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This paper develops a general framework for conducting inference on the rank
of an unknown matrix Π0. A defining feature of our setup is the null hypothesis
of the form H0 : rank(Π0) ≤ r. The problem is of first-order importance because
the previous literature focuses on H′

0 : rank(Π0) = r by implicitly assuming away
rank(Π0) < r, which may lead to invalid rank tests due to overrejections. In par-
ticular, we show that limiting distributions of test statistics under H′

0 may not
stochastically dominate those under rank(Π0) < r. A multiple test on the nulls
rank(Π0) = 0� � � � � r, though valid, may be substantially conservative. We employ
a testing statistic whose limiting distributions under H0 are highly nonstandard
due to the inherent irregular natures of the problem, and then construct boot-
strap critical values that deliver size control and improved power. Since our pro-
cedure relies on a tuning parameter, a two-step procedure is designed to mitigate
concerns on this nuisance. We additionally argue that our setup is also important
for estimation. We illustrate the empirical relevance of our results through testing
identification in linear IV models that allows for clustered data and inference on
sorting dimensions in a two-sided matching model with transferrable utility.

Keywords. Matrix rank, bootstrap, two-step test, rank estimation, identification,
matching dimension.
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1. Introduction

The rank of a matrix plays a number of fundamental roles in economics, not just as cru-
cial technical identification conditions (Fisher (1966)), but also of central empirical rele-
vance in numerous settings such as inference on cointegration rank (Engle and Granger
(1987), Johansen (1991)), specification of finite mixture models (McLachlan and Peel
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(2004), Kasahara and Shimotsu (2009)), and estimation of matching dimensions (Dupuy
and Galichon (2014))—more can be found in Online Supplemental Appendix E which
is located within the replication file (Chen and Fang (2019)). These problems reduce to
examining the hypotheses: for an unknown matrixΠ0 of sizem× k withm≥ k,

H0 : rank(Π0)≤ r vs. H1 : rank(Π0) > r� (1)

where r ∈ {0� � � � �k− 1} is some prespecified value and rank(Π0) denotes the rank ofΠ0.
If r = k− 1, then (1) is concerned with whetherΠ0 has full rank.

Despite a rich set of results in the literature, previous studies instead focus on

H′
0 : rank(Π0)= r vs. H1 : rank(Π0) > r� (2)

In effect, the testing problem (2) assumes away the possibility rank(Π0) < r, which is
often unrealistic to be excluded. This, unfortunately, has drastic consequences. As elab-
orated through an analytic example in Section 2, a number of popular tests, including
Robin and Smith (2000) and Kleibergen and Paap (2006), may overreject for some data
generating processes and underreject for others, both having rank(Π0) < r. In particu-
lar, contrary to what appears to have been conjectured in the literature (Cragg and Don-
ald (1993, p. 225); Johansen, (1995, p. 168)), our analysis suggests that limiting distribu-
tions of tests obtained under H′

0 may not first order stochastically dominate those under
rank(Π0) < r. Hence, ignoring the possibility rank(Π0) < r may lead to tests that are not
even first-order valid.

One may nonetheless justify the setup (2) for two reasons. First, the problem (1)
may be studied by a multiple test on the nulls rank(Π0) = 0�1� � � � � r. Our simulations
show, however, that such a procedure, though valid, may be substantially conservative
and have trivial power against local alternatives that are close to matrices whose rank is
strictly less than r. Second, the setup (2) suits well for estimation by sequentially testing
rank(Π0) = j for j = 0�1� � � � �k − 1. Crucially, however, all steps except for j = 0 ignore
type I errors (false rejection) potentially made in previous steps, and may have limited
capability of controlling type II errors (false acceptance); see the Online Supplemental
Appendix C (Chen and Fang (2019)) for more details. Hence, the setup (1) is desirable for
estimation as well.

We thus conclude that developing a valid and powerful test for (1) is of first-order
importance. To the best of our knowledge, no direct tests to date exist in this regard. Our
objective in this paper is therefore to develop an inferential framework under the setup
(1). A key insight we exploit to this end is that (1) is equivalent to

H0 :φr(Π0)= 0 vs. H1 :φr(Π0) > 0� (3)

where φr(Π0)≡ ∑k
j=r+1σ

2
j (Π0) is the sum of the k− r smallest squared singular values

σ2
j (Π0) of Π0; see the Online Supplemental Appendix for a review on singular values.

Such a reformulation is attractive because it converts an unwieldy inference problem
on an integer-valued parameter (i.e., rank) into a more tractable one on a real-valued
functional (i.e., a sum of singular values). Given an estimator Π̂n of Π0, it is thus nat-
ural to base the testing statistic on the plug-in estimator φr(Π̂n) and then invoke the
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Delta method. As it turns out, the formulation (3) reveals two crucial irregular natures
involved, namely, φr admits a zero first-order derivative under H0 and is second-order
nondifferentiable precisely when rank(Π0) < r; see Proposition 3.1 and Lemma D.5.
While the null limiting distributions of φr(Π̂n) can nonetheless be derived by existing
generalizations of the Delta method (Shapiro (2000)), constructions of critical values are
nontrivial because the limits are nonpivotal and highly nonstandard. In particular, they
depend on the true rank (among other things), upholding the importance of taking into
account the possibility rank(Π0) < r. For this, we appeal to modified bootstrap schemes
recently developed by Fang and Santos (2018) and Chen and Fang (2019), which yield
tests for (1) that have asymptotically pointwise exact size control and are consistent.
We further characterize analytically classes of local perturbations of the data generating
processes under which our tests enjoy size control and nontrivial power.

A common feature of our tests is their dependence on tuning parameters, although
we stress that this is only in line with the irregular natures of nonstandard problems
(Chernozhukov, Hong, and Tamer (2007), Andrews and Soares (2010), Linton, Song, and
Whang (2010)). While we are unable to offer a general theory guiding their choices, a
two-step procedure similar to Romano, Shaikh, and Wolf (2014) is proposed to mitigate
potential concerns. The intuition is as follows. First, the appearance of r0 ≡ rank(Π0) in
the limits suggests the need of a consistent rank estimator r̂n, which may be achieved by
a sequential testing procedure coupled with a significance level αn (serving as the tuning
parameter) that tends to zero suitably. Although the estimation error of r̂n, that is, the
probability of false selection, is asymptotically negligible (as αn → 0), that probability is
positive in any finite samples. Thus, we account for false selection by fixing αn = β rather
than letting it tend to zero. Given an estimator r̂n with lim infn→∞ P(r̂n = r0) ≥ 1 − β,
the two-step procedure at a significance level α is: reject H0 if r̂n > r in the first step;
otherwise in the second step incorporate r̂n into our bootstrap and conduct the test at
the adjusted significance level α − β > 0. We show in a number of simulation designs
that the procedure is quite insensitive to our choices of β, even for small sample sizes.

