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Minimum distance estimators for dynamic games

Sorawoot Srisuma
School of Economics, University of Surrey

We develop a minimum distance estimator for dynamic games of incomplete in-
formation. We take a two-step approach, following Hotz and Miller (1993), based
on the pseudo-model that does not solve the dynamic equilibrium so as to cir-
cumvent the potential indeterminacy issues associated with multiple equilibria.
The class of games estimable by our methodology includes the familiar discrete
unordered action games as well as games where players’ actions are monotone
(discrete, continuous, or mixed) in the their private values. We also provide con-
ditions for the existence of pure strategy Markov perfect equilibria in monotone
action games under increasing differences condition.

Keywords. Dynamic games, Markov perfect equilibrium, semiparametric esti-
mation with nonsmooth objective functions.
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1. Introduction

We propose a new estimator for a class of dynamic games of incomplete information
that builds on the Markov discrete decision framework reviewed in Rust (1994). Our es-
timator adds to a growing list of methodologies to analyze empirical games discussed
in the surveys of Ackerberg et al. (2005) and Aguirregabiria and Mira (2010). Two well
known obstacles to structural estimation of dynamic games arise from multiple equilib-
ria and the computational value functions that represent future expected returns. More
specifically, for each structural parameter, the model may have nonunique equilibria
that predict different distributions of actions and even when there are no issues of equi-
librium selection, it is numerically demanding to evaluate the value functions that are
defined as fixed points of some nonlinear functional equations. We take a two-step ap-
proach that does not solve out the full dynamic optimization problem and is designed
to circumvent these issues.
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We begin with an assumption that pure strategy Markov perfect equilibria exist and
data are generated from a single equilibrium. Most two-step estimators in the literature,
following Hotz and Miller’s (1993) work in a single agent discrete choice problem, con-
sider the pseudo-model where the intractable value functions are replaced by easy to
compute policy value functions that can be constructed using beliefs observed from the
data. Each player’s pseudo-decision problem can then be interpreted as playing a single
stage game against nature. When the pseudo-decision problem has a unique solution
almost surely, each player’s best response is a pure strategy so that any candidate struc-
tural parameter is mapped into an implied distribution function that defines a com-
plete pseudo-model (as opposed to incomplete models, for instance, see Tamer (2003)).
Conditions for the existence of Markov perfect equilibria, as well as the uniqueness of
the solution to pseudo-decision problems, have been established for games where play-
ers actions are modeled to be (unordered) discrete and players’ private values enter the
payoff functions additively; see Aguirregabiria and Mira (2007, hereafter AM), Bajari et
al. (2009), and Pesendorfer and Schmidt-Dengler (2008, hereafter PSD).1 In an indepen-
dent work, Schrimpf (2011) also recently proposed an estimator for continuous action
games. While the aforementioned papers make use of the pseudo-decision problem and
focus on games with a single type of actions, Bajari et al. (2007, hereafter BBL) took a dif-
ferent approach, using forward simulation, that can handle models with both discrete
and/or continuous decisions. BBL’s methodology is versatile; in particular, it has been
applied to model games where players’ actions are monotone in their private values; for
some examples, see Gowrisankaran et al. (2010), Ryan (2012), and Santos (2010).

The main contribution of this paper is to provide an alternative estimator for a large
class of games that includes the models considered in BBL and their subsequent appli-
cations. A distinctive feature of BBL’s methodology is the use of inequality restrictions
to construct objective functions. Since little guidance on how to select inequalities ex-
ists, we show that some popular classes of inequalities can lead to objective functions
that do not have unique (minimizing) solutions as the sample size tends to infinity, even
when the underlying model is actually point-identified. Our estimator is obtained by
minimizing the distance between distributions of actions observed from the data and
predicted by the pseudo-model. We provide a set of conditions to ensure our estimator
is consistent and asymptotically normal.

We also contribute by providing important foundations for the modeling of games
where players play monotone strategies. The existence of pure strategy Markov equi-
libria is often assumed in dynamic games where players employ monotone strategies
with respect to their private information; for examples, see BBL, Gowrisankaran et al.
(2010) (ordered discrete action), and Schrimpf (2011) (continuous action). We provide
primitive conditions based on increasing differences that ensure monotone pure strat-
egy Markov equilibria exist for dynamic games when the action variable can be discrete,
continuous, or a mixture of both. We also show that the same conditions are sufficient
for each player’s best response to the pseudo-decision problem to be a pure strategy al-
most surely. Therefore, the pseudo-model can bypass the issues associated with multiple
equilibria for this class of games.

1Bajari et al. (2009) also considered a one-step estimator.



Quantitative Economics 4 (2013) Minimum distance estimators for dynamic games 551

BBL defined their estimator using a system of moment inequality restrictions im-
plied by the equilibrium condition. Their estimator satisfies a necessary condition of
an equilibrium that the implied expected return from the optimal strategy is at least as
large as the returns from employing alternative strategies, where each alternative strat-
egy is represented by an inequality. To give an intuition of why inequality selection may
have a nontrivial implication, suppose the parameter of interest is uniquely identified
by the inequality restrictions implied by the equilibrium. However, the equilibrium im-
poses that inequalities must hold for all alternative strategies. If we restrict our attention
to certain classes of inequalities, for example, additive or multiplicative perturbations,
these inequalities may not be able to identify the parameter of interest in the sense that
there are other elements in the parameter space that also satisfy these less restrictive
sets of inequality restrictions. Our comment is closely related to the general issue of
consistent estimation in conditional moment models. Particularly, in a familiar instru-
mental variable framework, Domínguez and Lobato (2004) provided explicit examples
when there is a unique value in the parameter space that satisfies a conditional mo-
ment (equality) restriction, but the uniqueness is lost when the conditional moment
is converted into a finite number of unconditional moments. Domínguez and Lobato
(2004) and Khan and Tamer (2009) also showed how to construct objective functions
that preserve the identifying information content of conditional moment models com-
monly used in economics, with equality and inequality restrictions, respectively. How-
ever, their techniques are not applicable to BBL’s estimation methodology. We show that
the loss of identifying information associated with BBL’s inequality selection problem
can occur even without any conditioning variable.

Our estimator is motivated by a characterization of a Markov perfect equilibrium as
fixed points of an operator that maps beliefs into distributions of best responses. Thus,
our construction of the pseudo-model can be seen as a generalization of AM and PSD,
who provided analogous characterizations for unordered discrete games that also play
central roles in their estimation methodologies. We show that the game they consid-
ered is included in our general setup. We define a class of minimum distance estimators
from the characterization of the equilibrium. Our estimation methodology proceeds in
two stages. In the first stage, we use the distributions of actions from the data as the
nonparametric beliefs to simulate the distributions of the pseudo-model implied best
responses. We then compare the simulated distributions with the nonparametric distri-
butions in the second stage by minimizing some L2 distance.

We prove our equilibrium existence results by closely following the arguments in
Athey (2001), who showed that pure strategy equilibria exist for static games of incom-
plete information under single crossing conditions. Athey’s results are amenable to the
dynamic games we consider once we restrict ourselves to players playing stationary
Markov strategies. The existence of Markov equilibria in other related games can be
found in AM and PSD for a class of unordered discrete action games, and in Doraszelski
and Satterthwaite (2010) for games with entry/exit decisions with investment decisions.

Throughout the paper, we treat the transition law of the observed states nonpara-
metrically since the transition law is a model primitive about which we often have little
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information. We also maintain a common assumption in this literature that the observ-
able states take finitely many values. Therefore, the estimation problem is semiparamet-
ric when the action variable is continuous. The effective rate of convergence of the non-
parametric estimator in our methodology is determined by a one-dimensional object,
which is consistent with the nature of a simultaneous-move game where each player
forms an expectation by conditioning only on her action. Therefore, our proposed esti-
mator does not suffer from the nonparametric curse of dimensionality with respect to
the number of players. This is in contrast to extending the forward simulation method of
BBL (Step 3, p. 1343) to estimate a semiparametric model, where future states are drawn
conditionally on the actions of all players.2 We note that it is also possible to extend
our estimation procedure to allow for continuous states, as illustrated by Srisuma and
Linton (2012) when action is discrete, although this may be of limited practical interest
when the action is also continuous.

The rest of the paper proceeds as follows. Section 2 introduces the class of games
that are estimable by our two-step approach. We provide the details of our methodology
in Section 3. A general large sample theory is given in Section 4. Section 5 reports results
from Monte Carlo studies, where we also consider the performance of BBL estimators
when the objective functions used cannot identify the parameter of interest in the limit.
Section 6 concludes. The Appendices are available in a supplementary file on the journal
website, http://qeconomics.org/supp/266/supplement.pdf. Appendix A concerns the
issue of consistent estimation using the BBL methodology; it contains three parts (A.1–
A.3). In Appendix A.1, we give two examples where the inequality restrictions imposed
by the equilibrium are satisfied by a unique element in the parameter space, but the
uniqueness is lost when some well known subclasses of all inequalities are considered.
In Appendix A.2, we show that a simple class of inequalities can be used to construct ob-
jective functions that preserve the identifying information from the equilibrium in dis-
crete action games where players’ best responses are characterized by some cutoff rules,
that is, by choosing alternative strategies based on perturbing the cutoff values only in
the first period. The suggested inequalities are applicable for unordered and ordered
action games. Appendix A.3 provides some additional discussion. Appendix B contains
proofs of the theorems.

2. Markovian games

This section introduces the class of estimable games for our methodology. We begin
by describing the elements of the general model and defining the equilibrium concept.
We then consider the players’ decision problems and show that when players’ best re-
sponses to any Markovian beliefs are pure strategies almost surely, then the equilibrium
can be characterized by a fixed point of an operator that maps beliefs into distributions
of best responses. We end the section by providing examples of Markovian games that
have been used in the literature. In particular, we study in detail the games where payoffs
satisfy an increasing differences condition.

2BBL only considered a fully parametric estimation framework.

http://qeconomics.org/supp/266/supplement.pdf
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2.1 Model

We consider a dynamic game with I players, indexed by i ∈ I = {1� � � � � I}, over an infinite
time horizon. The elements of the game in each period are as follows.

Actions. We denote the action variable for player i by ait ∈Ai. Let at = (a1t � � � � � aIt) ∈
A = A1 × · · · ×AI . We will also occasionally abuse notation and write at = (ait �a−it),
where a−it = (a1t � � � � � ai−1t � ai+1t � � � � � aIt) ∈A−i =A \Ai.

States. Player i’s information set is represented by the state variables sit ∈ Si, where
sit = (xit� εit) such that xit ∈ Xi is common knowledge to all players and εit ∈ Ei de-
notes private information only observed by player i. For notational simplicity, we set
xit = xt for all i; this is without any loss of generality as we can define xt = (x1t � � � � � xIt) ∈
X . We use si and (x�εi) interchangeably. We define (st � s−it �εt �ε−it �E) analogously to
(at �a−it �A) and denote the support of st by S =X × E .

State Transition. Future states are uncertain. Players’ actions and states today af-
fect future states. The evolution of the states is summarize by a Markov transition law
P(st+1|st �at).

Per Period Payoff Functions. Each player has a payoff function, ui :A×Si → R, that
is time separable. The payoff function for player i can depend generally on (at � xt� εit),
but not directly on ε−it .

Discounting Factor. Future period’s payoffs are discounted at the rate βi ∈ (0�1) for
each player.

Every period, all players observe their state variables and then they choose their ac-
tions simultaneously. We consider a Markovian framework where players’ behavior is
stationary across time and players are assumed to play pure strategies. More specif-
ically, for some αi :Si → Ai, ait = αi(sit) for all i, t, so that whenever sit = siτ , then
αi(sit) = αi(siτ) for any τ. Next, we introduce three modeling assumptions that are as-
sumed to hold throughout the paper.

