((1 − Δ)Λ(M(1))� � � � � (1 − Δ)Λ(M(|M|))). So η1 gives the vector
of (1 −Δ)Λ(k) for decision rules k ∈ M.

(ii) Define η2(Θ) = (Λ(U(1))� � � � �Λ(U(|U |))). So η2 gives the vector of Λ(k) for deci-
sion rules k ∈ U .

(iii) Define η3(Θ) = (ΔΛ(M(1))1[P = P̃1]� � � � �ΔΛ(M(1))1[P = P̃W ]�ΔΛ(M(2)) ×
1[P = P̃1]� � � �). So η3 gives ΔΛ(k)1[P = P̃w] for decision rules k ∈ M and w= 1�2� � � � �W .
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Let η∗(Θ)= (η1(Θ)�η2(Θ)�η3(Θ)) and η∗∗(Θ)= (η1(Θ)�η2(Θ)).
Suppose Θ1 and Θ2 are two strategic behavior rules such that P1 ∈ P̃ and P2 ∈ P̃.

If η∗(Θ1) = η∗(Θ2), then Λ1 = Λ2, Δ11[∑k∈MΛ1(k) > 0] = Δ21[∑k∈MΛ2(k) > 0] and
P11[Δ1 > 0]1[∑k∈MΛ1(k) > 0] = P21[Δ2 > 0]1[∑k∈MΛ2(k) > 0].

Suppose Θ1 and Θ2 are two strategic behavior rules. If η∗∗(Θ1)= η∗∗(Θ2), then Λ1 =
Λ2 and Δ11[∑k∈MΛ1(k) > 0] = Δ21[∑k∈MΛ2(k) > 0].

Proof. Suppose that η∗∗(Θ1) = η∗∗(Θ2). It is immediate from the definition of η1
that (1 − Δ1)Λ1(k) = (1 − Δ2)Λ2(k) for any decision rule k ∈ M. Also, it is immedi-
ate from the definition of η2 that Λ1(k) = Λ2(k) for any decision rule k ∈ U . Necessar-
ily, 1 = ∑

k Λ(k) = ∑
k∈MΛ(k)+ ∑

k∈U Λ(k). Therefore, it must be that
∑
k∈MΛ1(k) =∑

k∈MΛ2(k) since
∑
k∈U Λ1(k) = ∑

k∈U Λ2(k). Therefore, since
∑
k∈M(1 − Δ1)Λ1(k) =∑

k∈M(1 − Δ2)Λ2(k), it must be that Δ11[∑k∈MΛ1(k) > 0] = Δ21[∑k∈MΛ2(k) > 0].
Suppose that for all k ∈ M it holds that Λ1(k) = 0. Then, since Δ2 < 1, it must be that
Λ2(k)= 0 for all k ∈ M by definition of η1. So, in that case, Λ1(k)=Λ2(k) for all k ∈ M.
If there is k∗ ∈ M such that Λ1(k

∗) > 0, then since Δ1 < 1, it must be that Λ2(k
∗) > 0 by

definition of η1. In that case, it must indeed be that Δ1 = Δ2 since 1[∑k∈MΛ1(k) > 0] =
1[∑k∈MΛ2(k) > 0] = 1. So then, by definition of η1, it must be thatΛ1(k)=Λ2(k) for all
k ∈ M. So again, in that case, Λ1(k)=Λ2(k) for all k ∈ M.

Now suppose in addition that η∗(Θ1) = η∗(Θ2). If Δ1 = Δ2 > 0 and
∑
k∈MΛ1(k) =∑

k∈MΛ2(k) > 0, note thatΔ1
∑
k∈MΛ1(k)1[P1 = P̃w] (or, respectively,Δ2

∑
k∈MΛ2(k)×

1[P2 = P̃w]) is nonzero if and only if P1 = P̃w (or P2 = P̃w). Therefore, by definition of η3,
it must be that P11[Δ1 > 0]1[∑k∈MΛ1(k) > 0] = P21[Δ2 > 0]1[∑k∈MΛ2(k) > 0]. �

Lemma D.4. The following claims are true.

(i) Suppose that k ∈ M. In a game g that satisfies Assumptions 4.1(ii) and 4.1(iii), or
a game g that satisfies Assumptions B.1(ii) and B.1(iii), it holds that

Prg
(
Cg(k)

) = (1 −Δr)Λr(k)�
(ii) Suppose that k ∈ M. Suppose that 0 < ε. In a game g that satisfies Assump-

tion 4.1(i), or equivalently a game g that satisfies Assumption B.1(i), it holds that

Prg
(
Cg(k�ε)

) =
∑
k′ �=k

Prg
(
Cg(k�ε)|γg = k′)Λr(k′) +ΔrMg(k�ε�Pr)Λr(k)�

(iii) Suppose that k ∈ M. Suppose that 0< ε≤ ρ, where ρ arises from Assumption 4.1.
In a game g that satisfies Assumptions 4.1(i) and 4.1(ii), it holds that