The marked size and power properties rest with several attractive features. First,
since we rely on the Delta method, the theory is conceptually simple and requires mild
assumptions. Essentially, all we need are a matrix estimator Π̂n that converges weakly
and a consistent bootstrap analog. In particular, the data may be non-i.i.d. and non-
stationary, the convergence rate may be non-

√
n and even heterogeneous across en-

tries of Π̂n (see the Online Supplemental Appendix E.1), the limit M of Π̂n may be non-
Gaussian, the bootstrap for M (a crucial ingredient of our method) may be virtually any
consistent resampling scheme, and no side rank conditions are directly imposed beyond
those entailed by the restrictions on the population quantiles. Second, computation of
our testing statistic and the critical values are quite simple as both involve only calcu-
lations of singular value decompositions—we reiterate that the need of resampling only
reflects the irregular natures of the problem rather than because of an exclusive attribute
of our treatment. Finally, the superior testing properties of our procedure translate to
more accurate rank estimators through the aforementioned two channels, namely, re-
ducing type I and type II errors. Simulations confirm that our methods work better when
rank(Π0) < r or whenΠ0 is close to a matrix whose rank is strictly less than r.
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We illustrate the application of our framework by testing identification in linear IV
models that accommodates clustered data. To draw further attention to the empirical
relevance of our results, we study a two-sided bipartite matching model with trans-
ferrable utility, building upon the work of Dupuy and Galichon (2014). A central question
here is: how many attributes are relevant for the matching? Under a parametric specifi-
cation of the surplus function, this number is equal to the rank of the so-called affinity
matrix. We show that our procedure and Kleibergen and Paap (2006) can produce quite
different results with regards to several model specifications, in terms of both p-values
of the tests and actual estimates of the matching dimension.

As mentioned previously, the literature has been mostly concerned with the hy-
potheses (2). In the context of multivariate regression, Anderson (1951) developed a
likelihood ratio test based on canonical correlations. This test is restrictive in that it cru-
cially depends on the asymptotic variance Ω0 of vec(Π̂n) having a Kronecker product
structure. Building upon Gill and Lewbel (1992), Cragg and Donald (1996) proposed a
test that requires nonsingularity of Ω0 and may be sensitive to the transformations in-
volved. Cragg and Donald (1997) provided a test based on a constrained minimum dis-
tance criterion, which, in addition to the nonsingularity requirement of Ω0, is in gen-
eral computationally intensive. To relax the nonsingularity condition, Robin and Smith
(2000) employed a class of testing statistics which are asymptotically equivalent to ours,
but their results only apply to the setup (2). Kleibergen and Paap (2006) studied a Wald-
standardized version of our statistic in order to obtain pivotal asymptotic distributions
(under H′

0), but at the expense of a side rank condition. We refer the reader to Camba-
Mendez and Kapetanios (2009), Portier and Delyon (2014), and Al-Sadoon (2017) for fur-
ther discussions.

There are a few exceptions that study (1). Johansen (1988, 1991) obtained his likeli-
hood ratio statistics under H0 but only establishes their asymptotic distributions un-
der H′

0. Shortly after, Johansen (1995, pp. 157–8, 168) presented the limits under H0,
and essentially argues based on simulations that the asymptotic distributions under
rank(Π0) < r are first-order stochastically dominated by those under H′

0 and “hence not
relevant for calculating the p-value.” However, the counterexample given in Section 2
disproves this conjecture. Cragg and Donald (1993, p. 225) recognized the importance
of studying (1), but do not derive the asymptotic distributions under H0. Instead, they
show that their statistic has first-order stochastically dominant limiting laws under H′

0
with somewhat restrictive conditions. Our results suggest that may not be true in gen-
eral.

We now introduce some notation. The space ofm× kmatrices is denoted by Mm×k.
For a matrix A, we write its transpose by Aᵀ, its trace by tr(A) if it is square, its vector-
ization by vec(A), and its Frobenius norm by ‖A‖ ≡ √

tr(AᵀA). The identity matrix of
size k is denoted Ik, the k× 1 vectors of zeros and ones are respectively denoted by 0k
and 1k, and the m× k matrix of zeros is denoted 0m×k. We let diag(a) denote the diago-
nal matrix whose diagonal entries compose a. The jth largest singular value of a matrix

A ∈ Mm×k is denoted σj(A). We define the set Sm×k = {A ∈ Mm×k :AᵀA= Ik} and let
d=

signify “equal in distribution.” Finally, �a� is the integer part of a ∈ R.
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The remainder of the paper is organized as follows. Section 2 illustrates the conse-
quences of ignoring rank(Π0) < r, and provides an overview of our tests, together with a
step-by-step implementation guide. Section 3 develops our inferential framework. Sec-
tion 4 presents Monte Carlo studies. Section 5 further illustrates the empirical relevance
of our results by studying a matching model. Section 6 briefly concludes. Proofs are col-
lected in an Online Supplemental Appendix. We also study the estimation problem, but,
due to space limitation, relegate the results to Online Supplemental Appendix C. Finally,
we have developed a Stata command bootranktest to test whether a matrix of the
form E[V Zᵀ] has full rank; see the Online Supplemental Appendix for a brief descrip-
tion.

2. Motivations, overview, and implementation

In this section, we first motivate the development of our theory by illustrating how seri-
ous the issue can be if one ignores the possibility rank(Π0) < r in conducting rank tests.
This is accomplished by examining the influential test proposed by Kleibergen and Paap
(2006), referred to as the KP test hereafter, and its multiple testing version. Then we pro-
vide an overview of our tests, together with a step-by-step implementation guide that
applies to general settings.

To elucidate the consequences of ignoring rank(Π0) < r, consider an example where
Π0 = 02×2 and r = 1 so that rank(Π0) < r. Suppose Π0 admits an estimator Π̂n such

that
√
nΠ̂n

d= M for all n (rather than just asymptotically), where M ∈ M2×2 satisfies
vec(M)∼N(0�Ω0) with Ω0 nonsingular and known. In this case, the KP test for (2) em-
ploys critical values from χ2(1), while the actual distribution of the KP statistic is

Tn�kp
d= σ2

2 (M)

(Q2 ⊗P2)
ᵀΩ0(Q2 ⊗P2)

� (4)

where P2 and Q2 are the left and right singular vectors associated with σ2(M), both
having unit length. Note the distribution of Tn�kp depends only on Ω0. Figure 1 plots
(based on simulations) two cdfs F1 and F2 of Tn�kp in (4) respectively determined by

Ω1 =

⎡
⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎥⎦ and Ω2 =

⎡
⎢⎢⎢⎣

1 0 0 −0�9
√

5
0 1 0�9

√
5 0

0 0�9
√

5 5 0
−0�9

√
5 0 0 5

⎤
⎥⎥⎥⎦ � (5)

together with the cdf F0 of χ2(1). Note that F0 is stochastically dominated by F2 but
stochastically dominates F1, both in the first-order sense. Hence, the KP test is in-
valid due to overrejection when Ω0 =Ω2. We have thus disproved that the limits under
rank(Π0) = r are first-order stochastically dominant in general, a conjecture by Cragg
and Donald (1993) for their statistic which they show to hold under somewhat restrictive
conditions. These erratic behaviors can also be expected for the test of Robin and Smith
(2000) in view of its relation to the KP test; see the Online Supplemental Appendix B.
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Figure 1. The cdfs of the KP statistic whenΠ0 = 02×2 and r = 1.