Assumption M1 (Conditional Independence). The transitional distribution of the
states has the factorization P(xt+1�εt+1|xt�εt �at )=Q(εt+1)G(xt+1|xt�at), whereQ is the
cumulative distribution function of εt and G denotes the transition law of xt+1 condi-
tioning on at and xt .

Assumption M2 (Independent Private Values). The private information is indepen-
dently distributed across players, that is, Q(ε) = ∏I

i=1Qi(εi), where Qi denotes the cu-
mulative distribution function of εit .

Assumption M3 (Discrete Public Values). The support of xt is finite such that X =
{x1� � � � � xJ} for some J <∞.
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Assumptions M1 and M2 generalize Rust’s (1987) conditional independence frame-
work to dynamic games. They are the key restrictions commonly imposed on the class
of games in this literature. Assumption M1 implies that εt is independent of xt and all
variables in the past, and εt is only correlated to xt+1 through the choice variables at .
It is conceptually straightforward to relax the former condition and allow for εt to be
conditionally independent of the past given xt , although this is rarely done in practice.
Assumption M2 rules out games with correlated private values. Assumption M3 is a sim-
plifying assumption that has an important practical implication, however it is not nec-
essary for a general estimation methodology; for examples, see Bajari et al. (2009) and
Srisuma and Linton (2012).

Under M1 and M2, player i’s beliefs, which we denote by σi, are a stationary distri-
bution of at = (α1(s1t )� � � � �αI(sIt)) conditional on xt for some pure Markov strategies
(α1� � � � �αI). Then following Maskin and Tirole (2001), we define the equilibrium con-
cept as follows.

Definition 1 (Markov Perfect Equilibrium). A collection (α�σ) = (α1� � � � �αI�σ1� � � � �

σI) is a Markov perfect equilibrium if the following statements hold:

(i) For all i, αi is a best response to α−i given the beliefs σi at almost all states x.

(ii) All players use Markov strategies.

(iii) For all i, the beliefs σi are consistent with the strategies α.

2.2 Players’ decision problems

To characterize the players’ optimal behaviors, we consider the decision problem faced
by player i for a given σi: for all si,

max
ai∈Ai

{
Eσi

[
ui(ait �a−it � si)|sit = si� ait = ai

]
+βiEσi

[
Vi(sit+1;σi)|sit = si� ait = ai

]}
� (1)

where Vi(si;σi)=
∞∑
τ=t

βτ−tEσi
[
ui(aτ� siτ)|sit = si

]
�

The subscript σi on the expectation operator makes explicit that present and future ac-
tions are integrated out with respect to the beliefs σi; in particular, player i forms an
expectation for all players’ future actions including herself and for today’s actions of op-
posing players. The function Vi is a policy value function since the expected discounted
return need not be an optimal value from an optimization problem since σi can be any
beliefs, not necessarily equilibrium beliefs. Note that the transition law for future states
is completely determined by the primitives and the beliefs.3 Thus, we can interpret each
player’s decision problem in (1) as a single stage game against nature that is determined

3First, note that the use of Markovian beliefs imply that I(st+τ�at+τ) = I(st+τ) and I(sit+τ� ait+τ) =
I(sit+τ), where I(·) denotes the information set of (·). For some random vectors X and Y , let fX�Y and
fX|Y denote the joint density of (X�Y) and X given Y , respectively (components of X and Y can be either
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by Markov beliefs. Clearly, any strategy profile that solves the decision problems for all i,
and is consistent with the beliefs satisfies conditions in Definition 1 and is an equilib-
rium strategy. To avoid multiple predictions of best responses, the class of games es-
timable by our methodology requires (1) to have a unique solution almost surely. In this
subsection, we show that Markov equilibrium can be represented by a fixed point of a
particular mapping when the solution to the decision problem exists and is unique.

First we simplify the objective function of the decision problem by incorporating our
modeling assumptions. It is convenient to write Vi recursively as

Vi(si;σi)=Eσi
[
ui(at � sit)|sit = si

] +βiEσi
[
Vi(sit+1;σi)|sit = si

]
�

The ex ante value function can be obtained by taking the conditional expectation of Vi
with respect to xt :

Eσi
[
Vi(sit;σi)|xt

] =Eσi
[
ui(at � sit)|xt

] +βiEσi
[
Vi(sit+1;σi)|xt

]
�

Under M1, by the law of iterated expectation, Eσi [Vi(sit+1;σi)|xt] = Eσi [Eσi [Vi(sit+1;σi)|
xt+1]|xt], so that the ex ante value can be written as a solution to the linear equation

mi(σi)= ri(σi)+ Li�σimi(σi)�

where mi(σi) = Eσi [Vi(sit;σi)|xt = ·], ri(σi) = Eσi [ui(at � sit)|xt = ·], and Li�σi is a condi-
tional expectation operator so that Li�σiφ= βiEσi [φ(xt+1)|xt = ·] for anyφ :X → R. Note
that mi(σi) exists and is unique under great generality since Li�σi is typically a contrac-
tion map.4 Also, under M1, the choice-specific expected future return under beliefs σi
satisfies Eσi [Vi(sit+1;σi)|sit � ait] = Eσi [Eσi [Vi(sit+1;σi)|xt+1]|xt�ait], which can be repre-
sented by gi(σi) so that

gi(σi)= Hi�σimi(σi)�

continuous, discrete, or a mixture). Then, for a one-step-ahead transition, by M1,

fst+1|sit �ait = fxt+1�εt+1|xt �εit �ait

= fεt+1fxt+1|xt �ait �

where fεt+1 and fxt+1|xt �ait can be deduced from the model primitives given any beliefs σi. For two periods
ahead, note that fst+2|sit �ait = ∫

fst+2�st+1|sit �ait dst+1, using the same line of arguments as above:

fst+2�st+1|sit �ait = fst+2|st+1�sit �ait fst+1|sit �ait

= fεt+2fxt+2|xt+1�at+1fεt+1fxt+1|xt �ait �

Similar arguments can be applied recursively for any future periods.
4Let X be some compact subset of R

LX and let B be a space of bounded real-valued functions defined
on X . Consider a Banach space (B�‖ · ‖) equipped with the sup-norm, that is, ‖φ‖ = supx∈X |φ(x)| for any
φ ∈ B. For any x ∈X , Li�σiφ(x) = βiEσi [φ(xt+1)|xt = x], then it follows that |Li�σiφ(x)| ≤ βi supx∈X |φ(x)|.
In other words, ‖Li�σiφ‖ ≤ βi‖φ‖, hence the operator norm ‖Li�σi‖ is bounded above byβi. Sinceβi ∈ (0�1),
Li�σi is a contraction. Therefore, the inverse of I − Li�σi exists. Furthermore, it is a linear bounded operator
and admits a Neumann series representation

∑∞
τ=0 Lτ

i�σi
(see Kreyszig (1989)).
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where Hi�σi is a conditional expectation operator so that Hi�σiφ = Eσi [φ(xt+1)|xt =
·� ait = ·] for any φ :X → R. Since, under M1 and M2, ait and εit has no additional infor-
mation on a−it given xt , then the objective function in (1), which we henceforth denote
by Λi, can be written as

Λi(ai� si;σ)=Eσi
[
ui(ai�a−it � xt� εi)|xt = x

] +βigi(ai�x;σ)�

The corresponding set of best responses is defined as

BRi(si;σi)= {
ai ∈Ai :Λi(ai� si;σi)≥Λi

(
a′
i� si;σi

)
for all a′

i ∈Ai
}
�

A pure strategy best response is a particular selection from the best response that satis-
fies αi(·;σi) ∈ BRi(·;σi), that is, for all si,

Λi
(
αi(si;σi)� si;σi

) ≥Λi
(
a′
i� si;σi

)
for a′

i ∈Ai� (2)

Since we assume that BRi(si;σi) is a singleton for all si, σi, there is no need for a selection
from the best response set. Thus, there is a single-valued map Ψi such that

Fi =Ψi(σi)� where Fi(ai|x;σi)= Pr
[
αi(sit;σi)≤ ai|xt = x

]
for all ai�x� (3)

Under independence (Assumption M2), information on all marginal distributions of ac-
tions provides equivalent information for the joint distribution of actions, so that any
equilibrium beliefs must satisfy condition (2) and the beliefs are consistent with the ac-
tions according to (3), where each σi can be represented by

∏I
l=1 Fl = ∏I

l=1Ψl(σl) for
all i. We can, therefore, summarize the necessary condition that the equilibrium be-
liefs must satisfy by a fixed point of a map Ψ that takes any vector F = (F1� � � � �FI) into
Ψ(F)= (Ψ1(

∏I
l=1 Fl)� � � � �ΨI(

∏I
l=1 Fl)), that is, the condition

F =Ψ(F)� (4)

The fixed point of Ψ fully characterizes the equilibrium since any F that satisfies equa-
tion (4) can be extended to construct a Markov perfect equilibrium, as αi(si;∏I

l=1 Fl)=
arg maxai∈Ai Λi(ai� si;

∏I
l=1 Fl) is the best response that is consistent with the beliefs by

construction.
Equation (4) forms the basis of our minimum distance estimator, where, in Section 3,

we look to minimize the distance between the distribution of actions from the data and
the implied distribution generated by the empirical version of Ψ(F). The characteriza-
tion of an equilibrium as a fixed point to equation (4) is very similar to the approach
taken by AM (Representation Lemma) and PSD (Proposition 1), who considered a par-
ticular class of unordered discrete choice game (see Assumption D below).5

5Equation (4) can also be useful for proving the existence of a Markov perfect equilibrium when Ψ is
known to satisfy regularity conditions to ensure that a fixed point exists, as well as providing an alternative
numerical calculation of equilibrium probabilities; see Pesendorfer and Schmidt-Dengler (2008) for further
discussions.
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2.3 Games under increasing differences

In many economic applications it is natural to model players’ best responses to be
monotone in their private values. The action space can be finite, for example, in in-
vestment models where firms purchase or rent goods in discrete units, or the action
variable can have a continuous contribution (with or without a discrete component),
as in the traditional investment and pricing models. The source of the monotonicity
can often be derived from an intuitive restriction imposed on the interim payoff differ-
ences when player i chooses action ai over a′

i, which we denote by�ui(ai� a′
i�a−i� x�εi)=

ui(ai�a−i� x�εi)−ui(a′
i�a−i� x�εi), that increases with εi. Increasing differences have nu-

merous applications in economics; see the monograph by Topkis (1998) for examples.
We consider games that satisfy the following conditions.

Assumption S1 (Increasing Differences). For any ai > a′
i and εi > ε′

i, �ui(ai� a
′
i�a−i�

x�εi) > �ui(ai� a
′
i�a−i� x�ε′

i) for all i, a−i, x.

Assumption S2. The distribution of εit is absolutely continuous with respect to the
Lebesgue measure with a bounded density on Ei = [εi� εi] ⊂ R for all i.

Assumptions S1 and S2 are versions of the conditions used in Athey (2001) to study
the equilibrium properties in static games. Importantly, increasing differences of ui in
(ai� εi) imply that the incremental return satisfies the single crossing condition in (ai� εi)
(see Definition 1 in Athey). Our increasing differences condition is strict and holds uni-
formly over (a−i� x), which, although generally not necessary for pure strategy equilibria
to exist, will be convenient for modeling games where players employ pure strategies al-
most surely. When ui is differentiable in (ai� εi), the increasing differences condition has

a simple characterization: ∂2

∂ai ∂εi
ui(ai�a−i� x�εi) > 0 for all a−i, x. We also comment that

compactness of Ei is assumed here only for the purpose of establishing the existence of
equilibria. In an econometric application, Ei can have full support on R. Next, we show
that existence theorems for equilibria in static games under the single crossing condi-
tion of Athey (2001) can be applied to our dynamic games.

For the first case, we restrict the support of the action variable to be discrete and
impose an integrability condition.

Assumption S3. The variable Ai is finite for all i and
∫ |ui(ai�a−i� x�εi)|dQi(εi) <∞

for all i, ai, a−i, x.