Prg
(
Cg(k�ε)

) =
∑
s∈U

Prg
(
Cg(k�ε)|γg = sunanch

)
Λr(sunanch)+ΔrMg(k�ε�Pr)Λr(k)�

(iv) Suppose that s ∈ U . It holds that

Prg
(
Ug(s)

) =
∑

0≤s′≤s�s′∈U
Rg

(
s� s′�ρ

)
Λr

(
s′unanch

)
�
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Proof. (i) By the law of total probability,

Prg
(
Cg(k)

) =
∑
k′
Prg

(
Cg(k)|γg = k′)Prg(γg = k′)�

Under Assumptions 4.1(ii) and 4.1(iii), or Assumptions B.1(ii) and B.1(iii), there are no
decision rules k′ �= k that take the action associated with decision rule k with positive
probability, so Prg(Cg(k)) = Prg(Cg(k)|γg = k)Λr(k). Additionally, a subject who uses
strategic behavior rule r and decision rule k will actually take the action predicted by
decision rule k with probability 1 − Δr , since with probability Δr it makes a computa-
tional mistake and takes an action according to the density on a nondegenerate interval
since Pr > 0 by assumption when Δr > 0. So Prg(Cg(k)|γg = k)= 1 −Δr .

(ii) A subject who uses strategic behavior rule r and intends to use decision rule k in
game g and who makes a computational mistake will take an action that is distributed
according to ξ(·), translated to the interval with radius Pr(αUg(1)− αLg(1)) centered at
the action predicted by decision rule k and intersected with the action space. Therefore,

Prg
(
Cg(k�ε)

) =
∑
k′
Prg

(
Cg(k�ε)|γg = k′)Prg(γg = k′)

=
∑
k′ �=k

Prg
(
Cg(k�ε)|γg = k′)Λr(k′) +ΔrMg(k�ε�Pr)Λr(k)�

By Assumption 4.1(i), αLg(1) < αUg(1), as long as Pr > 0. This last expression does
not involve dividing by zero in the definition of ω1g�c1g(k)�Pr (·) that appears as the inte-
grand in Mg(k�ε�Pr). The condition that Pr > 0 is assumed in Section 2.3 when Δr > 0.
Otherwise, if Pr = 0, then Δr = 0 and the expression is still correct.

(iii) Since g is a game that additionally satisfies Assumption 4.1(ii) and ε ≤ ρ, then
Prg(Cg(k�ε)|γg = k′)= 0 for any decision rule k′ ∈ M.

(iv) By construction, the only time Ug(s) happens (with positive probability) is from
subjects who use s′ steps of unanchored strategic reasoning for some 0 ≤ s′ ≤ s with
s′ ∈ U , so it follows that

Prg
(
Ug(s)

) =
∑
k′
Prg

(
Ug(s)|γg = k′)Prg(γg = k′)

=
∑

0≤s′≤s�s′∈U
Rg

(
s� s′�ρ

)
Λr

(
s′unanch

)
�

�

Lemma D.5. Suppose Assumptions 2.2 and 4.1. Suppose that the econometrician allows
the possibility of computational mistakes. Suppose that g is a game that satisfies Assump-
tions 4.1(i), 4.1(ii), 4.1(iv), and 4.2. Then {P̃w}W−1

w=1 is identified by the locations of the kinks
in {Pg(Cg(k�ε))}k∈M as a function of ε, for 0< ε< ρ.
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Proof. Suppose that k ∈ M. For 0< ε≤ ρ, the probability of the event Cg(k�ε) in game
g is, using the result of Lemma D.4(ii) and Assumption 4.1(i),

Pg
(
Cg(k�ε)

) =
R∑
r=1

Prg
(
Cg(k�ε)

)
π(r)

=
R∑
r=1

(∑
k′ �=k

Prg
(
Cg(k�ε)|γg = k′)Λr(k′))π(r)

+
R∑
r=1

(
ΔrMg(k�ε�Pr)Λr(k)

)
π(r)�

Since g is a game that satisfies Assumption 4.1(ii), it follows that Prg(Cg(k�ε)|
γg = k′)= 0 for all such decision rules k′ ∈ M with k′ �= k, since ε≤ ρ. Therefore,

Pg
(
Cg(k�ε)

) =
R∑
r=1

(∑
s∈U

Prg
(
Cg(k�ε)|γg = sunanch

)
Λr(sunanch)

)
π(r)

+
R∑
r=1

(
ΔrMg(k�ε�Pr)Λr(k)

)
π(r)�

Since g satisfies Assumption 4.2(i), for any s ∈ U , Prg(Cg(k�ε)|γg = sunanch) is a dif-
ferentiable function of ε, for all 0 < ε < ρ. Under Assumptions 4.2(i), 4.2(iii), or 4.2(iv),

Prg(Cg(k�ε)|γg = sunanch) = ∫
Cg(k�ε)

ζs1g(a)dμ(a;Σs1g) = ∫ c1g(k)+εΩ1g
c1g(k)−εΩ1g

ζs1g(a)dμ(a), where

μ(·) is Lebesgue measure, since Σs1g cannot be a finite set under these conditions
and, therefore, by the condition in footnote 10 is Lebesgue measurable with nonzero
and finite measure, is differentiable in ε. Under Assumption 4.2(ii), Prg(Cg(k�ε)|
γg = sunanch)= 0 for all 0< ε< ρ.