Alternatively, one might aim to construct a valid test for (1) by a multiple test on
rank(Π0) = 0�1� � � � � r. However, the validity is achieved at the expense of conservative-
ness (see the Online Supplemental Appendix B), which may generate substantial power
loss. To illustrate, consider the following data generating process:

Z =Πᵀ
0V + u� (6)

where V �u ∈N(0� I6) are independent and, for δ≥ 0 and d ∈ {1� � � � �6},

Π0 = diag(16−d�0d)+ δI6� (7)

We test the hypotheses in (1) with r = 5 at the level α= 5%, and note that H0 holds if and
only if δ= 0. For an i.i.d. sample {Vi�Zi}1000

i=1 generated according to (6), we conduct tests

based on the matrix estimator Π̂n = 1
1000

∑1000
i=1 ViZ

ᵀ
i forΠ0.

Figure 2 plots the power functions (against δ) of the multiple KP test, labeled KP-M.
For d = 1 (and so rank(Π0)= r), the null rejection rate is 5%, while the power increases
to unity as δ increases. As soon as d > 1 (so that rank(Π0) < r), the power curves shift
downward dramatically: the null rejection rates are close to zero and the power is well
below 5% when δ is close to zero. Moreover, the power deteriorates asΠ0 becomes more
degenerate in the sense that Π0 is close to a matrix whose rank becomes smaller as d
increases. This reinforces the critical importance to accommodate rank(Π0) < r.

To compare, we first show that three versions of our test—CF-A, CF-N, and CF-T
(see below)—control size even when the KP test does not. Let {Zi}1000

i=1 be an i.i.d. sample

in M2×2 such that vec(Z1) ∼ N(vec(Π0)�Ω0), where vec(Π0) = δΩ
1/2
0 vec(I2) with δ ≥ 0

and Ω0 ∈ {Ω1�Ω2} as in (5). We test (1) with r = 1 based on Π̂n = 1
1000

∑1000
i=1 Zi, at α =

5%. Figure 3 shows our tests indeed control size for both choices of Ω0, while the KP
test underrejects when Ω0 = Ω1 and overrejects when Ω0 = Ω2. Note also that the KP-
M test is conservative. Next, for the designs in (6) and (7), Figure 2 depicts the power
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Figure 2. Conservativeness of the KP-M test. The number of Monte Carlo simulations is 10,000,
the number of bootstrap repetitions is 500, and κn = n−1/4 (for CF-A).

curves of CF-A. For d = 1, CF-A and KP-M have virtually the same rejection rates across

δ. Whenever d > 1, our test effectively raises the power curves of the KP-M test so that

the null rejection rates equal 5%, and the power becomes nontrivial, but it is more than

that. The power improvement increases when d gets larger.

To describe our test, let Π̂n be an estimator of Π0 ∈ Mm×k with τn{Π̂n −Π0} L−→ M.

The exact characterization of M (e.g., the covariance structure) is not required. Here,

τn is typically
√
n in cross-sectional and stationary time series settings, and may be

non-
√
n with nonstationary time series. Then our test statistic for (1) is τ2

nφr(Π̂n) ≡
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Figure 3. Comparisons with the KP and the KP-M tests. The number of Monte Carlo simula-
tions is 10,000, the number of bootstrap repetitions is 1000, κn = n−1/4 (for both CF-A and CF-N),
and β= α/10 (for CF-T).

τ2
n

∑k
j=r+1σ

2
j (Π̂n). It turns out that, under H0, we have: for r0 ≡ rank(Π0),

τ2
nφr(Π̂n)

L→
k−r0∑

j=r−r0+1

σ2
j

(
Pᵀ

0�2MQ0�2
)
� (8)

where P0�2 ∈ S
m×(m−r0) and Q0�2 ∈ S

k×(k−r0) whose columns are respectively the left and
the right singular vectors ofΠ0 associated with its zero singular values. Since the limit in
(8) depends on the true rank r0 (crucially), P0�2, Q0�2, and M, we estimate its law by first
estimating these unknown objects, toward constructing critical values.

The rank r0 may be consistently (under H0) estimated by: for κn → 0 and τnκn → ∞,

r̂n = max
{
j = 1� � � � � r : σj(Π̂n)≥ κn

}
(9)

if the set is nonempty and r̂n = 0 otherwise. Heuristically, κn may be thought of as testing
which population singular values are zero. Note that by estimating r0 we take into ac-
count the possibility r0 < r. Next, for a singular value decomposition Π̂n = P̂nΣ̂nQ̂

ᵀ
n, we

may respectively estimate P0�2 and Q0�2 by P̂2�n and Q̂2�n, which are respectively formed
by the last (m− r̂n) and (k− r̂n) columns of P̂n and Q̂n. The law of M may be consistently
estimated by a bootstrap, say, M̂∗

n. Often, M̂∗
n = √

n{Π̂∗
n − Π̂n} with Π̂∗

n computed in the
same way as Π̂n but based on a bootstrap sample. Finally, the law of the limit in (8) is
estimated by the conditional distribution (given the data) of

k−r̂n∑
j=r−r̂n+1

σ2
j

(
P̂ᵀ

2�nM̂
∗
nQ̂2�n

)
� (10)

Given a significance level α, the CF-A test rejects H0 whenever τ2
nφr(Π̂n) > ĉn�1−α, where

ĉn�1−α is the 1 − α conditional quantile of (10) given the data.
While we are unable to provide an optimal choice of κn, a two-step test, CF-T, is

proposed to mitigate potential concerns. In the first step, we obtain an estimator r̂n sat-
isfying lim infn→∞ P(r̂n = r0) ≥ 1 − β for some β < α, and then reject H0 if r̂n > r and
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move on to the next step if r̂n ≤ r. In the second step, we plug r̂n into (10) and reject H0 if
τ2
nφr(Π̂n) > ĉn�1−α+β, where the significance level is adjusted to be α−β. The estimator
r̂n in (9) now may not be appropriate as it appears challenging to control P(r̂n = r0). In-
stead, a desired estimator r̂n may be obtained by a sequential testing procedure as actu-
ally employed in the literature and formalized in the Online Supplemental Appendix C.
In this regard, we stress that the KP test may be utilized and is recommended as it is
tuning-parameter-free and does not require additional simulations.