Under Assumptions M1, M2, M3, S2, and S3, all expected returns, particularlyΛi, ex-
ist and BRi(si;σi) is nonempty by the finiteness ofAi for all si, σi. Let �Λi(ai� a′

i� si;σi)=
Λi(ai� si;σi)−Λi(a′

i� si;σi). Then we have the following results.

Lemma 1 (Increasing Differences in Expected Returns). Under M1, M2, M3, S1, S2, and
S3, for any ai > a′

i and εi > ε′
i, �Λi(ai� a

′
i� x�εi;σi) > �Λi(ai� a′

i� x�ε
′
i;σi) for all i, x, σi.
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Proof. Under M1 and M2, gi(σi) does not depend on εi. Therefore, we have

�Λi
(
ai�a

′
i� x�εi;σi

) −�Λi
(
ai�a

′
i� x�ε

′
i;σi

)
=Eσi

[
�ui

(
ai�a

′
i�a−it � xt� εi

) −�ui
(
ai�a

′
i�a−it � xt� ε′

i

)|xt = x]
> 0�

where the inequality follows from Assumption S1. �

Lemma 2 (Pure Strategy Best Response). Under M1, M2, M3, S1, S2, and S3, BRi(sit;σi)
is a singleton set almost surely for all i, σi.

Proof. For any σi, let αi(·;σi) and α′
i(·;σi) denote distinct selections from BRi(·;σi)

so that for some x, there exists εi > ε′
i such that (without any loss of generality)

αi(x�ε
′
i;σi) > α′

i(x�εi;σi). By definition of a best response,�Λi(αi(x�ε′
i;σi)�α′

i(x�εi;σi)�
x�ε′

i;σi) ≥ 0 ≥ �Λi(αi(x�ε
′
i;σi)�α′

i(x�εi;σi)�x�εi;σi). However, this contradicts the
strict increasing difference condition in the expected returns (Lemma 1). �

Notice that finiteness of Ai does not play any role in proving Lemmas 1 and 2 be-
yond ensuring Λi exists and BRi is nonempty. An implication of Lemma 1 is that every
selection from BRi(·;σi) is nondecreasing in εi for all i, x, σi (by the monotone selection
theorem of Milgrom and Shannon (1994, Theorem 4)). Together with Lemma 2, they en-
sure that, for any given beliefs, each player’s best response is a monotone pure strategy
almost surely. The existence of an equilibrium then follows immediately from results
developed in Athey (2001).

Proposition 1. Assume M1, M2, M3, S1, S2, and S3. Then a pure strategy Markov per-
fect equilibrium exists where each player’s equilibrium strategy αi(x�εi) is nondecreasing
in εi for all i, x.

Proof. Under S2 and S3, the regularity assumption A1 in Athey is satisfied with Λi as
player’s i objective function. Lemmas 1 and 2 imply that each player’s best response to
any Markov beliefs is a monotone pure strategy almost surely. Therefore, Λi satisfies the
single crossing condition for games of incomplete information in Definition 3 of Athey.
The proof then follows from Theorem 1 in Athey. �

Although we consider a dynamic game, by restricting the equilibrium concept to
players using stationary Markov beliefs under the conditional independence and private
values framework, the arguments used for static games in Athey are directly applicable.6

Athey also showed that finiteness ofAi can be replaced by compactness when the payoff

6The objective function (see the first display on p. 865) of the decision problem studied in Athey appears
in a slightly different form than ours, where, instead of using a distribution of actions, she uses the strategy
functions of opposing players as beliefs. However, the two approaches are analogous since any conditional
distribution, σi, of at given xt uniquely determines monotone strategies αi(st )= (αi(sit )�α−i(s−it )) for all
x up to null sets on εt .
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function is continuous in the players’ actions. To apply her result in a dynamic setting,
we also need to impose some continuity condition on the transition law of the states.
Let ai = infAi and ai = supAi, and let G(xt+1|xt�at) be the transition law of xt+1 condi-
tioning on at and xt .

Assumption S4. For all i,

(i) Ai = [ai�ai]
(ii) ui(ai�a−i� x�εi) is continuous in (ai�a−i� εi) for all x

(iii) G(x′|x�ai�a−i) is continuous in (ai�a−i) for all x, x′.

Assumptions M1, M2, M3, S2, and S4 ensure that the regularity condition in Athey
(A1) is satisfied, and Λi exists and is continuous in ai; hence BRi(si;σi) is nonempty for
all si, σi, since Ai is compact (Weierstrass theorem). Each player’s best response for any
given beliefs is also a monotone pure strategy almost surely (by replacing S3 with S4 in
Lemmas 1 and 2). Then we have the following proposition.

Proposition 2. Assume M1, M2, M3, S1, S2, and S4. Then a pure strategy Markov per-
fect equilibrium exists where each player’s equilibrium strategy αi(x�εi) is nondecreasing
in εi for all i, x.

Proof. Under S2 and S4, assumption A1 in Athey is satisfied with Λi as player’s i objec-
tive function. It is easy to see that conditions (i)–(iii) in Theorem 2 of Athey are satisfied
by our assumptions; in particular, for any finiteA′

1 ×· · ·×A′
I ⊂A1 ×· · ·×AI , a monotone

pure (Markov) strategy exists by Proposition 1. The proof then follows from Theorem 2
in Athey (2001). �

For modeling purposes, note that strict increasing differences do not imply that
αi(x�εi) is strictly increasing in εi. A sufficient condition for strict monotonicity is given
by Edlin and Shannon (1998), which in our case requires that (i) Λi(ai�x�εi;σi) is con-
tinuously differentiable in ai, εi and (ii) the best response satisfies the first order con-
dition. Thus an intermediate case exists between purely continuous and discrete action
games. For instance, when there are corner solutions, then the distribution of the action
variable has both continuous and discrete components. Proposition 2 (and Theorem 2
in Athey) accommodates mass points as long as the payoff function remains continuous
on the action space. However, the continuity requirement does exclude some interesting
games. For example, although continuity in payoffs over opponents’ mass points may
be reasonable in Cournot oligopoly games, it rules out Bertrand-type pricing problems.
A recent empirical study whose payoff structure satisfies the continuity requirement of
Assumption S4 is the dynamic milk quota trading case in Hong and Shum (2010), where,
an economic agent can have positive (negative) trade demand (supply), which is mod-
eled continuously, or she can produce using an existing quota (mass point at zero). For
further discussions of other games with discontinuities and the existence of their equi-
libria, see Athey (Section 4).
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In this subsection, we have shown that games under increasing differences have
a pure strategy equilibrium under weak primitive modeling conditions. Furthermore,
Lemmas 1 and 2 show that players’ decision problems also have unique solutions. The
consequences of the lemmas are particularly important for inference, since analogous
conditions ensure that the parameterized pseudo-decision problem gives a unique pre-
diction of an optimal behavior almost surely. However, without further restrictions,
games under increasing differences may also have multiple equilibria.7 In this paper, we
only consider the estimation problem for games that either have a unique equilibrium
or have observed data that have been generated from a single equilibrium.

2.4 Other dynamic models

Note that a single agent Markov decision problem is a special case of a game when I = 1,
where the player’s beliefs simplify to the Markov distribution of her own action given
the states. Indeed�a class of popular games that is included in our general framework is
built on the discrete decision problem studied in Rust (1987). These discrete games have
been extensively studied in this literature (see the surveys of Ackerberg et al. (2005) and
Aguirregabiria and Mira (2010)) and they impose the following assumptions to model
games with unordered discrete actions.

Assumption D (Discrete Choice Game). For all i,

(i) Ai = {0� � � � �Ki}.

(ii) Ei = R
Ki+1 so that εit = (εit(0)� � � � � εit(Ki)).

(iii) The distribution of εit is absolutely continuous with respect to the Lebesgue mea-
sure whose density is bounded on Ei.

(iv) ui(ai�a−i� x�εi)= πi(ai�a−i� x)+ ∑Ki
k=0 εi(k)1[ai = k] for all a−i, x.

Under M1, M2, M3, and D, it is easy to see that the event where Λi(ai� sit;σ) =
Λi(a

′
i� sit;σ) has probability 0, so each player’s best response for any given beliefs is a

pure strategy almost surely; for further details, see AM and PSD, who characterized the
equilibrium by choice probabilities analogous to our equation (4). Specifically, note that
a vector of choice probabilities, (Pi(0|x)� � � � �Pi(Ki|x)), is just a linear transformation of
a vector of conditional distributions,⎛⎜⎜⎜⎜⎝

Pi(0|x)
���
���

Pi(Ki|x)

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
1 0 · · · 0

−1
� � � 0

���
��� −1

� � � 0
0 · · · −1 1

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝
Fi(0|x)
���
���

Fi(Ki|x)

⎞⎟⎟⎟⎟⎠ � (5)

7Recently, Mason and Valentinyi (2007) proposed some sufficient conditions for a unique equilibrium
under increasing differences; specifically, by employing a stronger version of increasing differences and
imposing a Lipschitz condition on the incremental return with respect to other players’ actions.
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where the transformation matrix has 1’s on the main diagonal, −1’s on the subdiagonal,
and 0’s everywhere else.

The general model discussed in this section can also be adapted to accommodate
games where players have more than one decision variable. This feature is useful for
many oligopoly games, for instance, where the economic agents endogenously choose
whether to participate in the market before deciding on the price or investment deci-
sions. One can model such decision problems where players make sequential choices
by combining the primitives from the games with a single action variable discussed pre-
viously; for a detailed discussion, see Arcidiacono and Miller (2008), BBL, and Srisuma
(2010).

3. Estimation methodology

We now parameterize {ui}Ii=1 by a finite-dimensional parameter θ ∈Θ⊂ R
p and update

the notation for the payoff functions with {ui�θ}Ii=1. We take {βi}Ii=1 as known. We do
not impose any particular distribution on G as this is nonparametrically identified un-
der weak regularity conditions. To keep the notation as simple as possible, we assume
that the observed data are collected from games played over two periods across N mar-
kets. Specifically, we omit the time subscript and let {(an�xn�x′

n�εn)}Nn=1 denote a ran-
dom sample generated from a particular equilibrium when θ= θ0, where x′

n is the only
variable observed from the second period. We state this as an assumption that we main-
tain for the remainder of the paper.

Assumption E. The data are generated by a Markov perfect equilibrium (α�σ) =
(α1� � � � �αI�σ1� � � � �σI) for some θ= θ0 ∈Θ.

The econometrician only observes {(an�xn�x′
n)}Nn=1. The goal is to estimate θ0. As-

sumption E implies that ain = αi(xn�εin) for all i, n. We simply denote the conditional
distribution of the equilibrium actions for each player by Fi and let F = (F1� � � � �FI), so
that σi = ∏I

l=1 Fl is the same for all i. For any θ ∈ Θ, we can then define the pseudo-
decision problems where players use σ to construct the policy values. When each
pseudo-decision problem has a unique solution, then there is a map, analogous to the
previous section, that takes θ into Fi�θ, the implied best response distribution of ac-
tions given σi. By construction, the equilibrium condition requires that Fi�θ0 = Fi for
all i, which is the condition that motivates our minimum distance estimator. Therefore,
our estimation strategy requires the construction of the distribution of the best response
mapping analogous to that found in Section 2.2. Section 3.1 gives the outline of our min-
imum distance estimator.