Suppose that r is such that π(r) > 0 and Δr > 0. Suppose that r uses at least one k∗
r ∈

M with positive probability. So it holds that ΔrΛr(k∗
r )π(r) > 0. Therefore, there is a kink

in Pg(Cg(k∗
r � ε)) at ε= Pr since there is a kink inMg(k

∗
r � ε�Pr) at ε= Pr by Lemma D.1(ii).

This uses the fact that Pr < ρ for all r by Assumption 2.2, whereas the above expression
for Pg(Cg(k�ε)) is valid for all ε ≤ ρ, so that the location of all relevant kinks is indeed
identified. Moreover, there can be no other kinks in Mg(k�ε�Pr) for any k ∈ M and 0<
ε< ρ, by Lemma D.1(ii). Consequently, the list of nonzero unique values corresponding
to {Pr1[Δr > 0]1[∑k∈MΛr(k) > 0]1[π(r) > 0]}r is identified by the list of the locations of
the kinks in {Pg(Cg(k�ε))}k∈M as a function of ε, for 0< ε< ρ. �

Lemma D.6. For each game g, define the following quantities.

(i) Let Q2g be the |U | × |U | matrix that has an element in row r and column c that
equals Rg(U(r)�U(c)�ρ).

(ii) Let Q3g be the (W |M|) × |U | matrix that has an element in row r and column c
that equals the probability in game g of the event Cg(M(� r

W 
)� P̃mod(r−1�W )+1) according
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to the distribution of actions used by subjects who use U(c) steps of unanchored strategic
reasoning.

(iii) For each k ∈ M, let Q4gk be the W ×W matrix that has an element in row r and
column c that equals Mg(k� P̃r� P̃c). Then let Q4g be the (W |M|) × (W |M|) matrix that
has (Q4gM(1)� � � � �Q4gM(|M|)) along the diagonal.

Then let

Qg =
⎛
⎜⎝I|M|×|M| 0 0

0 Q2g 0
0 Q3g Q4g

⎞
⎟⎠ �

For any game g satisfying Assumptions 4.1(i)–4.1(v), Pg�θ = Qgη
∗(θ) and Qg is non-

singular.
For any game g satisfying Assumption 4.1(v), or equivalently any game g satisfying

Assumption B.1(iv), Q2g is nonsingular.
For any game g satisfying Assumptions 4.1(ii) and 4.1(iii), or any game g satisfying

Assumptions B.1(ii) and B.1(iii), the first |M| rows of Pg�θ are equal to the first |M| rows of
Qgη

∗(θ).
For any game g, rows |M| + 1 through |M| + |U | of Pg�θ are equal to rows |M| + 1

through |M| + |U | ofQgη∗(θ).
For any game g satisfying Assumptions 4.1(i) and 4.1(ii), the last |W |M rows of Pg�θ

are equal to the lastW |M| rows ofQgη∗(θ).

Proof. Since Rg(s� s′�ρ) = 0 for s′ > s by construction, it follows that Q2g is lower tri-
angular. Since g is a game that satisfies Assumption 4.1(v), the diagonal elements are
nonzero, implying thatQ2g is nonsingular.

By the following arguments, for a game g that satisfies Assumptions 4.1(i) and 4.1(iv),
Q4gk is nonsingular for each k ∈ M. First consider the case that the econometrician
allows the possibility of computational mistakes. Apply repeated elementary row op-
erations: for rows r ≥ 2 (if indeed W ≥ 2), starting with row W and then moving to
the next higher row, subtract row r − 1 from row r and substitute the result into

row r. The resulting matrix ˜̃
Q4gk has element in row r ≥ 2 and column c that equals

Mg(k� P̃r� P̃c)−Mg(k� P̃r−1� P̃c). For a game g that satisfies Assumptions 4.1(i) and 4.1(iv),
by Lemma D.1(iii), this difference is 0 if r − 1 ≥ c and is strictly positive if r ≤ c. There-
fore, row r ≥ 2 has r − 1 leading zeros and then positive elements. In row 1 and column
c, the element is Mg(k� P̃1� P̃c) > 0. Therefore, for a game g that satisfies Assumptions

4.1(i) and 4.1(iv), ˜̃
Q4gk is an upper-diagonal matrix with nonzero elements along the

diagonal, so is nonsingular. Therefore, Q4gk is nonsingular for a game g that satisfies
Assumptions 4.1(i) and 4.1(iv), and, therefore, the matrix Q4g has full rank if g satisfies
Assumptions 4.1(i) and 4.1(iv). Second, consider the case that the econometrician does
not allow computational mistakes. In that case, W = 1 and P̃1 = 0, so Q4gk = 1 has full
rank.