Below we provide an implementation guide for testing (1) at significance level α.
Step 1: Compute a singular value decomposition Π̂n = P̂nΣ̂nQ̂ᵀ

n.
Step 2: Obtain r̂n as in (9) for a chosen κn (e.g., κn = n−1/4).
Step 3: Bootstrap B times and compute copies of M̂∗

n, denoted {M̂∗
n�b}Bb=1.

Step 4: For P̂2�n and Q̂2�n formed by the last (m− r̂n) and (k− r̂n) columns of P̂n and
Q̂n, respectively, set ĉn�1−α to be the �B(1 − α)�-th largest value in

k−r̂n∑
j=r−r̂n+1

σ2
j

(
P̂ᵀ

2�nM̂
∗
n�1Q̂2�n

)
� � � � �

k−r̂n∑
j=r−r̂n+1

σ2
j

(
P̂ᵀ

2�nM̂
∗
n�BQ̂2�n

)
�

Step 5: Reject H0 if τ2
n

∑k
j=r+1σ

2
j (Π̂n) > ĉn�1−α.

Compared to CF-N which is based on the numerical differentiation (Hong and Li
(2018)) (see Sections 3 and 4 for more details), CF-A is somewhat insensitive to the
choice of κn even in small samples. The two-step test CF-T, on the other hand, is overall
the least sensitive, but may be oversized in small samples (n ≤ 100). Thus, for practical
purposes, we recommend the latter when the sample size is reasonably large. To imple-
ment it, one replaces Steps 2 and 5 with:

Step 2′ : Obtain r̂n by sequentially testing rank(Π0) = 0�1� � � � �k − 1 at level β (e.g.,
β = α/10) using the KP test (based on Π̂n), that is, r̂n = j∗ if accepting rank(Π0) = j∗ is
the first acceptance in the procedure, and r̂n = k if all nulls are rejected. Reject H0 if
r̂n > r and move on to Step 3 otherwise.

Step 5′ : Reject H0 if τ2
n

∑k
j=r+1σ

2
j (Π̂n) > ĉn�1−α+β.

3. The inferential framework

In this section, we develop our inferential framework in three steps. First, we derive the
differential properties of the map φr given in (3), which is nontrivial and the key to our
theory. Second, given an estimator Π̂n of Π0, we derive the asymptotic distributions for
the plug-in estimator φr(Π̂n) by invoking the Delta method. These limits turn out to be
highly nonstandard whenever rank(Π0) < r. Thus, in the third step, we construct valid
and powerful rank tests by appealing to recent advances on bootstrap in irregular prob-
lems (Fang and Santos (2018), Chen and Fang (2019), Hong and Li (2018)). A two-step
test is proposed to mitigate potential concerns on sensitivity of our tests to the choices
of tuning parameters. Local properties of our tests will also be discussed.
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3.1 Differential properties

LetΠ0 ∈ Mm×k be an unknown matrix with m≥ k and σ1(Π0)≥ · · · ≥ σk(Π0)≥ 0 be sin-
gular values ofΠ0. Then the rank ofΠ0 is equal to the number of nonzero singular values
of Π0; see, for example, Bhatia (1997, p. 5) and also the Online Supplemental Appendix
for a brief review. Hence, the hypotheses in (1) are equivalent to

H0 :φr(Π0)= 0 vs. H1 :φr(Π0) > 0�

where φr : Mm×k → R is given by

φr(Π)≡
k∑

j=r+1

σ2
j (Π)� (11)

Heuristically, φr(Π) simply gives us the sum of the k − r smallest squared singular
values of Π. One may also consider other Lp-type functionals such as

∑k
j=r+1σj(Π).

Our current focus, however, allows us to uncover χ2-type limiting distributions when
rank(Π0)= r and in this way facilitates comparisons with existing rank tests.

Toward deriving the asymptotic distributions of the plug-in estimator φr(Π̂n) for a
given estimator Π̂n ofΠ0, we need to first establish suitable differentiability for the map
φr . The following lemma shall prove useful in this regard.

Lemma 3.1. For the map φr in (11), we have

φr(Π)= min
U∈Sk×(k−r)

‖ΠU‖2� (12)

Lemma 3.1 shows that φr(Π) can be represented as the minimum of a quadratic
form over the space of orthonormal matrices in Mm×(k−r). The special case when r =
k − 1 (corresponding to the test of Π having full rank) is a well-known implication of
the classical Courant–Fischer theorem, that is, σ2

k(Π) = min‖U‖=1 ‖ΠU‖2. Note that the
minimum in (12) is attained, and hence well-defined. It turns out that φr is not fully
differentiable in general but belongs to a class of directionally differentiable maps. For
completeness, we next introduce the relevant notions of directional differentiability.

Definition 3.1. Let φ : Mm×k → R be a generic function.

(i) The mapφ is said to be Hadamard directionally differentiable atΠ ∈ Mm×k if there
is a map φ′

Π : Mm×k → R such that

lim
n→∞

φ(Π + tnMn)−φ(Π)
tn

=φ′
Π(M)�

wheneverMn →M in Mm×k and tn ↓ 0 for {tn} all strictly positive.

(ii) If φ : Mm×k → R is Hadamard directionally differentiable at Π ∈ Mm×k, then we
say that φ is second-order Hadamard directionally differentiable at Π ∈ Mm×k if there is
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a map φ′′
Π : Mm×k → R such that

lim
n→∞

φ(Π + tnMn)−φ(Π)− tnφ′
Π(Mn)

t2n
=φ′′

Π(M)� (13)

wheneverMn →M in Mm×k and tn ↓ 0 for {tn} all strictly positive.

For simplicity, we shall drop the qualifier “Hadamard” in what follows, with the un-
derstanding that both full differentiability and directional differentiability (both first
and second order) are meant in the Hadamard sense. Definition 3.1(i) generalizes (full)
differentiability which additionally requires the derivative φ′

Π to be linear. By Propo-
sition 2.1 in Fang and Santos (2018), linearity is precisely the gap between these two
notions of differentiability; see also Shapiro (1990) for more discussions. Despite the re-
laxation, the Delta method remains valid even whenφ is only directionally differentiable
(Shapiro (1991), Dümbgen (1993)). Unfortunately, as shall be proved, the asymptotic dis-
tributions of our statistic φ(Π̂n) implied by this generalized Delta method are degener-
ate under the null. In turn, Definition 3.1(ii) formulates a suitable second-order analog
of the directional differentiability, which permits us to obtain nondegenerate asymp-
totic distributions by a (generalized) second-order Delta method (Shapiro (2000), Chen
and Fang (2019)). The second-order directional differentiability becomes second-order
full differentiability precisely when φ′′

Π corresponds to a bilinear form.
The following proposition formally establishes the differentiability of φr .