We provide details regarding practical implementation in Section 3.2. The section
ends with a brief discussion. In what follows, since we only consider the policy value
functions and associated pseudo-decision problems generated from σ , henceforth we
suppress the dependence on beliefs.
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3.1 Minimum distance approach

To formally define Fi�θ, we need to construct the pseudo-decision problem. As in Sec-
tion 2.2, we begin by incorporating Assumptions M1–M3 to simplify the nature of future
expected returns under σ . The (policy) value function, here written recursively, for any
θ is

Vi�θ(sin)=E[
ui�θ(ain� sin)|sin

] +βiE
[
Vi�θ

(
s′in

)|sin]�
Under M1 and M3, by the law of iterated expectation, the ex ante value, E[Vi�θ(sin)|xn],
can be written as the solution to the matrix equation

mi�θ = ri�θ + Limi�θ� (6)

where mi�θ and ri�θ are J-dimensional vectors whose jth entries are mi�θ(x
j) =

E[Vi�θ(sin)|xn = xj] and ri�θ(xj) = E[ui�θ(an� sin)|xn = xj], respectively, and Li is a J by
J matrix whose (j�k)th entry is βi × Pr[x′

n = xk|xn = xj]. Since Li is the product between
βi and a stochastic matrix, I − Li is invertible, ensuring the existence and uniqueness
of mi�θ for all (i� θ).8 Under M1, by the law of iterated expectation, the choice-specific
expected future return, E[Vi�θ(s′in)|xn�ain], is a linear transform of the ex ante value,

gi�θ = Himi�θ� (7)

where, for all (ai�x), gi�θ(ai�x) = E[Vi�θ(s′in)|xn = x�ain = ai], and Hiφ(ai�x) =∑
x′∈X φ(x′)Gi(x′|x�ai) for any φ :X → R, where Gi is the transition law of x′

n condi-
tioning on (xn�ain). Then, under M1 and M2, the parameterized objective function for
the pseudo-decision problem is given by

Λi�θ(ai�x�εi)=E[
ui�θ(ai�a−in� xn�εi)|xn = x] +βigi�θ(ai�x)� (8)

For ui�θ that satisfies the modeling assumptions analogous to those in Sections 2.3 and
2.4, Λi�θ(·�xn�εin) has a unique maximizer on Ai almost surely. We denote its corre-
sponding best response function by αi�θ, so that

αi�θ(x�εi)= arg max
ai∈Ai

Λi�θ(ai�x�εi)� (9)

Then the pseudo-model implied distribution function can be written as an outcome of
the map (cf. equation (3))

Fi�θ =Ψi�θ
(

I∏
l=1

Fl

)
� (10)

where Fi�θ(ai|x)=
∫

1
[
αi�θ(x�εi)≤ ai

]
dQi(εi) for all (ai�x)�

9

8This is a special case of footnote 2. The existence of (I − Li)
−1 can also be seen to follow directly from

the dominant diagonal theorem since the sum of the (nonnegative) elements in each row of Li is βi < 1
(Taussky (1949)).
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By construction, the equilibrium condition implies that Fi�θ = Fi when θ = θ0. We
consider the limiting objective function that measures an L2 distance between Fi�θ(·|x)
and Fi(·|x) over the support ofAi for all i and x:

M(θ)=
∑
i∈I

∑
x∈X

∫
Ai

(
Fi�θ(ai|x)− Fi(ai|x)

)2
μi�x(dai)

for some measures {μi�x}I�X
i=1�x=X . The issues of identification and the choice of measures

are discussed in Section 4. For now, we suppose M(θ) has a unique minimum at zero
when θ= θ0.

3.2 Implementation

In practice, Ψi�θ and F are unknown, so we replace them by their empirical counter-
parts. Our estimator minimizes the sample analog of M(θ). The estimation procedure
therefore proceeds in two stages. The first stage estimates the pseudo-model implied
distributions. The second stage chooses θ to minimize their distance with the distribu-
tion of actions from the data. For the convenience of the reader, in Table 1 we tabulate
various elements and their possible estimators from equations (8) and (10) that are used
to define Fi�θ.

The elements from the linear equations can be found in (6) and (7). We also let
En[ψ(wn)|xn = x] denote an empirical version of E[ψ(wn)|xn = x] for any function ψ

Table 1. List of variables with definitions and some possible estimators for any i, ai, x, x′.

Variable Definition Possible Estimator

From the data
pX(x) Pr[xn = x] p̂X(x)= 1

N

∑N
n=1 1[xn = x]

pX ′�X(x′�x) Pr[x′
n = x′�xn = x] p̂X ′�X(x′�x)= 1

N

∑N
n=1 1[x′

n = x�xn = x]
Gi(x

′|x�ai) Pr[x′
n = x′|xn = x�ain = ai] Ĝi depends on ain

Fi(ai|x) Pr[ain ≤ ai|xn = x] F̂i(ai|x)= 1
N

∑N
n=1 1[ain ≤ ai�xn = x]/p̂X(x)

Linear equations
ri�θ(x) E[ui�θ(ain�a−in� xn�εin)|xn = x] r̂i�θ depends on ain
Liφ(x) βiE[φ(x′

n)|xn = x] see equation (12) below
Hiφ(ai�x) E[φ(x′

n)|xn = x�ain = ai] Ĥi depends on ain
mi�θ(x) E[Vi�θ(sin)|xn = x] m̂i�θ = (I − L̂i)

−1̂ri�θ
gi�θ(ai�x) E[Vi�θ(s′in)|xn = x�ain = ai] ĝi�θ = Ĥi(I − L̂i)

−1̂ri�θ

9For the discrete action games considered in Section 2.4 (under Assumption D), there is no need to solve
the pseudo-decision problem at all since the choice probabilities (hence distribution functions) have a one-
to-one relationship with the normalized expected returns (Hotz and Miller (1993)). In particular, when the
vectors of the unobserved states are also independent and identically distributed (i.i.d.) extreme values,
then Fi�θ(ai|x)− Fi�θ(ai − 1|x) = ∫

1[αi�θ(x�εi) = ai]dQi(εi) has a closed form in the expected returns (for
instance, see AM).
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ofwn, which can be any vectors from the sample. In particular, since xn is a discrete ran-
dom variable, a possible candidate of En[ψ(wn)|xn = x] is simply 1

N

∑N
n=1ψ(wn)1[xn =

x]/p̂X(x).
First stage distribution of best responses A feasible estimator for Fi�θ can be obtained by
estimating Λi�θ and simulating εin as follows.

Step 1 Estimate the elements of Λi�θ. From (8), let

Λ̂i�θ(ai�x�εi)=En
[
ui�θ(ai�a−in� xn�εi)|xn = x] +βiĝi�θ(ai�x) for all (ai�x�εi)�

Using equations (6) and (7), gi�θ satisfies

gi�θ = Hi(I − Li)−1ri�θ� (11)

Therefore, ĝi�θ can be obtained from (̂ri�θ� L̂i� Ĥi), estimators for (ri�θ�Li�Hi), which we
now consider.

Estimation of ri�θ. The estimation of ri�θ is complicated by the fact that we do not observe
{εin}Nn=1. Estimable games in this literature impose modeling assumptions that allow ri�θ
to be nonparametrically identified for all θ. For examples, unordered discrete action
games (under Assumption D) make use of the well known Hotz and Miller (1993) in-
version theorem to identify and estimate ri�θ, and for games with monotone actions, the
identification and estimation of ri�θ rely on the quantile invariance between ain and εin.
To illustrate, we consider the purely continuous and discrete action cases under mono-
tonicity.

Example 1. Suppose αi(x�εi) is strictly increasing in εi almost everywhere on Ei for
all i, x. Then the inverse of αi exists and we denote it by ρi, which is defined by the
relation ρi(αi(x�εi)�x) = εi for all i, xi, εi. It follows that Fi(ai|x) = Qi(ρi(ai�x)). Thus
εin =Q−1

i (Fi(ain|xn)) and we can generate the private value ε̂in byQ−1
i (F̂i(ain|xn)). Then

one candidate for r̂i�θ(x) is En[ui�θ(an�xn� ε̂in)|xn = x].

Example 2. Suppose αi(x�εi) is weakly increasing in εi almost everywhere on Ei for
all i, x. Let {aki }Kik=1 be an increasing sequence of possible actions for some Ki < ∞.

Although the inverse of αi does not exists, by monotonicity, we have Ei = ⋃Ki
k=1Ck(x),

where Ck(x) = [Q−1
i (Fi(a

k−1
i |x))�Q−1

i (Fi(a
k
i |x))] for k > 1. Therefore, the cutoff values

where the optimal action jumps to higher actions are identified. In particular,

ri�θ(x)=
Ki∑
k=1

Pr
[
ain = aki |xn = x] ∫

Ck(x)
E

[
ui�θ

(
aki �a−in� xn�εi

)|xn = x]dQi(εi)�
Then, for instance, we can estimate ri�θ(x) by replacing Pr[ain = aki |xn = x]
with 1

N

∑N
n=1 1[ain = aki �xn = x]/p̂X(x) and estimate

∫
Ck(x)

E[ui�θ(aki �a−in� xn�εi)|xn =
x]dQi(εi) by replacing

∫
Ĉk(x)

En[ui�θ(aki �a−in� xn�εi)|xn = x]dQi(εi) with Ĉk(x) =
[Q−1

i (F̂i(a
k−1
i |x))�Q−1

i (F̂i(a
k
i |x))].



Quantitative Economics 4 (2013) Minimum distance estimators for dynamic games 565

The mixed continuous case can also be straightforwardly dealt with by using a com-
bination of the two techniques above, since we can write

ri�θ(x) = Pr
[
ain ∈ACi |xn = x]E[

ui�θ(ain�a−in� xn�εin)|xn = x�ain ∈ACi
]

+ Pr
[
ain ∈ADi |xn = x]E[

ui�θ(ain�a−in� xn�εin)|xn = x�ain ∈ADi
]
�

where ADi denotes the support of Ai that ain has positive mass points and ACi is the
complement set ofADi with respect toAi.

Estimation of Li. The variable Li can be represented by a J by J matrix of conditional
probabilities. A simple estimator for Li is the frequency estimator whose (j�k)th ele-
ment satisfies

L̂i(j�k)=
{
βip̂X ′�X

(
xk�xj

)
/p̂X

(
xj

)
� if p̂X

(
xj

)
> 0�

0� otherwise.
(12)

An appealing feature of the frequency estimator is that (I − L̂i)−1 necessarily exists as
discussed previously.

Estimation of Hi. The variable Hi is a conditional expectation operator defined by Gi,
the transition law of x′

n conditioning on ain and xn. The nature of the nonparametric
estimator of Gi depends on whether ain is continuous, discrete, or mixed. For an esti-
mator Ĝi of Gi, Ĥi is defined as Ĥiφ(ai�x) = ∑

x′∈X φ(x′)Ĝi(x′|x�ai) for any ai, x and
any function φ :X → R.

Example 1 (Continued). There are many nonparametric estimators that can be used to
estimate a conditional expectation. One candidate is a Nadaraya–Watson type estimator,
where Ĝi(x′|x�ai)= 1

N

∑N
n=1 1[x′

n = x′�xn = x]Kh(ain−ai)/ 1
N

∑N
n=1 1[xn = x]Kh(ain−ai)

andKh(·)= 1
hK(

·
h) denotes a user-chosen kernel and h is the bandwidth.

Example 2 (Continued). Since all variables are discrete, we can simply use the fre-
quency estimator Ĝi(x′|x�ai) = ∑N

n=1 1[x′
n = x′�xn = x�ain = ai]/∑N

n=1 1[xn = x�ain =
ai] whenever

∑N
n=1 1[xn = x�ain = ai]> 0 and define Ĝi(x′|x�ai) to be zero otherwise.

For the mixed continuous case, a candidate for Ĝi(x′|x�ai) can be constructed in the
same way as one of the two examples above, depending on whether ai lies in the support
ofAi that has positive mass.

Estimation of ĝi�θ. This is simply the sample analog of equation (11), that is, ĝi�θ = Ĥi(I−
L̂i)−1̂ri�θ, which can be obtained following equations (6) and (7). First, for any r̂i�θ, m̂i�θ
can be estimated by a matrix multiplication: m̂i�θ = (I − L̂i)−1̂ri�θ. Then, for any ai, x,
ĝi�θ(ai�x)= ∑

x′∈X m̂i�θ(x′)Ĝi(x′|x�ai). Note that L̂i and Ĥi do not depend on θ.