ThenQg is nonsingular since all of the diagonal matrices are nonsingular.
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The first block of |M| rows of η∗(θ) gives the vector of ((1 − Δ)Λ(M(1))� � � � �
(1 − Δ)Λ(M(|M|))). Therefore, since g is a game that satisfies Assumptions 4.1(ii)
and 4.1(iii), the first block of M rows of Qgη∗(θ) is indeed the first block of M rows
of Pg�θ by Lemma D.4(i) (and, similarly, the same would be true if g were a game satis-
fying Assumptions B.1(ii) and B.1(iii)). The second block of |U | rows of η∗(θ) gives the
vector of (Λ(U(1))� � � � �Λ(U(|U |))). Therefore, by Lemma D.4(iv), by definition, it follows
that the second block of |U | rows of Qgη∗(θ) is indeed the second block of |U | rows
of Pg�θ. Finally, the last block of W |M| rows of η∗(θ) gives the vector of (ΔΛ(M(1)) ×
1[P = P̃1]� � � � �ΔΛ(M(1))1[P = P̃W ]�ΔΛ(M(2))1[P = P̃1]� � � �). Also, the last block of
W |M| rows of Pg�θ is (Pg�θ(Cg(M(1)� P̃1))� � � � �Pg�θ(Cg(M(1)� P̃W ))�Pg�θ(Cg(M(2)� P̃1))�

� � �). Therefore, it follows from Lemma D.4(iii), and the fact that g is a game that satis-
fies Assumptions 4.1(i) and 4.1(ii) and the definition ofQ3g, that indeed the last block of
W |M| rows ofQgη∗(θ) is indeed the last block of |W |M rows of Pg�θ. �

Proof of Theorem 4.1. Using the game g that satisfies the conditions of Assump-
tion 4.2, and Lemma D.5, it is possible to identify {P̃w}Ww=1.

Let G be a subset of {1�2� � � � �G} with |G| ≥ 2R− 1 games that satisfy the conditions
of Assumption 4.1. Let G(p) be the pth smallest element of G. Let Gp = {G(1)� � � � �G(p)}.

Let Q(0)G = 1 and Q(p)G = QG(1) ⊗ · · · ⊗ QG(p). Let QG be the block diagonal matrix with

the blocks along the diagonal equal toQ(0)G � � � � �Q
(|G|)
G ;QG is nonsingular as long as each

diagonal block is nonsingular. So since QG(p) is nonsingular for all p by Lemma D.6,

which implies thatQ(p)G is nonsingular by the algebra of the Kronecker product, thenQG
is nonsingular.

Let PG�θ�p ≡ PG(1)�θ ⊗ · · · ⊗ PG(p)�θ. Since actions are independent across games,
PG�θ�p gives the joint distribution of the events C(·), U(·), and C(·� ·) across games Gp.
Let PG�θ = (1�PG�θ�1� � � � �PG�θ�|G|). Let η∗(θ)(0) = 1 and η∗(θ)(p) = η∗(θ)⊗ · · · ⊗ η∗(θ) be
the p-times Kronecker products. Let η∗(θ)= (1�η∗(θ)(1)� � � � �η∗(θ)(|G|)).

Then, using the results of Lemma D.6, it follows from the algebra of the Kro-
necker product that PG�θ�p ≡ PG(1)�θ⊗· · ·⊗PG(p)�θ = (QG(1)η∗(θ))⊗· · ·⊗ (QG(p)η∗(θ))=
(QG(1) ⊗ · · · ⊗QG(p))(η∗(θ)⊗ · · · ⊗η∗(θ))=Q(p)G η∗(θ)(p). Also PG�θ =QGη∗(θ).

Let the true parameters of the data generating process be Θ01� � � � �Θ0R̃0
and π0(1)�

� � � �π0(R̃0), where R̃0 ≤ R is the number of strategic behavior rules that are used in
the population and where Θ0r is not observationally equivalent to Θ0r′ for all r �= r ′
per Definition 1. So, by construction, π0(·) > 0. Then, by the above, it follows that
PG�Θ0r =QGη∗(Θ0r) for each r. Let Υ ∗

0 = (η∗(Θ01) · · · η∗(Θ0R̃0
)). Since no pair of strate-

gic behavior rules are observationally equivalent, by Lemma D.3, the columns of Υ ∗
0 are

distinct. Then PG�0 =QGΥ ∗
0 π0, where PG�0 is the observed joint distribution of actions in

games G.
Suppose that there were an observationally equivalent specification of the param-

eters Θ1· and π1(·), with corresponding Υ ∗
1 , such that PG�0 = QGΥ ∗

1 π1, where again by
construction no columns of Υ ∗

1 correspond to a rule r such that π1(r) = 0 and no pair

of strategic behavior rules are observationally equivalent. Let Υ
∗

collect the unique
columns of (Υ ∗

0 Υ
∗
1 ). Similarly, letπ be the corresponding differences betweenπ0 andπ1.
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If column c of Υ
∗

exists in both Υ ∗
0 and Υ ∗

1 as columns c0 and c1, respectively, then

set πc = π0(c0) − π1(c1). If column c of Υ
∗

exists only in Υ ∗
0 as column c0, then set

πc = π0(c0), and if column c of Υ
∗

exists only in Υ ∗
1 as column c1, then set πc = −π1(c1).