Proposition 3.1. Let φr : Mm×k → R be defined as in (11).

(i) φr is first-order directionally differentiable at any Π ∈ Mm×k with the derivative
φ′
r�Π : Mm×k → R given by

φ′
r�Π(M)= min

U∈Ψ(Π)
2 tr

(
(ΠU)ᵀMU

)
�

where Ψ(Π)≡ arg minU∈Sk×(k−r) ‖ΠU‖2.

(ii) φr is second-order directionally differentiable at anyΠ ∈ Mm×k satisfying φr(Π)=
0 with the derivative φ′′

r�Π : Mm×k → R given by: for r0 ≡ rank(Π),

φ′′
r�Π(M)=

k−r0∑
j=r−r0+1

σ2
j

(
Pᵀ

2MQ2
)
�

where the columns of P2 ∈ S
m×(m−r0) andQ2 ∈ S

k×(k−r0) are left and right singular vectors
associated with the zero singular values ofΠ.

Proposition 3.1(i) shows that φr is not fully differentiable in general but only direc-
tionally differentiable. Moreover, the first-order derivative is degenerate at zero when-
everφr(Π)= 0 as in this caseΠU = 0 for anyU ∈Ψ(Π). Proposition 3.1(ii) indicates that
φr is second-order directionally differentiable whenever the degeneracy occurs, and in-
terestingly, the derivative evaluated atM is simply the sum of the k− r smallest squared
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singular values of the (m − r0) × (k − r0) matrix Pᵀ
2MQ2. In general, φr is not second-

order fully differentiable precisely when rank(Π) < r, reflecting a critical irregular na-
ture of our setup; see Lemma D.5 for more details. To gain further intuition, suppose
thatΠ0 = diag(π0�1�π0�2) and we want to test if rank(Π0)≤ 1. Then by definition

φr(Π0)= min
{
π2

0�1�π
2
0�2

}
�

Note that if rank(Π0)≤ 1, then π2
0�1 = π2

0�2 if and only if rank(Π0) < 1 in which case π0�1 =
π0�2 = 0. Hence,φr is not second-order differentiable atΠ0 if and only if rank(Π0) < 1 as
the map (π1�π2) �→ min{π1�π2} is not differentiable precisely when π1 = π2. In any case,
fortunately, φr is second-order directionally differentiable, which is sufficient to invoke
the second-order Delta method as we elaborate next.

3.2 The asymptotic distributions

With the differentiability established in Proposition 3.1, we now derive the asymptotic
distributions for the plug-in statistic φr(Π̂n) where Π̂n is a generic estimator ofΠ0. This
is achieved by appealing to a generalized Delta method for second-order directionally
differentiable maps (Shapiro (2000), Chen and Fang (2019)). Toward this end, we impose
the following assumption.

Assumption 3.1. There is an estimator Π̂n : {Xi}ni=1 → Mm×k ofΠ0 ∈ Mm×k (withm≥ k)

satisfying τn{Π̂n −Π0} L→ M for some τn ↑ ∞ and random matrix M ∈ Mm×k.

Assumption 3.1 simply requires an estimator Π̂n of Π0 that admits an asymptotic
distribution. Note that the data need not be i.i.d., τn may be non-

√
n and M can be

non-Gaussian, which is important in, for example, nonstationary time series settings.
Moreover, as in Robin and Smith (2000) but in contrast to Cragg and Donald (1997), the
covariance matrix of vec(M) is not required to be nonsingular. Assumption 3.1 can be
relaxed to accommodate settings where convergence rates across entries of Π̂n are not
homogeneous, as in cointegratoin settings; see the Online Supplemental Appendix E.1.
For ease of exposition, however, we stick to Assumption 3.1 in the main text.

Given Proposition 3.1 and Assumption 3.1, the following theorem delivers the
asymptotic distributions of φr(Π̂n) by the Delta method.

Theorem 3.1. If Assumption 3.1 holds, then we have, for anyΠ0 ∈ Mm×k,

τn
{
φr(Π̂n)−φr(Π0)

} L→ min
U∈Ψ(Π0)

2 tr
(
UᵀΠᵀ

0MU
)
�

If in addition r0 ≡ rank(Π0)≤ r, then

τ2
nφr(Π̂n)

L→
k−r0∑

j=r−r0+1

σ2
j

(
Pᵀ

0�2MQ0�2
)
� (14)

where the columns of P0�2 ∈ S
m×(m−r0) andQ0�2 ∈ S

k×(k−r0) are respectively the left and the
right singular vectors ofΠ0 associated with its zero singular values.
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Theorem 3.1 implies that, under H0 (and so τnφr(Π̂n) is degenerate), the statistic

τ2
nφr(Π̂n) converges in law to a nondegenerate second-order limit. Toward construct-

ing critical values, we would then like to estimate the law of the limit. Unfortunately, as

shown by Chen and Fang (2019), bootstrapping a nondegenerate second-order limit is

nontrivial; in particular, standard bootstrap schemes such as the nonparametric boot-

strap of Efron (1979) are necessarily inconsistent even if they are consistent for M.

This predicament is further intensified by the nondifferentiability nature of the map

φr (Dümbgen (1993), Fang and Santos (2018)), which renders the limits in (14) highly

nonstandard in general. We shall thus present a consistent bootstrap shortly.

We emphasize that the limit of τ2
nφr(Π̂n) in Theorem 3.1 is obtained pointwise in

each Π0 under the entire null, regardless of whether the truth rank of Π0 is strictly less

than r or not. To the best of our knowledge, this is the first distributional result for a

rank test statistic that accommodates the possibility rank(Π0) < r, at the generality of

our setup. In turn, such a result permits us to develop a test that has asymptotic null

rejection rates exactly equal to the significance level, and hence is more powerful.

In relating our work to the literature, we note that, if τn = √
n, then the plug-in statis-

tic τ2
nφr(Π̂n) is precisely a Robin–Smith statistic (see (B.3)), while the KP statistic is sim-

ply a Wald-type standardization of it. Though standardization can help obtain pivotal

asymptotic distributions under r0 = r, this is generally not hopeful whenever r0 < r.

Since we shall reply on bootstrap for inference, nonpivotalness creates no problems for

us. Perhaps more importantly, one may be better off without standardization because

it entails invertibility of the weighting matrix in the limit, which may be hard to justify.