Step 2 Estimate Fi�θ. Having obtained the pseudo-objective function Λ̂i�θ, the implied
best response and distributions are

α̂i�θ(x�εi)= arg max
ai∈Ai

{
Λ̂i�θ(ai�x�εi)

}
and

F̂i�θ(ai|x)=
∫

1
[̂
αi�θ(x�εi)≤ ai

]
dQi(εi)�
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respectively. As shown in Section 2, the issue of the existence and uniqueness of solu-
tions to Λ̂i�θ(ai�x�εi) depends crucially on the modeling of ui�θ. It is easy to see that we
also have existence and uniqueness in the finite sample when conditions in Sections 2.3
and 2.4 hold for ui = ui�θ for all θ with the examples given above.

Note that F̂i�θ(ai|x) is a random distribution function of α̂i�θ(sin), conditioning on
the event that xn = x. In particular, F̂i�θ is generally different from F̂i, even when θ= θ0

since the randomness of the former comes from the construction of the pseudo-model,
while the latter is driven purely by the data. Although we know the distribution of εin, F̂i�θ
generally does not have a closed form and is generally infeasible; special cases do exist
for unordered discrete action games; see AM and PSD. We denote a feasible estimator for
Fi�θ by F̃i�θ, which can be obtained by simulation. For instance, in our numerical studies,
we use

F̃i�θ(ai|x)= 1
R

R∑
r=1

1
[̂
αi�θ

(
x�εri

) ≤ ai
]
� (13)

where {εri }Rr=1 denotes a random sample drawn from the known distribution of εin.

Second stage optimization Given the estimators (F̃i�θ� F̂i) for (Fi�θ�Fi), a class of L2-
distance functions can be constructed from (potentially random) measures {μi�x}i∈I�x∈X
defined on the support ofAi:

M̂N(θ)=
∑
i∈I

∑
x∈X

∫
Ai

(
F̃i�θ(ai|x)− F̂i(ai|x)

)2
μi�x(dai)�

When Ai is finite, it is natural to choose each μi�x to be a count measure, where M̂N

can then be written as
∑
i∈I

∑
x∈X

∑
ai∈Ai(F̃i�θ(ai|x)− F̂i(ai|x))2μi�x({ai}). Our minimum

distance estimator minimizes M̂N(θ). The statistical properties of the estimator depend
on the choice of {μi�x}i∈I�x∈X : we discuss the selection of these measures in Section 4.

A Remark on Semiparametric Estimation. Our methodology naturally generalizes
to the case when xn is a continuous random variable (or vector), where equation (6) be-
comes a linear integral equation of type II that has a well posed solution (see Srisuma
and Linton (2012)). In this case, regardless of whether ain is continuous or discrete, the
estimation problem is semiparametric since Li becomes an operator on an infinite-
dimensional space. Under Assumption M3, if ain has a continuous component, then
estimating Hi also leads to a semiparametric problem. However, the dimensionality of
an infinite-dimensional parameter is always 1, since each player forms an expectation
based only on her action in the pseudo-decision problem. This is in contrast to the for-
ward simulation method of BBL, where estimating value functions requires future states
to be sequentially drawn from the estimator ofG (not Gi) that is a conditional distribu-
tion conditioning on the actions of all players. In our case, the nonparametric dimen-
sionality problem is determined by the total number of continuous variables present in
ain and xn.
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3.3 A discussion

Having gone through our two-step procedure in detail, we can now put its practical ad-
vantages in relation to its full solution counterpart into perspective. In particular, an
analogous estimator can be defined by a two stage procedure similar to the one de-
scribed above, where Step 1, in the first stage, now requires the equilibrium beliefs to be
computed for each θ. Even if we have unlimited computational resources, multiple equi-
libria give rise to multiple beliefs, leading to more than one model implied distributions
of actions. Without the indeterminacy issue, solving for the equilibrium numerically is
also nontrivial: it typically involves fixed point iterations of some nonlinear functional
equation, for example, see Pakes and McGuire (1994). The additional numerical cost re-
quired to solve for the equilibrium of dynamic games repeatedly is generally considered
infeasible.

We use the insight from Hotz and Miller (1993) and its extension to dynamic games
(AM and PSD), where we only consider the beliefs observed from the data that leads
to the pseudo-model. As described in the previous section, there are no multiplicity is-
sues associated with the pseudo-decision problem for the two main classes of games
where players’ actions are modeled to be monotone in the unobserved states or to be
unordered discrete. Given the beliefs, the implied value functions and objective func-
tions for the pseudo-decision problem are also easy to compute for each θ. Particularly,
in Step 1 of the first stage, all the elements we require to estimate the continuation value
function, gi�θ, either have explicit functional forms or are nonparametrically identified,
hence they are easy to program (for instance, see Table 1).

We also comment on the prospect of solving equation (6), which we can think of as
inverting the estimate of the matrix I − Li. Although not all estimators of Li lead to a
nonsingular estimator of I − Li, a simple frequency estimator does. Importantly, since
we estimate Li nonparametrically, suppose I − L̂i is invertible; this inversion only has
to be done once. In addition, similar to Hotz et al. (1994) and BBL, we can also take
advantage of the linear structure of the (policy) value equation. Specifically, when the
parameterization of θ in ui�θ is linear, so that ui�θ = θ
ui�0 for somep-dimensional vector
ui�0, then ri�θ can be written as θ
ri�0, where ri�0 is a p-dimensional vector such that the
ri�0(x) = E[ui�0(an� sin)|xn = x] for all x. In matrix notation, ri�θ = Riθ, where Ri is a J ×
p matrix whose jth row is r
i�0(x

j). Then mi�θ equals (I − Li)−1 Riθ and for the choice-

specific expected future return, gi�θ in equation (11) simplifies to Hi(I− Li)−1 Riθ, where
Hi(I − Li)−1 Ri does not depend on θ.

In practice, the researcher has the freedom to choose any estimators for ri�θ, Li, and
Hi. Therefore, it is also straightforward to carry out our methodology in a fully paramet-
ric framework by parameterizing Li and Hi. In particular, under the Markovian frame-
work, Li and Hi can be estimated independently of the dynamic parameters; they can
then be used to transform the estimator of ri�θ as discussed in Step 1 and then all of the
above subsequent steps remain valid.

4. Inference

Before we proceed to the asymptotic theorems, it is important to first consider whether
the minimum distance approach suggested in the previous section provides a sensible
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method to uncover θ0 from the data. In particular, similar to other two-step estimators
in the literature, the extent of what we can learn about θ0 is restricted to the pseudo-
best response functions {αi�θ}θ∈Θ defined in (9). Therefore, it is appropriate to speak of
identification in terms of the pseudo-model generated by the data.

Definition 2. The set Θ0 = {αi�θ(x�εin)= αi(x�εin) a.s. for all (i�x)} is called the iden-
tified set.

Definition 3. The variable θ0 is said to be identified ifΘ0 is a singleton set.

In Section 4.1, we show that, for the class of games discussed previously, {Fi�θ}θ∈Θ
contains the same identifying information on the identified set in the sense that the
following two conditions are equivalent:

αi�θ(x�εin)= αi(x�εin) a.s. for all (i�x) iff θ ∈Θ0� (14)

Fi�θ(ain|x)= Fi(ain|x) a.s. for all (i�x) iff θ ∈Θ0� (15)

Section 4.2 then takes the identified set to be a singleton and provides conditions for our
minimum distance estimator to be consistent and asymptotically normal.

4.1 Equivalence of identification conditions

We consider the parameterized versions of games discussed in Section 2.3. Specifically,
let Assumptions S1′, S3′, and S4′ be identical to Assumptions S1, S3, and S4 everywhere
except that ui is replaced by ui�θ and all conditions imposed on the former are assumed
to hold for the latter for all θ. In what follows, we denote the probability measure of εin
by Qi. We begin with games that have finite actions.

Proposition 3. Assume M1, M2, M3, S1′, S2, and S3′. Then conditions (14) and (15) are
equivalent.

Proof. Suppose for each i, Ai = {a1
i � � � � � a

Ki
i }. Then condition (15) only has to be

checked onAi.
Suppose (14) holds. The implication is immediate for θ ∈ Θ0. Let Di�x�θ = {αi�θ(x�

εin) �= αi(x�εin)}. When θ /∈ Θ0, there exists some i, x, such that Qi(Di�x�θ) > 0. Let
Di�x�θ(k) denote Di�x�θ ∩ {αi(x�εin) = aki }, and let k∗ = min{k : Qi(Di�x�θ(k)) > 0}. By
Assumption S2 and the monotonicity of αi�θ(x� ·) and αi(x� ·), we have Fi�θ(ai|x) =
Fi(ai|x) for all ai < ak

∗
i and Qi({αi�θ(x�εin) = ak

∗
i }) �= Qi({αi(x�εin) = ak

∗
i }). Therefore,

Fi�θ(a
k∗
i |x) �= Fi(ak∗

i |x).
Suppose (15) holds. If θ ∈ Θ0, then Qi({αi�θ(x�εin) = aki }) = Qi({αi(x�εin) = aki })

for all k; hence it follows from Assumption S2 and the monotonicity of αi�θ(x� ·) and
αi(x� ·) that Qi(Di�x�θ)= 0 for all i, x. If θ /∈Θ0, let k∗ = min{k :Fi�θ(aki |x)− Fi�θ(ak−1

i |x) �=
Fi(a

k
i |x) − Fi(a

k−1
i |x)}, where we define Fi�θ(a0

i |x) = Fi(a
0
i |x) = 0. By Assumption S2

and the monotonicity of αi�θ(x� ·) and αi(x� ·), it follows that {αi�θ(x�εin) ≤ ai} and
{αi(x�εin)≤ ai} may differ only on a Qi null set for ai < ak

∗
i . Therefore, Qi({αi�θ(x�εin)=

ak
∗
i }�{αi(x�εin)= ak∗

i }) > 0.10 �
10For any setsA, B,A�B= (A∪B) \ (A∩B) denotes the symmetric difference betweenA and B.
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An equivalence result is also available when the distribution of ain is continuous,
that is, the best response is strictly monotone in εi.

Proposition 4. Assume M1, M2, M3, S1′, S2, and S4′, and for all i, x, θ, that αi�θ(x�εi)
is strictly increasing in εi. Then conditions (14) and (15) are equivalent.

Proof. The inverse of αi�θ(x� ·) exists and is unique for all i, x, θ by strict monotonicity.
We denote the inverse by ρi�θ(·�x), so that ρi�θ(αi�θ(x�εi)�x)= εi for all i, θ, xi, εi. Then,
for any ai, x,

Fi�θ(ai|x) = Pr
[
αi�θ(x�εin)≤ ai|xn = x]

= Pr
[
εin ≤ ρi�θ(ai�x)|xn = x]

=Qi
(
ρi�θ(ai�x)

)
�

Since Qi is a bijection map, as it is strictly increasing (Assumption S2), the one-to-one
correspondence between αi�θ and ρi�θ for all θ completes the equivalence claim. �

We have an analogous result when the distribution of ain has finite mass points as
well as a continuous contribution. For notational simplicity, we consider games where
each action variable has a single mass point at the lower boundary of the support.

Proposition 5. Assume M1, M2, M3, S1′, S2, and S4′, and for all i, x, θ, that there exists
εi�x�θ ∈ Ei such that αi�θ(x�εi)= ai for all εi ≤ εi�x�θ and αi�θ(x�εi) is strictly increasing in
εi for εi > εi�x�θ. Furthermore, εi�x�θ = εi�x > εi whenever θ ∈Θ0. Then conditions (14) and
(15) are equivalent.

Proof. We only consider θ such that εi�x�θ > εi. As seen previously, we repeatedly make
use of Assumption S2 and the monotonicity of αi�θ(x� ·) and αi(x� ·).