Then 0 =QGΥ
∗
π. By Lemma D.2, since the number of columns of Υ

∗
is at most 2R and

since |G| ≥ 2R− 1, Υ
∗

has full column rank and, therefore, QGΥ
∗

has full column rank
since QG is nonsingular, so π = 0. Therefore, any strategic behavior rules that appear in
specifications 0 and 1 are used with equal probability, and there are no strategic behav-
ior rules used only in specifications 0 and 1, since no elements of π0 and π1 are equal to
zero by construction.

Therefore, Υ ∗
0 and Υ ∗

1 contain exactly the same columns, up to permuting the or-
der of the columns, and, the probabilities of the corresponding strategic behavior rules
are also equal across specifications. Note, in particular, that this implies that the set of
η∗(Θ0r) for r = 1�2� � � � � R̃ and the set of η∗(Θ1r) for r = 1�2� � � � � R̃ are equal up to per-
mutations of the labels. Since η∗ is injective in the sense of Lemma D.3, the two specifi-
cations of the parameters are the same up to observational equivalence in Definition 1
(up to permutations of the labels), so the parameters are point identified in the sense of
Definition 2. �

Proof of Theorem B.1. Let GM be a subset of {1�2� � � � �G} with at least |GM| ≥ 2R− 1
games that satisfy the first set of conditions of Assumption B.1. Let GM(p) be the pth
smallest element of GM. Let Gp�M = {GM(1)� � � � �GM(p)}. Let Q(0)GM

= 1 and let Q(p)GM
=

I|M|×|M| ⊗ · · · ⊗ I|M|×|M| be the p-times Kronecker product of I|M|×|M|. Let QGM be

the block diagonal matrix with the blocks along the diagonal equal toQ(0)GM
� � � � �Q

(|GM|)
GM

;

QGM is nonsingular as long as each diagonal block is nonsingular. So sinceQ(p)GM
is non-

singular by the algebra of the Kronecker product,QGM is nonsingular.
Let GU be a subset of {1�2� � � � �G} with at least |GU | ≥ 2R− 1 games that satisfy the

second set of conditions of Assumption B.1. Let GU (p) be thepth smallest element of GU .
Let Gp�U = {GU (1)� � � � �GU (p)}. LetQ(0)GU

= 1 andQ(p)GU
=Q2GU (1)⊗· · ·⊗Q2GU (p). LetQGU be

the block diagonal matrix with the blocks along the diagonal equal to Q(0)GU
� � � � �Q

(|GU |)
GU

;
QGU is nonsingular as long as each diagonal block is nonsingular. So since Q2GU (p) is

nonsingular for all p by Lemma D.6, which implies that Q(p)GU
is nonsingular by the alge-

bra of the Kronecker product,QGU is nonsingular.
Let PGM(p)�θ�M be the first |M| rows of PGM(p)�θ. Let PGM�θ�p�M ≡ PGM(1)�θ�M ⊗

· · · ⊗ PGM(p)�θ�M. Since the actions in the games are independent across games,
PGM�θ�p�M gives the joint distribution of the events C(·) across games Gp�M. Let
PGM�θ�M = (1�PGM�θ�1�M� � � � �PGM�θ�|GM|�M). Let η∗

M(θ) be the first |M| rows of η∗(θ).
Let η∗

M(θ)(0) = 1 and η∗
M(θ)(p) = η∗

M(θ)⊗ · · · ⊗η∗
M(θ) be the p-times Kronecker prod-

uct. Let η∗
M(θ)= (1�η∗

M(θ)(1)� � � � �η∗
M(θ)(|GM|)).

Let PGU (p)�θ�U be rows |M| + 1 through |M| + |U | of PGU (p)�θ. Let PGU �θ�p�U ≡
PGU (1)�θ�U ⊗ · · · ⊗ PGU (p)�θ�U . Since the actions in the games are independent across
games, PGU �θ�p�U gives the joint distribution of the events U(·) across games Gp�U . Let
PGU �θ�U = (1�PGU �θ�1�U � � � � �PGU �θ�|GU |�U ). Let η∗

U (θ) be rows |M| + 1 through |M| + |U | of
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η∗(θ). Let η∗
U (θ)

(0) = 1 and η∗
U (θ)

(p) = η∗
U (θ) ⊗ · · · ⊗ η∗

U (θ) be the p-times Kronecker

product. Let η∗
U (θ)= (1�η∗

U (θ)
(1)� � � � �η∗

U (θ)
(|GU |)).