One might nonetheless interpret the inverse in the KP statistic as a generalized inverse,

but consistency of the inverse does not automatically follow from consistency of the co-

variance matrix estimator without further conditions (Andrews (1987)).

Finally, the limit of τ2
nφr(Π̂n) obtained under H0 is in fact a weighted sum of inde-

pendent χ2(1) variables if r0 = r and M is centered Gaussian, showing consistency of

our work with Robin and Smith (2000). To see this, note that

k−r0∑
j=r−r0+1

σ2
j

(
Pᵀ

0�2MQ0�2
) =

k−r∑
j=1

σ2
j

(
Pᵀ

0�2MQ0�2
)
�

which is simply the sum of all squared singular values of the (m − r) × (k − r) matrix

Pᵀ
0�2MQ0�2, or equivalently the squared Frobenius norm of Pᵀ

0�2MQ0�2 (Bhatia (1997,

p. 7)). Consequently, the limit in (14) can be rewritten as

vec
(
Pᵀ

0�2MQ0�2
)ᵀ

vec
(
Pᵀ

0�2MQ0�2
) = vec(M)ᵀ(Q0�2 ⊗ P0�2)(Q0�2 ⊗ P0�2)

ᵀ vec(M)�

as claimed, where we exploited a property of the vec operator (Hamilton (1994, Propo-

sition 10.4)). Our general limit in (14) characterizes the channels through which the true

rank plays its role, and thus highlights the importance of studying the problem (1).
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3.3 The bootstrap inference

Since asymptotic distributions of our statistic τ2
nφr(Π̂n) are not pivotal and highly non-

standard in general, in this section we thus aim to develop a consistent bootstrap. This
turns out to be quite challenging due to two complications involved.

First, since under H0 the first-order derivative of φr is degenerate while the second-
order derivative is not (by Proposition 3.1),φr(Π̂∗

n) is necessarily inconsistent even if Π̂∗
n

is a consistent bootstrap (in a sense defined below) in estimating the law of M (Chen
and Fang (2019)), and this remains true in the conventional setup where rank(Π0) = r.
Second, the possibility rank(Π0) < r makes the map φr nondifferentiable (see Lemma
D.5), and hence further complicates the inference (Dümbgen (1993), Fang and Santos
(2018)). One may resort to them out of n resampling (Shao (1994)) or subsampling (Poli-
tis and Romano (1994)). However, both methods can be viewed as special cases of our
general bootstrap procedure, and that more importantly, such a perspective enables us
to improve upon these existing resampling schemes and to analyze the local properties
in a unified and transparent way; see Remark 3.1 and Section 3.3.1.

The insight our bootstrap builds on is that the limit φ′′
r�Π0

(M) in Theorem 3.1 is a
composition of two unknown components, namely, the limit M and the derivativeφ′′

r�Π0
.

Heuristically, one may therefore obtain a consistent estimator for the law ofφ′′
r�Π0

(M) by

composing a consistent bootstrap M̂∗
n for M with an estimator φ̂′′

r�n of φ′′
r�Π0

that is suit-
ably “consistent.” This is precisely the bootstrap initially proposed in Fang and Santos
(2018) and further developed in Chen and Fang (2019) and Hong and Li (2018). In what
follows, we thus commence by estimating the two components separately.

Starting with M, we note that the law of M may be estimated by standard bootstrap
or variants of it that suit particular settings. To formalize the notion of bootstrap consis-
tency, we employ the bounded Lipschitz metric (van der Vaart and Wellner (1996)) and
consider estimating the law of a general random element G in a normed space D with
norm ‖ · ‖D—the space D is either Mm×k or R in this paper. Let G∗

n : {Xi�Wni}ni=1 → D be
a generic bootstrap estimator where {Wni}ni=1 are bootstrap weights independent of the
data {Xi}ni=1. Then we say that the conditional law of G∗

n given the data is consistent for
the law of G, or simply G

∗
n is a consistent bootstrap for G, if

sup
f∈BL1(D)

∣∣EW [
f
(
G

∗
n

)] −E[
f (G)

]∣∣ = op(1)�

where EW denotes expectation with respect to {Wni}ni=1 holding {Xi}ni=1 fixed, and

BL1(D)≡
{
f : D→ R : sup

x∈D

∣∣f (x)∣∣ ≤ 1�
∣∣f (x)− f (y)∣∣ ≤ ‖x− y‖D ∀x� y ∈D

}
�

Given the metric, we now proceed by imposing the following.

Assumption 3.2. (i) M̂∗
n : {Xi�Wni}ni=1 → Mm×k is a bootstrap estimator with {Wni}ni=1

independent of {Xi}ni=1; (ii) M̂∗
n is a consistent bootstrap for M.

Assumption 3.2(i) introduces the bootstrap estimator M̂∗
n, which may be con-

structed from nonparametric bootstrap, multiplier bootstrap, general exchangeable



Quantitative Economics 10 (2019) Improved inference 1801

bootstrap, block bootstrap, score bootstrap, the m out of n resampling or subsampling.
The presence of {Wni}ni=1 simply characterizes the bootstrap randomness given the data;

see Praestgaard and Wellner (1993). For Π̂∗
n a bootstrap analog of Π̂n, it is common to

have M̂∗
n = τn{Π̂∗

n − Π̂n}; if Π̂∗
mn

is an analog of Π̂n constructed based on a subsample of

size mn, then one may instead have M̂∗
n = τmn{Π̂∗

mn
− Π̂n}. Assumption 3.2(ii) requires

that M̂∗
n be consistent in estimating the law of the target limit M.

Turning to the estimation of φ′′
r�Π0

, we recall by Chen and Fang (2019) that, given

Assumption 3.2, the composition φ̂′′
r�n(M̂∗

n) is a consistent bootstrap for φ′′
r�Π0

(M) pro-

vided φ̂′′
r�n is consistent for φ′′

r�Π0
in the sense that, whenever Mn →M as n→ ∞,

φ̂′′
r�n(Mn)

p−→φ′′
r�Π0

(M)� (15)

In this regard, there are two general constructions, namely, the numerical estimator and
the analytic estimator, as we elaborate next.

The numerical estimator is simply a finite sample analog of (13) in the definition of
second-order derivative, that is, we estimate φ′′

r�Π0
by: for anyM ∈ Mm×k,

φ̂′′
r�n(M)= φr(Π̂n + κnM)−φr(Π̂n)

κ2
n

� (16)

for a suitable κn ↓ 0, where we have exploitedφ′
r�Π0

= 0 under the null. By Chen and Fang
(2019), (16) meets the requirement (15) if κn ↓ 0 and τnκn → ∞. Numerical differentia-
tion in the general context of the Delta method dates back to Dümbgen (1993), and is
recently extended by Hong and Li (2018). The numerical estimator enjoys marked sim-
plicity and wide applicability, because it merely requires a sequence {κn} of step sizes
satisfying certain rate conditions. There is, however, no general theory to date guiding
the choice of κn, a problem that appears challenging (Hong and Li (2018)). In this regard,
it may be sensible to employ the analytic estimator instead.