Suppose (14) holds. The implication is immediate for θ ∈ Θ0. If θ /∈ Θ0, then for
some i, x, either (i) ε0

i�x�θ �= εi�x so that αi�θ(x�εi) and αi(x�εi) do not agree when εi ∈
(min{ε0

i�x�θ� εi�x}�max{ε0
i�x�θ� εi�x}), in which case Fi�θ(ai|x) �= Fi(ai|x), or (ii) ε0

i�x�θ = εi�x
so that strict monotonicity implies αi�θ(x� ·) and αi(x� ·) must have different inverses,
hence different implied distribution functions.

Suppose (15) holds. The implication is now obvious for θ ∈ Θ0. If θ /∈ Θ0, then ei-
ther (i) Fi�θ(ai|x) �= Fi(ai|x), in which case Qi({αi�θ(x�εin) = ai}) �= Qi({αi(x�εin) = ai}),
or (ii) the one-to-one correspondence between the best responses and their implied dis-
tribution functions implies that {αi�θ(x�εin) �= αi(x�εin)} has a positive measure. �

When θ0 is identified, equivalence between conditions (14) and (15) means that a
minimum distance criterion function can be constructed so that it has a unique mini-
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mum only at θ0. For instance, it is sufficient that for all i, x, any E ⊂Ai that has positive
probability measure with respect to the distribution of ain also has a positive measure on
μi�x. The equivalence of information content on the identified set between the pseudo-
best response function and the implied distribution is not restricted to games with
monotone strategies. Conditions (14) and (15) are also equivalent for the discrete choice
games studied in AM and PSD. Since (15) can be stated in terms of the choice prob-
abilities (see (5)), the equivalence condition follows from the one-to-one relationship
between the choice probabilities and the optimal decision rule using Hotz and Miller’s
(1993) well known inversion result (see also Lemma 1 of Pesendorfer and Schmidt-
Dengler (2003)).

4.2 Asymptotic theorems

We state the regularity conditions for our theorems in terms of the distribution func-
tions and their estimators. These conditions are more informative than the usual high
level conditions as they allow us to highlight key features of the minimum distance es-
timator. They are also flexible enough to cover all the games considered in this paper,
and to admit any estimators for Fi�θ and Fi as long as the conditions below are satis-
fied. Indeed, our Theorems 1 and 2 are also applicable to any estimation problem based
on minimizing the distance of conditional distribution functions outside the context of
dynamic games. The proofs of Theorems 1 and 2 can be found in Appendix B.

Specific to our application, for some estimators (F̃i�θ� F̂i) of (Fi�θ�Fi), recall that the
objective function is

M̂N(θ)=
∑
i∈I

∑
x∈X

∫
Ai

(
F̃i�θ(ai|x)− F̂i(ai|x)

)2
μi�x(dai)�

where F̃i�θ is a feasible estimator for Fi�θ. However, F̃i�θ may generally not be smooth in
θ due to simulation (see (13)). We denote a smooth version of M̂N by MN , where F̃i�θ is
replaced by F̂i�θ, an infeasible estimator of Fi�θ, and denote its limiting function byM , so
that

MN(θ)=
∑
i∈I

∑
x∈X

∫
Ai

(
F̂i�θ(ai|x)− F̂i(ai|x)

)2
μi�x(dai)�

M(θ)=
∑
i∈I

∑
x∈X

∫
Ai

(
Fi�θ(ai|x)− Fi(ai|x)

)2
μi�x(dai)�

The minimum distance estimator is defined to be any sequence θ̂ that satisfies

M̂N(θ̂)≤ inf
θ∈Θ

M̂N(θ)+ op
(
N−1)�

Assumption A1.

(i) The setΘ is a compact subset of R
p.

(ii) For all i, ai, x, Fi�θ(ai|x) and Fi(ai|x) exist, and Fi�θ(ai|x)= Fi(ai|x) if and only if
θ= θ0.
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(iii) For all i, ai, x, Fi�θ(ai|x) is continuous onΘ.

(iv) For all i, x, μi�x is a nonrandom finite measure onAi that dominates the distribu-
tion of ain.

(v) For all i, x, sup(θ�ai)∈Θ×Ai |F̃i�θ(ai|x)− F̂i�θ(ai|x)| = op(1).
(vi) For all i, x, sup(θ�ai)∈Θ×Ai |F̂i�θ(ai|x)− Fi�θ(ai|x)| = op(1).

(vii) For all i, x, supai∈Ai |F̂i(ai|x)− Fi(ai|x)| = op(1).

Assumption A1(ii) is the point-identification assumption of the pseudo-model. As-
sumption A1(iv) ensures that the measures used to define the objective function do not
lose any identifying information on θ0. In application, Ai is generally compact, hence
finiteness of the measures is a mild assumption. Note that the integral representation
of M̂N , MN , and M encompasses games with discrete, continuous, or mixed discrete–
continuous actions. When Ai is finite, μi�x is a count measure and it is sufficient to
choose measures that put positive weights on each point of Ai. For a purely continuous
action game, the domination condition is satisfied by choosing any measure dominated
by the Lebesgue measure, for instance, the uniform measure. For an intermediate case
with ain that has a mixture of discrete and continuous distributions,μi�x is simply a com-
bination of the count and continuous measures. We can also allow the measures to be
random. Specifically, we can also use any random measure μ̂i�x as long as it converges
(weakly) to μi�x that satisfy the finiteness and dominant conditions; one such candidate
is the empirical measure, which puts equal mass on each observed data point (ain�xn)
and puts zero measure outside of it.11 Assumption A1(i)–(iv) imply that M(θ) has a well
separated minimum over a compact set at θ0. The remaining conditions require our es-
timators for the distribution functions to be uniformly consistent, which can generally
be verified using empirical process theory (see van der Vaart and Wellner (1996)). Note
that A1(v) is not relevant if F̂i�θ is feasible. An important special case is when F̃i�θ is the
naive Monte Carlo integration estimator. Suppose F̃i�θ is defined as in (13). Then

F̃i�θ(ai|x)− F̂i�θ(ai|x) = 1
R

R∑
r=1

1
[̂
αi�θ

(
x�εri

) ≤ ai
]

(16)
−

∫
1
[̂
αi�θ(x�εi)≤ ai

]
dQi(εi)�

so that A1(v) is expected to hold as R→ ∞ by an application of Glivenko–Cantelli theo-
rem. Assumption A1(vi) requires a standard equicontinuity condition and uniform con-
sistent estimation of the parameters in the first stage. Assumption A1(vii) follows from
the classical uniform law of large numbers.

Theorem 1 (Consistency). Under Assumption A1, θ̂
p→ θ0.

11The proofs in Appendix B can be lengthened, leading to the same asymptotic results for random mea-
sures {μ̂i�x}i∈I�x∈X , where μ̂i�x converges weakly to μi�x for all (i�x), using repeated applications of the con-
tinuous mapping theorem (see Ranga Rao (1962)).
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To show asymptotic normality we require additional assumptions. In what follows,
let � denote weak convergence and let l∞(Ai) denote the space of all bounded func-
tions onAi.

Assumption A2.

(i) The true parameter θ0 lies in the interior ofΘ.

(ii) For all i, ai, x, Fi�θ(ai|x) and F̂i�θ(ai|x) are twice continuously differentiable in

θ in a neighborhood of θ0, and
∫
Ai

∂
∂θl
Fi�θ(ai|x)μi�x(dai) and

∫
Ai

∂2

∂θl ∂θl′
Fi�θ(ai|x)μi�x(dai)

exist for all l, l′ for θ in a neighborhood of θ0.

(iii) The matrix
∑
i∈I

∑
x∈X

∫
Ai

∂
∂θFi�θ(ai|x) ∂

∂θ
Fi�θ(ai|x)μi�x(dai) is positive definite
at θ= θ0.

(iv) For all i, l, x, supai∈Ai | ∂∂θl F̂i�θ(ai|x)− ∂
∂θl
Fi�θ0(ai|x)| = op(1) as ‖θ− θ0‖ → 0.

(v) For all i, l, l′, x, supai∈Ai | ∂2

∂θl ∂θl′
F̂i�θ(ai|x) − ∂2

∂θl ∂θl′
Fi�θ0(ai|x)| = op(1) as ‖θ −

θ0‖ → 0.

(vi) For all i, x, supai∈Ai |F̃i�θ(ai|x)− F̂i�θ(ai|x)| = op(1/
√
N) uniformly in a neighbor-

hood of θ0.

(vii) For all i, x,
√
N(F̂i(·|x) − Fi(·|x))� Vi�x, where Vi�x is a tight Gaussian process

that belongs to l∞(Ai).
(viii) For all i, x,

√
N(F̂i�θ0(·|x)−Fi�θ0(·|x))� Wi�x, where Wi�x is a tight Gaussian pro-

cess that belongs to l∞(Ai).
(ix) For all i, x,

√
N(F̂i�θ0(·|x)− F̂i(·|x))� Ti�x, where Ti�x is a tight Gaussian process

that belongs to l∞(Ai).

Condition A2(i)–(v) are standard regularity and smoothness assumptions. Since
Fi�θ(ai|x) is twice continuously differentiable in θ (near θ0), sufficient conditions for
A2(iv) and (v) are uniform consistency of the first and second derivatives of F̂i�θ to Fi�θ re-

spectively (cf. A1(vi)). Assumption A2(vi) imposes a rate for the simulation error. If F̃i�θ is
defined by (13), then

√
R(F̃i�θ− F̂i�θ) is an empirical process (see equation (16)) that is ex-

pected to satisfy the Donsker theorem. The remaining conditions assume that uniform
central limit theorems hold onAi. WhenAi is finite, the uniform limit theorem reduces
to the multivariate central limit theorem where the tightness condition is trivially sat-
isfied; otherwise, these can be verified using empirical process theory (cf. A1(v)–(vii)).
Specifically, A2(viii) captures the effects from using a first step estimator, which typically
can be verified by showing the linearization of

√
N(F̂i�θ0 − Fi�θ0) satisfies the Donsker’s

theorem. When the limiting distributions in A2(vii) and (viii) are jointly Gaussian, which
is expected to hold in most applications, A2(ix) immediately follows from the continu-
ous mapping theorem.

Theorem 2 (Asymptotic Normality). Under Assumptions A1 and A2,

√
N(θ̂− θ0)=

(
∂2

∂θ∂θ
M(θ0)

)−1√
N
∂

∂θ
MN(θ0)+ op(1)
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and
√
N(θ̂− θ0)

d→N(0�W −1V W −1), where

V = lim
N→∞

var
(

2
∑
i∈I

∑
x∈X

∫
Ai

(
∂

∂θ
Fi�θ0(ai|x)

(17)

× (
F̂i�θ0(ai|x)− F̂i(ai|x)

))
μi�x(dai)

)
�

W = 2
∑
i∈I

∑
x∈X

∫
Ai

∂

∂θ
Fi�θ0(ai|x)

∂

∂θ
Fi�θ0(ai|x)μi�x(dai)� (18)

The asymptotic distribution of our estimator shows no effect of using the feasible
estimator F̃i�θ instead of F̂i�θ. In order to perform inference a feasible estimator for the
asymptotic variance is required. Bootstrapping is a natural candidate to estimate the
standard error in this setting.12 In a closely related framework, Kasahara and Shimotsu
(2008a) developed a bootstrap procedure for a parametric discrete decision model that
can be applied to discrete action games (under Assumption D). Recently, Cheng and
Huang (2010) provided some general conditions to validate the use of the bootstrap as
an inferential tool for a general class of semiparametric M-estimators when the objec-
tive function is not smooth. We show in the next section that bootstrapping performs
well with our minimum distance estimator.