Then, using the results of Lemma D.6, it follows from the algebra of the Kronecker

product that PGM�θ�p�M ≡ PGM(1)�θ�M ⊗ · · · ⊗ PGM(p)�θ�M = (I|M|×|M|η∗
M(θ)) ⊗ · · · ⊗

(I|M|×|M|η∗
M(θ))= (I|M|×|M| ⊗ · · ·⊗I|M|×|M|)(η∗

M(θ)⊗· · ·⊗η∗
M(θ))=Q(p)GM

η∗
M(θ)(p).

Also PGM�θ�M =QGMη
∗
M(θ).

Similarly, using the results of Lemma D.6, it follows from the algebra of the Kro-

necker product that PGU �θ�p�U ≡ PGU (1)�θ�U ⊗ · · · ⊗ PGU (p)�θ�U = (Q2GU (1)η
∗
U (θ)) ⊗ · · · ⊗

(Q2GU (p)η
∗
U (θ)) = (Q2GU (1) ⊗ · · · ⊗ Q2GU (p))(η

∗
U (θ) ⊗ · · · ⊗ η∗

U (θ)) = Q
(p)
GU
η∗
U (θ)

(p). Also

PGU �θ�U =QGUη
∗
U (θ).

Then let P̃GM�GU �θ = (PGM�θ�M�PGU �θ�U ). Let η∗
M�U (θ) = (η∗

M(θ)�η∗
U (θ)) and let

QGM�GU be the partioned matrix with (QGM�QGU ) along the diagonal.

Let the true parameters of the data generating process be Θ01� � � � �Θ0R̃0
and π0(1)�

� � � �π0(R̃0), where R̃0 ≤ R is the number of strategic behavior rules that are used in

the population and Θ0r is not observationally equivalent ignoring the magnitude of

computational mistakes to Θ0r′ for all r �= r′ per Definition 3. So, by construction,

π0(·) > 0. Then, by the above, it follows that PGM�Θ0r �M =QGMη
∗
M(Θ0r) and PGU �Θ0r �U =

QGUη
∗
U (Θ0r). Let Υ ∗

0�M = (η∗
M(Θ01) · · · η∗

M(Θ0R̃0
)) and Υ ∗

0�U = (η∗
U (Θ01) · · · η∗

U (Θ0R̃0
)).

By Assumption B.2, the columns of Υ ∗
0�M are distinct and the columns of Υ ∗

0�U are dis-

tinct. Then PGM�0�M = QGMΥ
∗
0�Mπ0, where PGM�0�M is the observed joint distribution

of actions in games GM, and PGU �0�U =QGUΥ
∗
0�Uπ0, where PGU �0�U is the observed joint

distribution of actions in games GU .

Suppose that there were an observationally equivalent specification of the pa-

rameters Θ1· and π1(·), with corresponding Υ ∗
1�M and Υ ∗

1�U , such that PGM�0�M =
QGMΥ

∗
1�Mπ1 and PGU �0�U = QGUΥ

∗
1�Uπ1, where again by construction the columns of

Υ ∗
1�M and the columns of Υ ∗

1�U are distinct, and no columns correspond to a rule r

such that π1(r) = 0. By the same arguments as finishes the proof of Theorem 4.1, since

|GM| ≥ 2R − 1 and |GU | ≥ 2R − 1, (π(r)� (1 − Δr)Λr(M(1))� � � � � (1 − Δr)Λr(M(|M|)))
and (π(r)�Λr(U(1))� � � � �Λr(U(|U |))) are point identified up to permutations of the la-

bels in the sense that the values of those two quantities must be equal across specifi-

cations of the parameters, up to permutations of the labels. And then, since π(r) and

π(r′) are distinct for r ′ �= r by Assumption B.2, it is possible to point identify (π(r)�

(1 −Δr)Λr(M(1))� � � � � (1 −Δr)Λr(M(|M|))�Λr(U(1))� � � � �Λr(U(|U |))), in the sense that

that quantity must be equal across specifications of the parameters, up to permuta-

tions of the labels, by “piecing together” the two point identification results on (π(r)�

(1 −Δr)Λr(M(1))� � � � � (1 −Δr)Λr(M(|M|))) and (π(r)�Λr(U(1))� � � � �Λr(U(|U |))).
Note, in particular, that this implies that the set of η∗∗(Θ0r) for r = 1�2� � � � � R̃ and the

set of η∗∗(Θ1r) for r = 1�2� � � � � R̃ are equal up to permutations of the labels. Since η∗∗ is

injective in the sense of Lemma D.3, the two specifications of the parameters are the

same up to observational equivalence in Definition 3 (up to permutations of the labels),

so the parameters are point identified in the sense of Definition 4. �
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Appendix E: Verifying model assumptions in the empirical application

This establishes that the sufficient conditions for point identification are satisfied in the
empirical application. The same approach would be taken in any empirical application.