The analytic estimator heavily exploits the analytic structure of the derivative φ′′
r�Π0

,
which, by Proposition 3.1(ii), involves three unknown objects, namely, the true rank r0,
P0�2 and Q0�2—note that the columns of P0�2 and Q0�2 are the left and the right singu-
lar vectors associated with the zero singular values of Π0. We may thus estimate φ′′

r�Π0
by replacing these unknowns with their estimated counterparts. The key is consistent
estimation of r0: given a consistent estimator r̂n of r0, we may then obtain estimators
P̂2�n and Q̂2�n of P0�2 and Q0�2, respectively, in a straightforward manner as described in
Section 2. One possible construction of r̂n is given by (9). Alternatively, r̂n may also be
constructed by sequential testing, and the tuning parameter then becomes an adjusted
significance level; see the Online Supplemental Appendix C. In any case, by Lemma D.6,
we may then obtain a consistent estimator for φ′′

r�Π0
: for anyM ∈ Mm×k,

φ̂′′
r�n(M)=

k−r̂n∑
j=r−r̂n+1

σ2
j

(
P̂ᵀ

2�nMQ̂2�n
)
� (17)
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Similar to the numerical estimator, the analytic estimator (17) also depends on a tuning
parameter, but now through consistent estimation of the rank. An advantage of the latter
over the former is that the choice of the tuning parameter is easier to motivate. For ex-
ample, if r̂n is given by (9), then κn has a meaningful interpretation, namely, it measures
the parsimoniousness in selecting the rank.

Given a significance level α, we now formally define our critical value ĉn�1−α as

ĉn�1−α ≡ inf
{
c ∈ R : PW

(
φ̂′′
r�n

(
M̂∗

n

) ≤ c) ≥ 1 − α}
� (18)

where PW denotes the probability evaluated with respect to {Wni}ni=1 holding the data
fixed. In practice, we often approximate ĉn�1−α using the following algorithm:

Step 1: Compute the derivative estimator φ̂′′
r�n by either (16), or (9) and (17).

Step 2: Generate B realizations {M̂∗
n�b}Bb=1 of M̂∗

n based on B bootstrap samples.

Step 3: Approximate ĉn�1−α by the �B(1 − α)� largest number in {φ̂′′
r�n(M̂∗

n�b)}Bb=1.
Our simulations suggest that the analytic method tends to enjoy better size control.
The following theorem establishes that our test has pointwise exact asymptotic size

control under the entire null H0, and is consistent against any fixed alternatives.

Theorem 3.2. Let Assumptions 3.1 and 3.2 hold, and ĉn�1−α be as in (18) where φ̂′′
r�n is

given by either (16) with {κn} satisfying κn ↓ 0 and τnκn → ∞, or (17) with r̂n
p−→ r0 under

H0. If the cdf of the limiting distribution in (14) is continuous and strictly increasing at its
(1 − α)-quantile for α ∈ (0�1), then under H0,

lim
n→∞P

(
τ2
nφr(Π̂n) > ĉn�1−α

) = α�

Furthermore, under H1,

lim
n→∞P

(
τ2
nφr(Π̂n) > ĉn�1−α

) = 1�

Theorem 3.2 shows that our test is not conservative in the pointwise sense while ac-
commodating the possibility rank(Π0) < r. This roots in the simple fact that our critical
values are constructed for the pointwise distributions obtained under H0. By the same
token, the power is nontrivial and tends to one against any fixed alternative. We shall
further examine the local power properties in Section 3.3.1 and provide numerical evi-
dences in Section 4. Overall, the theoretical and numerical results manifest superiority
of our test in terms of size control and power performance.

In addition to the attractive features mentioned after Assumption 3.1, we stress that
the bootstrap for M may be virtually any consistent resampling scheme, and that no
side rank conditions whatsoever are directly imposed beyond those entailed by the re-
striction that the limiting cdf is continuous and strictly increasing at c1−α. Such a quan-
tile restriction is standard as consistent estimation of the limiting laws does not guar-
antee consistency of critical values; see, for example, Lemma 11.2.1 in Lehmann and
Romano (2005). To appreciate how weak this condition is, consider the conventional
setup (2) when M is Gaussian. Then each limit under H′

0 is a weighted sum of indepen-
dent χ2(1) random variables; see our discussions toward the end of Section 3.2. Conse-
quently, the quantile condition is automatically satisfied provided the covariance matrix
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Table 1. Estimation of rank(Π0) defined by the models (6)–(7).

Choices of κn in (9) Choices of β for the Sequential Method

d n−1/4 n−1/3 1�5n−1/3 n−2/5 1�5n−2/5 α/5 α/10 α/15 α/20 α/25 α/30

2 1�0000 0�9975 1�0000 0�6679 0�9618 0�9902 0�9947 0�9965 0�9974 0�9975 0�9979
3 1�0000 0�8516 0�9988 0�2246 0�7862 0�9908 0�9951 0�9958 0�9963 0�9976 0�9980
4 0�9995 0�5550 0�9922 0�0249 0�4474 0�9877 0�9949 0�9963 0�9972 0�9976 0�9981
5 0�9977 0�2176 0�9581 0�0003 0�1420 0�9861 0�9933 0�9958 0�9968 0�9976 0�9979
6 0�9899 0�0422 0�8557 0�0000 0�0203 0�9840 0�9916 0�9946 0�9960 0�9967 0�9967

of vec(Pᵀ
0�2MQ0�2) is nonzero (i.e., nonzero rank), which is precisely Assumption 2.4 in

Robin and Smith (2000). In contrast, Kleibergen and Paap (2006) required nonsingularity
of the same matrix (i.e., full rank).

Despite the irregular natures of the problem, computation of our testing statistic and
the critical values are quite simple as both involve only calculations of singular value
decompositions, for which there are commands in common computation softwares. In
particular, ĉn�1−α in practice is set to be the (1 − α)-quantile of

φ̂′′
r�n

(
M̂∗

n�1
)
� φ̂′′

r�n

(
M̂∗

n�2
)
� � � � � φ̂′′

r�n

(
M̂∗

n�B

)
�

Therefore, in each repetition, the numerical and the analytic approaches simply entail
singular value decompositions of Π̂n + κnM̂∗

n�b and P̂ᵀ
2�nM̂

∗
n�bQ̂2�n, respectively.