A Remark on Semiparametric Estimation. Theorems 1 and 2 are applicable to both
parametric and semiparametric problems. In the context of dynamic games, the first
stage estimators (finite and/or infinite dimensional) are defined implicitly in our ob-
jective function M̂N through F̃i�θ. The uniform consistency and functional central limit
theory requirements in A1 and A2 are standard for a minimum distance estimator. These
uniformity conditions can be verified using modern empirical process theory under
weak conditions. In particular, for the simulation estimator defined in (13), Andrews
(1994, “type IV class”) and Chen, Linton, and van Keilegom (2003, Theorem 3.2) pro-
vided conditions for the Donsker theorem to hold in a parametric and semiparametric
setting, respectively.13

Possible extensions In this paper we have focused on a consistent estimation method
for a large class of dynamic games. However, there are two important aspects of our
estimators we have not discussed. These are the issues of efficiency and finite sample
bias.

12Recently, Ackerberg, Chen, and Hahn (2012) proposed a way to simplify semiparametric inference
when unknown functions are estimated by the method of sieves. They considered, as a specific example,
a class of discrete action games, where they focused on estimating finite conditional moment models and
also required the objective function to be smooth. Therefore, despite the fact that our theorems admit sieves
estimators, their results are generally not applicable to our estimator or to other notable estimators in this
literature (e.g., the iterative estimator of Aguirregabiria and Mira (2007) and the inequality estimator of
BBL).

13Srisuma (2010) gave a set of primitive conditions where Assumptions A1 and A2 are satisfied for a single
agent problem that coincides with the purely continuous action game in Section 2.3 when I = 1.
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Our minimum distance estimator is not efficient. For example, whenAi is finite, we
can create large vectors of the conditional distribution of actions across all players, ac-
tion choices, and observable states, and then our objective function is a special case of
the asymptotic least squares estimators analogous to the setup in PSD with a diagonal
weighting matrix. In principle, we can provide a more efficient estimator by consider-
ing a more general metric to match the distribution functions and constructing efficient
weights (that rely on a consistent preliminary estimator). However, the efficient weights
generally require estimates of ∂

∂θFi�θ(ai|x) for all ai, x, which rely on further numerical
approximations when the feasible estimator of Fi�θ is not smooth (for recent results on
statistical properties of estimators with numerical derivatives, see Hong, Mahajan, and
Nekipelov (2010)). The issue of efficient estimation for this class of games is a challeng-
ing and interesting problem in both theory and practice, especially in a semiparametric
model.

Another important concern for two-step estimators is the bias in small sample. In
a single agent discrete choice setting, Aguirregabiria and Mira (2002) proposed itera-
tion methods that appear to improve the finite sample performance of their estima-
tors. Kasahara and Shimotsu (2008a) gave a theoretical explanation of Aguirregabiria
and Mira’s findings; their idea is that a fixed point constraint of the pseudo-model im-
plied choice probabilities provides an iteration operator that can be used to reduce the
bias in the first stage estimation. Although such an iteration procedure may not con-
verge, especially in a game setting (Pesendorfer and Schmidt-Dengler (2010)), Kasahara
and Shimotsu (2012) recently provided an alternative iteration method that leads to a
consistent estimator even when the fixed point constraint is not a contraction (hence
it need not ensure global convergence). The frameworks that the aforementioned pa-
pers consider are games under Assumption D in Section 2.4. Since equation (10) also
represents a fixed point constraint, it will be interesting to study whether analogous it-
erative schemes can be developed for other class of games such as those considered in
this paper.

5. Numerical examples

We apply our methodology described in Section 4 to estimate two simulated dynamic
models with continuous actions. We construct our minimum distance estimators based
on the estimators proposed in Table 1 and Example 1; first, in a semiparametric dynamic
price setting problem for a single agent firm and, second, in a parametric framework,
where we use our estimator and BBL’s to estimate a repeated Cournot duopoly game.
Since it is generally difficult to solve a dynamic optimization problem, the models below
are kept simple so as to generate the data. It is easy to check that both examples below
satisfy conditions M1, M2, M3, S1′, S2, and S4′, so that monotone pure strategy equilibria
exist and players only employ monotone best response strategies.

Design 1 (Markov Decision Problem). At every period, each firm faces the demand
function

Dθ(a�x�ε)=D− θ1a+ θ2(x+ ε)�



Quantitative Economics 4 (2013) Minimum distance estimators for dynamic games 575

where a denotes the price, x is the demand shifter (e.g., some observable measure of the
consumer’s satisfaction), and ε is the firm’s private demand shock. The term D can be
interpreted as a constant market size and (θ1� θ2) denote the parameters that represent
the market elasticities that lie in R

+ × R
+. The firm’s profit function is

uθ(a�x�ε)=Dθ(a�x�ε)(a− c)�

where c denotes a constant marginal cost. The price-setting decision today affects the
demand for the next period. Specifically, xn takes a value of either 1 or −1, and its tran-
sitional distribution is summarized by Pr[x′

n = −1|xn�an = a] = a−a
a−a , where a and a de-

note the minimum and maximum possible prices, respectively. The evolution of private
shocks is completely random and transitory, and εn is distributed uniformly on [−1�1].
The firm chooses price an to maximize its discounted expected profit, where future pay-
off is discounted by β = 0�9. The values of (D�c) are assigned to be (3�1) and the data
are generated using the optimal decision when θ= (1�0�5). We generate 500 replications
of the controlled Markov processes with sample sizeN ∈ {20�100�200}, where each deci-
sion series spans five time periods. This leads to three sets of experiments with the total
sample size,NT , of 100, 500, and 1000.

We have two estimators, denoted by θ̂UM and θ̂EM, that minimize the objective func-
tions constructed using the uniform and empirical measures, respectively. For the non-
parametric estimator of the transition law, G(x′|x�a), we use a truncated fourth order
kernel based on the density of a standard normal random variable (see Rao (1983)). For
each replication, we experiment with three different bandwidths {hς = 1�06s(NT)−ς : ς =
1
6 �

1
7 �

1
8 }; the order of the bandwidth is chosen to be consistent with a derivative of the

one-dimensional kernel estimator for a density or regression derivative (for example, see
Hansen (2008)).14 We simulate the pseudo-distribution function usingN log(N) random
draws. The number of bootstrap draws is 99.

We report the bias, median of the bias, standard deviation, coverage probability
of 95% confidence interval based on a standard normal approximation, and the boot-
strapped standard errors and coverage probabilities from the bootstrapped distribu-
tions. Tables 2 and 3 give the results for θ1 and θ2, respectively, where the bootstrapped
values are given in italics.

We make the following general observations for our estimators across all bandwidths
and measures: (i) the median of the bias is similar to the mean; (ii) the estimators are
consistent, asN increases the bias and the standard deviation converges to zero; (iii) the
performance of the bootstrapped standard errors steadily approaches the true value
with increasing sample size and appears to be consistent; (iv) the coverage probabili-
ties improve with sample size, although the results for θ1 are closer to the nominal value
than are those for θ2, the bootstrapped confidence intervals appear to perform reason-
ably well, and even favorably in some cases, relative to the normal approximations with

14When Λi�θ is smooth, by the implicit function theorem, αi�θ is a smooth functional of
E[ ∂∂aui�θ(·�a−in� xn� ·)|xn = ·] and ∂

∂a gi�θ from ∂
∂ai
Λi�θ(αi�θ(si)� si) = 0. Since En[ ∂∂aui�θ(·�a−in� xn� ·)|xn = ·]

converges at the parametric rate, the rate of convergence of α̂i�θ is determined by ∂
∂a ĝi�θ.
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Table 2. Monte Carlo results (Markov decision process).

θ̂UM
1 θ̂EM

1

NT ς Bias Mbias Std 95% Bias Mbias Std 95%

100 1/6 −0�0101 0�0118 0�1716 0�9560 0�0023 0�0205 0�1722 0�9640
— — 0�2594 0�9960 — — 0�2370 0�9960

1/7 0�0014 0�0248 0�1543 0�9600 0�0128 0�0305 0�1515 0�9640
— — 0�2370 0�9900 — — 0�2326 0�9840

1/8 0�0067 0�0296 0�1569 0�9680 0�0233 0�0409 0�1406 0�9580
— — 0�2227 0�9740 — — 0�2129 0�9740

500 1/6 0�0009 0�0024 0�0695 0�9360 0�0025 0�0040 0�0693 0�9360
— 0�0784 0�9760 — — 0�0784 0�9800

1/7 0�0044 0�0086 0�0620 0�9480 0�0065 0�0091 0�0617 0�9440
— — 0�0706 0�9720 — — 0�0708 0�9720

1/8 0�0105 0�0155 0�0574 0�9380 0�0121 0�0164 0�0583 0�9340
— — 0�0797 0�9660 — — 0�0649 0�9700

1000 1/6 −0�0023 0�0003 0�0511 0�9380 −0�0025 −0�0007 0�0507 0�9400
— — 0�0552 0�9540 — — 0�0552 0�9540

1/7 0�0021 0�0045 0�0475 0�9500 0�0028 0�0044 0�0474 0�9540
— — 0�0500 0�9600 — — 0�0500 0�9640

1/8 0�0073 0�0086 0�0457 0�9460 0�0075 0�0081 0�0450 0�9460
— — 0�0463 0�9500 — — 0�0462 0�9460

Note: The bandwidth used in the nonparametric estimation is hς = 1�06s(NT)−ς , where s is the standard deviation of

{ant }N�Tn=1�t=1 .

infeasible variance at larger sample sizes. Therefore, the bootstrap appears to offer one
reasonable mode to perform inference for our estimator.

Design 2 (Cournot Game). We use a variant of a repeated Cournot duopoly competi-
tion studied in PSD. We specify a linear inverse demand function

Dθ(a�x)= x(D− θ1(a1 + a2)
)
�

where ai denotes the quantity supplied by player i, x is the demand shifter that rotates
the slope of the demand curve, and D represents the market size similar to Example 1.
The parameter space for (θ1� θ2) is R

+ × R
+. Each firm has a private stochastic marginal

cost, driven by εi, so that the profit function for each period is

ui�θ(ai� aj�x�εi)= ai
(
D(a�x)− θ2εi

)
for i� j = 1�2 and i �= j�

The distribution of εin is normal with mean 0 and variance 1, and is distributed inde-
pendently across players, time, and other variables. The observable state is the stochas-
tic demand coefficient xn that has 0�5 probability of taking values 2 or 4, independently
of previous actions and states. Thus an equilibrium exists; in particular, the symmetric
strategy profile where each player maximizes her expected static profit (a noncoopera-
tive Nash equilibrium) in every period is an equilibrium. We add a dynamic dimension
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Table 3. Monte Carlo results (Markov decision process).

θ̂UM
2 θ̂EM

2

NT ς Bias Mbias Std 95% Bias Mbias Std 95%

100 1/6 0�1140 0�0546 0�2633 0�9440 0�1079 0�0493 0�2460 0�9380
— — 0�3245 0�9940 — — 0�3118 0�9940

1/7 0�0986 0�0580 0�2213 0�9320 0�0985 0�0575 0�2257 0�9420
— — 0�3126 0�9920 — — 0�3040 0�9940

1/8 0�1030 0�0583 0�2267 0�9380 0�0987 0�0524 0�2110 0�9360
— — 0�2969 0�9920 — — 0�2885 0�9940

500 1/6 0�0381 0�0370 0�0878 0�9220 0�0386 0�0371 0�0889 0�9160
— — 0�1091 0�9740 — — 0�1086 0�9740

1/7 0�0383 0�0307 0�0860 0�9200 0�0373 0�0317 0�0867 0�9180
— — 0�1078 0�9580 — — 0�1026 0�9700

1/8 0�0374 0�0308 0�0839 0�9060 0�0367 0�0312 0�0854 0�9140
— — 0�3005 0�9460 — — 0�0964 0�9460

1000 1/6 0�0338 0�0319 0�0699 0�9260 0�0332 0�0310 0�0691 0�9240
— — 0�0753 0�9560 — — 0�0753 0�9560

1/7 0�0317 0�0275 0�0668 0�9320 0�0308 0�0255 0�0670 0�9260
— — 0�0704 0�9420 — — 0�0706 0�9440

1/8 0�0316 0�0256 0�0648 0�9240 0�0310 0�0232 0�0650 0�9220
— — 0�0662 0�9300 — — 0�0665 0�9300

Note: The bandwidth used in the nonparametric estimation is hς = 1�06s(NT)−ς , where s is the standard deviation of

{ant }N�Tn=1�t=1 .

to our estimation problem by misspecifying the model (see below). Our data are gener-
ated from the symmetric equilibrium in the static duopoly game, whereD is normalized
to 1, we use θ0 = (0�2�0�2), and the discounting factor is 0�9. For each simulation, we
generate N ∈ {100�500�1000} independent draws from the equilibrium. The experiment
is repeated 500 times for eachN .