First, it is necessary to specify the sets A and U from Assumption 2.1. Overall, based
on visually inspecting the figures from Section 5.2 and Appendix F, it appears that there
is essentially no subject who uses three or more steps of anchored strategic reasoning,
basically the standard finding in experimental game theory. Therefore, Assumption 2.1
is maintained with A = {1anch�2anch}. Further, Assumption 2.1 is maintained with U =
{0unanch�1unanch}, largely because there are not enough games in this data set such that
the predictions of 1 and 2 steps of unanchored strategic reasoning differ sufficiently to
guarantee point identification of the model with a larger set for U , given the conditions
in Assumptions 4.1 or B.1. See below for further discussion of Assumptions 4.1 or B.1.

Second, Assumption 2.2 states that the model of computational mistakes is correct
and, therefore, is directly assumed by the econometrician. Specifically, the empirical ap-
plication rules out computational mistakes. Because computational mistakes are ruled
out, ρ= 0.

Third, verifying Assumption 4.1 (or, by similar steps, Assumption B.1) requires in-
specting Table 1 and checking which games satisfy the conditions in Assumption 4.1 (or
the weaker conditions in Assumption B.1):

• Assumption 4.1(i) requires that the game has a nondegenerate action space. Obvi-
ously, all games in this data set satisfy this.

• Assumption 4.1(ii) requires that the game is such that the actions associated with
the strategies in M (in this application, 1 and 2 steps of anchored strategic reasoning,
and Nash equilibrium) are all distinct. It is easy to directly verify by inspecting Table 1
that games 1, 2, 3, 9, 10, 11, 12, 13, 14, 15, and 16 satisfy this condition. More generally,
the condition requires that if computational mistakes were to be allowed, then those
actions would need to separated from each other by a sufficient magnitude.

• Assumption 4.1(iii) requires that if a certain number of steps of unanchored strate-
gic reasoning in U (in this application, 0 and 1 steps) predict a finite set of actions, then
those actions are distinct from the predictions of the steps of anchored strategic reason-
ing in A and Nash equilibrium. Since no game is such that 0 or 1 steps of unanchored
strategic reasoning predict a finite set of actions, this condition is satisfied in all games
in the data set.

• Assumption 4.1(iv) requires that the game be such that the actions associated with
the strategies in M (in this application, 1 and 2 steps of anchored strategic reasoning
and Nash equilibrium) are not on both endpoints of the action space. Since the action
spaces are all intervals, it is not possible for any given action to be on both endpoints,
so all games in this data set satisfy this. More generally, the condition requires that if
computational mistakes were to be allowed, then those actions would be required to be
separated from at least one of the endpoints of the action space by a sufficient magni-
tude.
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• Assumption 4.1(v) requires that the game be such that, for each s ∈ U , there are ac-
tions used by s steps of unanchored strategic reasoning that are not used by s′ steps of
unanchored strategic reasoning (for each s′ ∈ U with s′ > s) nor used by the strategies in
M. In this application, that means there must be actions used by 0 steps of unanchored
strategic reasoning, but not used by 1 step of unanchored strategic reasoning, nor used
by 1 or 2 steps of anchored strategic reasoning, nor used by Nash equilibrium. Also this
means there must be actions used by 1 step of unanchored strategic reasoning but not
used by 1 or 2 steps of anchored strategic reasoning, nor used by Nash equilibrium. It
is easy to directly verify by inspecting Table 1 that games 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 14,
15, and 16 satisfy this condition. More generally, the condition requires that if compu-
tational mistakes were to be allowed, it would be necessary that these actions are not
just different from the actions used by the strategies in M, but also separated from the
actions used by the strategies in M by a sufficient magnitude.

Therefore, games 2, 3, 9, 10, 11, 12, 14, 15, and 16 satisfy all these conditions, a total
of 9 games, and, therefore, Assumption 4.1 is satisfied for any R≤ 5.

Finally, verifying Assumption 4.2 requires establishing that at least one game satisfies
the extra condition in Assumption 4.2 among the games satisfying Assumptions 4.1(i),
4.1(ii), and 4.1(iv), or, in other words, in this application among games 1, 2, 3, 9, 10, 11,
12, 13, 14, 15, and 16. But recall from above that ρ= 0 since computational mistakes are
ruled out in the empirical application. In that case, note that logically either Assumption
4.2(i) or 4.2(ii) must be true, since the singleton c1g(k)must either be a subset or disjoint
from any given set. Therefore, Assumption 4.2 is clearly satisfied for all games satisfying
Assumptions 4.1(i), 4.1(ii), and 4.1(iv).

Note that even if computational mistakes were to be allowed, this assumption can
be easily verified as true for sufficiently small ρ (maximum magnitude of computational
mistakes). For example, consider game g = 2. Verifying Assumption 4.2 holds for game
g= 2 and sufficiently small ρ requires simply verifying the following based on inspecting
Table 1:

• For k= 1anch and s = 0unanch, notice that c1g(1anch)= 150 is in the interior of Σ0
1g =

[100�900], so clearly [c1g(1anch) − ρΩ1g� c1g(1anch) + ρΩ1g] is a subset of Σ0
1g for small

enough ρ.