For our estimators, as previously, we use two estimators constructed from the objec-
tive functions with uniform measures and empirical measures. We allow for a particular
misspecification such that our agent maximizes the objective function (cf. (8)) in the
pseudo-optimization stage,

Λ̃i�θ(ai� si)=E[
ui�θ(ai�a−in� xn�εi)|xn = x] +βig̃i(ai�x)�

where g̃i is a linear function of ai that has a random slope, varying randomly with each
player and state. The slope of g̃i converges to zero at the parametric rate, and it is deter-
mined by a random draw from a normal distribution with mean zero and variance 1

N .
We simulate the pseudo-distribution function usingN log(N) random draws.

We also consider two versions of BBL estimators: one is based on choosing an al-
ternative strategy by an additive perturbation and the other by multiplicative perturba-
tion. For additive perturbations, each inequality is represented by an alternative strat-
egy α̃1(·;η1) for some η1 ∈ R such that α̃1(si;η1)= αθ0(si)+ η1 for all si ∈ Si, where αθ0

is the (symmetric) optimal strategy estimable from the data. We draw η1 from a nor-
mal distribution with mean 0 and variance 0�5. For multiplicative perturbation, each
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inequality is represented by an alternative strategy α̃2(·;η2) for some η2 ∈ R such that
α̃(si;η2) = η2αθ0(si) for all si ∈ Si. We draw η2 from a normal distribution with mean
1 and variance 0�5. The BBL type objective functions are constructed based on using
NI ∈ {300�600} randomly drawn inequalities and the number of simulations used to
compute the expected returns is 2000.15 BBL estimators correctly ignore the dynamics
and estimate the repeated static game.

We show in the second example of Appendix A.1 that the parameters in the Cournot
game are identified. However, with BBL’s approach, we also show that the class of addi-
tive perturbations preserves the identifying information of θ01 but not θ02, in the sense
that the expected returns from employing the optimal strategies that generate the data
(with θ= θ0) are always at least as large as the returns from additively perturbed strate-
gies for all θ′ = (θ01� θ

′
2) with any value of θ′

2. On the other hand, the inequalities based
on multiplicative perturbations can preserve the identifying information of both θ01 and
θ02.

We report the bias, median of the bias, standard deviation, interquartile range scaled
by 1.349 (which approximately equals the standard deviation for a normal variable), cov-
erage probability of 95% confidence interval based on a standard normal approxima-
tion, and mean square error. Tables 4 and 5 give the results for our estimators, with and
without the misspecified the dynamics, and BBL’s estimators, constructed using additive
and multiplicative perturbations, of θ1 and θ2, respectively.

For θ1, as expected, all estimators appear to be consistent, and from looking at the
coverage probabilities and comparing the standard deviation with the scaled interquar-
tile range, are well approximated by a normal distribution. For θ2, as before, our estima-
tors appear to be consistent and asymptotically normal. BBL’s estimators of θ2 show sev-
eral interesting characteristics. The first general observation is that estimators obtained
by using multiplicative perturbations perform better, as expected, at least for larger sam-
ple sizes; they also appear to be consistent, but seem to be less well approximated by a
normal distribution compared to our estimators. For the estimators based on additive
perturbations, the bias appears to increase with sample size, which can be explained
by looking at the mathematical details of our examples in Appendix A, since the loss of
identification only materializes in the limit. However, its standard deviation is decreas-
ing with sample size, although it does so at an increasingly slower rate compared to the
multiplicative perturbations. It is also unclear from our small scale studies what role the
number of inequalities has on the statistical properties of BBL’s estimators; for instance,
we see that more inequalities lead to an improvement in the mean squared error for
additive perturbations but not for multiplicative perturbations.

6. Conclusion

The discrete Markov decision process studied in Rust (1987) provided a useful frame-
work to model and estimate dynamic games of incomplete information. In this paper,

15The number of inequalities and simulations we use represents the upper bound values that BBL used in
their simulation studies, which conform to their asymptotic theorems. Specifically, see Assumption S2(iii)
on p. 1348,NI is allowed to grow to infinity at any rate, while the number of simulations is required to go to
infinity at a faster rate than

√
N .
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Table 4. Monte Carlo results (Cournot game).

N θ̂1 Bias Mbias Std Iqr 95% Mse

100 UM 0�0000 −0�0001 0�0014 0�0013 0�9460 0�0000
UM-M 0�0001 −0�0001 0�0026 0�0027 0�9460 0�0000

EM −0�0004 −0�0004 0�0014 0�0013 0�9400 0�0000
EM-M −0�0003 −0�0005 0�0026 0�0028 0�9580 0�0000
AP-L −0�0000 −0�0000 0�0016 0�0017 0�9560 0�0000
AP-H −0�0001 −0�0001 0�0017 0�0015 0�9540 0�0000
MP-L 0�0002 0�0000 0�0020 0�0019 0�9440 0�0000
MP-H 0�0001 −0�0000 0�0021 0�0020 0�9400 0�0000

500 UM 0�0000 0�0000 0�0007 0�0007 0�9580 0�0000
UM-M 0�0000 −0�0000 0�0012 0�0012 0�9580 0�0000

EM −0�0001 −0�0000 0�0007 0�0007 0�9540 0�0000
EM-M −0�0000 −0�0001 0�0012 0�0012 0�9560 0�0000
AP-L 0�0000 0�0000 0�0008 0�0008 0�9380 0�0000
AP-H −0�0000 −0�0000 0�0007 0�0008 0�9580 0�0000
MP-L 0�0000 0�0000 0�0010 0�0009 0�9580 0�0000
MP-H −0�0000 0�0000 0�0010 0�0009 0�9460 0�0000

1000 UM −0�0000 0�0000 0�0004 0�0004 0�9460 0�0000
UM-M −0�0000 0�0000 0�0008 0�0008 0�9420 0�0000

EM −0�0001 −0�0000 0�0004 0�0004 0�9480 0�0000
EM-M −0�0001 −0�0000 0�0008 0�0008 0�9480 0�0000
AP-L −0�0000 0�0000 0�0006 0�0005 0�9380 0�0000
AP-H 0�0001 0�0000 0�0005 0�0005 0�9440 0�0000
MP-L 0�0000 0�0000 0�0007 0�0005 0�9720 0�0000
MP-H 0�0000 0�0000 0�0007 0�0007 0�9460 0�0000

Note: UM and EM are our minimum distance estimators for the static games obtained from using uniform and empirical
measures, respectively; UM-M and EM-M are their misspecified counterparts. AP-L and AP-H are BBL’s estimators obtained
from using additive perturbations with 300 and 600 inequalities, respectively. MP-L and MP-H are BBL’s estimators obtained
from using multiplicative perturbations with 300 and 600 inequalities, respectively.

we propose a two-step methodology, in a similar spirit to Hotz and Miller (1993), us-
ing the pseudo-model to estimate popular Markovian games studied in the literature.
The pseudo-model is particularly useful in the estimation of games since it can avoid
the practical and statistical complications when the actual model has multiple equi-
libria, as well as generally reducing the computational burden relative to the full solu-
tion approach. We give precise conditions that extend the scope of the pseudo-model—
traditionally used to model games where players’ actions are discrete and unordered
(e.g., AM and PSD)—to games where players’ actions are monotone in their private val-
ues that can be discrete, continuous, or mixed. We also show that pure strategy Markov
equilibria exist for these estimable monotone choice games. Our estimator is defined
to minimize the distance between the distribution of actions implied by the data and
the pseudo-model that is motivated by a characterization of the equilibrium. Since the
distribution functions are defined on the familiar Euclidean space, given an identified
(pseudo-) model, we suggest simple metrics for constructing objective functions that
can be used for consistent estimation. In contrast, BBL’s method requires selection of
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Table 5. Monte Carlo results (Cournot game).

N θ̂2 Bias Mbias Std Iqr 95% Mse

100 UM −0�0009 −0�0011 0�0119 0�0131 0�9580 0�0001
UM-M 0�0054 0�0053 0�0142 0�0132 0�9500 0�0002

EM 0�0033 0�0029 0�0140 0�0139 0�9360 0�0002
EM-M 0�0205 0�0164 0�0255 0�0206 0�8960 0�0011
AP-L −0�0174 −0�0421 0�2613 0�2153 0�9300 0�0686
AP-H 0�0008 −0�0062 0�1520 0�1390 0�9480 0�0231
MP-L 0�0268 0�0047 0�2623 0�2009 0�9400 0�0695
MP-H 0�0217 0�0064 0�2753 0�2623 0�9500 0�0762

500 UM −0�0002 −0�0003 0�0052 0�0050 0�9580 0�0000
UM-M 0�0005 0�0006 0�0055 0�0053 0�9500 0�0000

EM 0�0006 0�0002 0�0059 0�0055 0�9520 0�0000
EM-M 0�0036 0�0036 0�0070 0�0069 0�9320 0�0001
AP-L −0�0241 −0�0828 0�2012 0�1380 0�9380 0�0411
AP-H −0�0150 −0�0248 0�1388 0�1097 0�9340 0�0195
MP-L −0�0010 0�0039 0�0945 0�0117 0�9260 0�0089
MP-H 0�0046 0�0043 0�1191 0�0841 0�9400 0�0142

1000 UM 0�0001 −0�0000 0�0037 0�0038 0�9460 0�0000
UM-M 0�0004 0�0006 0�0039 0�0039 0�9600 0�0000

EM 0�0006 0�0004 0�0042 0�0046 0�9560 0�0000
EM-M 0�0019 0�0022 0�0047 0�0045 0�9380 0�0000
AP-L −0�0288 −0�0943 0�1833 0�1024 0�9400 0�0344
AP-H −0�0168 −0�0295 0�1284 0�1141 0�9360 0�0168
MP-L 0�0021 0�0000 0�0643 0�0046 0�9280 0�0041
MP-H −0�0054 0�0005 0�0820 0�0455 0�9080 0�0068

Note: UM and EM are our minimum distance estimators for the static games obtained from using uniform and empirical
measures, respectively; UM-M and EM-M are their misspecified counterparts. AP-L and AP-H are BBL’s estimators obtained
from using additive perturbations with 300 and 600 inequalities, respectively. MP-L and MP-H are BBL’s estimators obtained
from using multiplicative perturbations with 300 and 600 inequalities, respectively.

alternative strategies, where a suitable choice of objective functions may be less obvi-
ous, especially when actions are continuously distributed. We illustrate the importance
of choosing objective functions for consistent estimation in finite samples with a Monte
Carlo study and provide the theoretical explanations in Appendix A.

There are several directions for future research. We focus on consistent estimation
and have not provided an efficient estimator in this paper. Our methodology also ap-
pears to be amenable to adoption of an iterative scheme along the lines of Aguirregabiria
and Mira (2002, 2007) and Kasahara and Shimotsu (2012) that may reduce the small
sample bias of the first step estimator. Last, although we do not contribute to the devel-
opment of ways to deal with unobserved heterogeneity and the related issues regarding
multiple equilibria, we believe the recent progress made in the studies of dynamic dis-
crete choice models, for example, the nonparametric finite mixture results of Kasahara
and Shimotsu (2008b) or methods that take advantage of finite dependence structure in
Arcidiacono and Miller (2008), can be adapted and extended to estimate the dynamic
games considered in this paper.
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