• For k= 1anch and s = 1unanch, notice that c1g(1anch)= 150 is in the interior of Σ1
1g =

[100�250], so clearly again [c1g(1anch) − ρΩ1g� c1g(1anch) + ρΩ1g] is a subset of Σ1
1g for

small enough ρ.

• For k= 2anch and s = 0unanch, notice that c1g(2anch)= 175 is in the interior of Σ0
1g =

[100�900], so clearly [c1g(2anch) − ρΩ1g� c1g(2anch) + ρΩ1g] is a subset of Σ0
1g for small

enough ρ.

• For k= 2anch and s = 1unanch, notice that c1g(2anch)= 175 is in the interior of Σ1
1g =

[100�250], so clearly again [c1g(2anch) − ρΩ1g� c1g(2anch) + ρΩ1g] is a subset of Σ1
1g for

small enough ρ.
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• For k = NE and s = 0unanch, notice that c1g(NE) = 100 = αLg(1) is on the lower
bound of Σ0

1g = [100�900], so clearly [c1g(NE)� c1g(NE)+ρΩ1g] is a subset of Σ0
1g for small

enough ρ.

• For k = NE and s = 1unanch, notice that c1g(NE) = 100 = αLg(1) is on the lower
bound of Σ1

1g = [100�250], so clearly again [c1g(NE)� c1g(NE) + ρΩ1g] is a subset of Σ1
1g

for small enough ρ.

More generally, establishing Assumptions 4.1 and 4.2 can be accomplished by a
computerized algorithm that takes as inputs the information in Table 1 and repli-
cates the steps of verifying the assumptions just described. Further, note that veri-
fying Assumption B.1 follows similar steps to verifying Assumption 4.1, since the as-
sumptions are similar. Assumption B.2 rules out the described knife-edge situations,
and is directly assumed by the econometrician. Finally, note that establishing these
assumptions concerns the structure of the games, and, therefore, the experiment can
be designed to ensure that the conditions are indeed satisfied before conducting the
experiment.

Appendix F: Additional empirical cumulative distribution functions from

the empirical application

The following figures are empirical cumulative distribution functions of actions taken
by subjects in games 2–16, as in Section 5.2.

(a) Game 2 (b) Game 3
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(c) Game 4 (d) Game 5

(e) Game 6 (f) Game 7

(g) Game 8 (h) Game 9
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(i) Game 10 (j) Game 11

(k) Game 12 (l) Game 13

(m) Game 14 (n) Game 15
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(o) Game 16

Appendix G: Estimates of the model allowing computational mistakes

Table 4 reports estimates of the model allowing uniformly distributed computational
mistakes. It is assumed that Pr = 2�5

200 for all rules r.1 The results are almost identical to
the model not allowing computational mistakes, and estimates ofΔr are close to zero for
all r.

Table 4. Estimates allowing computational mistakes.

Λ Probability of

Anchored Reasoning Unanchored Reasoning Type Mistake

1 2 0 1 Nash

r Λr(1anch) Λr(2anch) Λr(0unanch) Λr(1unanch) Λr(NE) π(r) Δr

1
0�10 0�04 0�49 0�31 0�07 0�44 0�00

(0�08�0�12) (0�03�0�06) (0�37�0�55) (0�25�0�42) (0�03�0�10) (0�39�0�55) (0�00�0�00)

2
0�70 0�00 0�15 0�11 0�04 0�20 0�00

(0�59�0�77) (0�00�0�00) (0�09�0�25) (0�06�0�18) (0�02�0�06) (0�14�0�29) (0�00�0�00)

3
0�21 0�44 0�10 0�20 0�05 0�15 0�07

(0�04�0�31) (0�40�0�79) (0�00�0�19) (0�00�0�32) (0�00�0�09) (0�10�0�23) (0�00�0�12)

4
0�05 0�04 0�05 0�40 0�46 0�14 0�00

(0�01�0�08) (0�00�0�07) (0�00�0�08) (0�33�0�51) (0�41�0�60) (0�08�0�26) (0�00�0�00)

5
0�09 0�89 0�00 0�02 0�00 0�06 0�00

(0�00�0�16) (0�86�1�00) (0�00�0�00) (0�00�0�04) (0�00�0�00) (0�00�0�08) (0�00�0�00)

Note: See notes to Table 3.

1Theorem 4.1 establishes that the magnitude of the computational mistakes Pr is identified if Δr > 0.
That is required because if Δr = 0 for some rule r, then that rule does not make computational mistakes,
so Pr has no observable implications. This is not a concern based on Theorem B.1, which applies when Pr
are known by the econometrician. The estimates of Δrs are very close to 0, which makes identification and
estimation of the corresponding Prs very tenuous. Indeed, precisely because of the small values of the Δrs,
the Prs are essentially irrelevant.
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