A common feature of our previous two tests is their dependence on a tuning param-
eter; see (16) and (17). To mitigate concerns on sensitivity to the choice of tuning param-
eters, we next develop a two-step test by exploiting the structure in (17). The intuition is
as follows. The estimator (9), though consistent, may differ from the truth in finite sam-
ples. We would thus like to control P(r̂n = r0), for which (9) may not be appropriate as
it appears challenging to bound P(r̂n = r0). Instead, we may obtain a suitable estima-
tor r̂n by a sequential testing procedure; see Theorem C.1. Specifically, we sequentially
test rank(Π0)= 0�1� � � � �k− 1 at level β< α, and set r̂n = j∗ if accepting rank(Π0)= j∗ is
the first acceptance, and r̂n = k if no acceptance occurs. In this regard, we recommend
the KP test as it is tuning parameter free and does not require additional simulations.1

Table 1 compares the empirical probabilities of {r̂n = r0} for r̂n obtained by (9) and the
sequential KP test respectively, based on the same simulation data from Section 2 when
d > 1. The empirical probabilities for (9) are close to one when κn = n−1/4 (as chosen
in Section 2) or ∈ {n−1/4�1�5n−1/4� n−1/5�1�5n−1/5} (omitted due to space limitation), but
may be far away from one or even close to zero for other choices. On the other hand,
the sequential approach leads to rank estimators with empirical probabilities approxi-
mately 1 −β across our choices of β.

Given an estimator r̂n with P(r̂n = r0) ≥ 1 − β (approximately) for some β < α, the
two-step test now goes as follows. In the first step, we reject H0 if r̂n > r; otherwise we

1If estimation of r0 is one’s ultimate goal (rather than an intermediate step for test), then it may be de-
sirable to instead employ our tests in the sequential procedure, as existing tests may lead to estimators that
are not as accurate whenΠ0 is “local to degeneracy”; see Section 4 for simulation evidences.
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plug r̂n into (17) in the second step and reject H0 if τ2
nφr(Π̂n) > ĉn�1−α+β. Note that the

significance level in the second step is adjusted to be α−β in order to take into account
the event of false selection (which has probability β). Formally, letting

ψn = 1
{
r̂n > r or τ2

nφr(Π̂n) > ĉn�1−α+β
}
� (19)

we then reject the null H0 if ψn = 1 and fail to reject otherwise. Our next theorem shows
that the two-step procedure controls size and is consistent.

Theorem 3.3. Suppose that Assumptions 3.1 and 3.2 hold, and that the cdf of the limit
distribution in (14) is continuous and strictly increasing at its (1 − α + β)-quantile for
α ∈ (0�1) and β ∈ (0�α). Let ψn be the test given by (19). Then, under H0,

lim sup
n→∞

E[ψn] ≤ α

provided lim infn→∞ P(r̂n = r0)≥ 1 −β, and, under H1,

lim
n→∞E[ψn] = 1�

The idea of the two-step test may be found in Loh (1985), Berger and Boos (1994),
and Silvapulle (1996), and has recently been employed in the context of moment
inequality models (Andrews and Barwick (2012), Romano, Shaikh, and Wolf (2014)).
A common feature that our test shares here is that the size control is not exact, that is,
we cannot show the size is equal to α. This raises the concern that the test may be poten-
tially conservative. Nonetheless, it is possible to derive a lower bound of the asymptotic
size which is close to α by choosing a small β; see Romano, Shaikh, and Wolf (2014) for
a similar feature. Summarizing, there are two (types of) test procedures: one rejects H0
if τ2

nφr(Π̂n) > ĉn�1−α with ĉn�1−α computed according to (18), and the other one applies
when one has control over P(r̂n = r0): if lim infn→∞ P(r̂n = r0) ≥ 1 − β, we reject if r̂n > r
or τ2

nφr(Π̂n) > ĉn�1−α+β. Our simulation results in Section 4 show that the two-step pro-
cedure produces results that are quite insensitive to our choice of β.

Remark 3.1. The m out of n bootstrap and the subsampling are special cases of our
bootstrap procedure. For example, the former amounts to M̂∗

n = τmn{Π̂∗
mn

− Π̂n} with

Π̂∗
mn

constructed based on subsamples of size mn (obtained through resampling with

replacement), and the derivative estimator φ̂′′
r�n given by (16) with κn = m−1

n . Subsam-
pling is precisely the same procedure except that the subsamples are obtained without
replacement. In other words, these procedures estimate the derivative through (16) im-
plicitly and automatically when the subsample size is properly chosen, combining the
two steps into one single step. By disentangling estimation of the two ingredients, how-
ever, we may better estimate both the derivative φ′′

r�Π0
(through exploiting the structure

of the derivative and a choice of the tuning parameter) and the law of the limit M (us-
ing full samples), which may in turn lead to efficiency improvement. Moreover, such a
perspective enables us to establish conditions under which tests based on these resam-
pling schemes have local size control and nontrivial power, properties not guaranteed
in general and nontrivial to analyze otherwise (Andrews and Guggenberger (2010)).
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3.3.1 Local power properties Having established size control and consistency, we next
aim to obtain a more precise characterization of the quality of our tests by studying the
local power properties (Neyman (1937)). Following Cragg and Donald (1997), we thus
proceed by imposing the following.

Assumption 3.1′ . (i) rank(Π0�n) > r for all n; (ii) τn{Π0�n −Π0} → � for some Π0 with

rank(Π0) ≤ r and nonrandom �; (iii) τn{Π̂n −Π0�n} Ln→ M for some τn ↑ ∞, where
Ln→ de-

notes convergence in law along distributions of the data associated with {Π0�n}.

Assumption 3.1′(i)(ii) formally defines {Π0�n} as a sequence of local alternatives that
approaches some Π0 in the null at the convergence rate τn, while Assumption 3.1′(iii)
formalizes the notion that the asymptotic distributions of Π̂n should remain unchanged
in response to small (finite sample) perturbations of the data generating processes, a
property that may be verified through, for example, the framework of limits of statistical
experiments (van der Vaart (1998), Hallin, van den Akker, and Werker (2016)).

Our next result characterizes the asymptotic behaviors of the testing statistic
τ2
nφr(Π̂n) under local alternatives that satisfy Assumption 3.1′.

Proposition 3.2. If Assumption 3.1′ holds, then it follows that

τ2
nφr(Π̂n)

Ln→
k−r0∑

j=r−r0+1

σ2
j

(
Pᵀ

0�2(M+�)Q0�2
)
�

Proposition 3.2 includes Theorem 3.1 as a special case withΠ0�n =Π0 for all n so that
�= 0. The main utility of this result is to analyze the asymptotic local power function. In
what follows, we focus on the one-step tests for conciseness and transparency, though
analogous results hold for the two-step test ψn. Thus, if the local alternatives {Π0�n} in
Assumption 3.1′ approach Π0 in the sense of contiguity (Roussas (1972), Rothenberg
(1984)),2 then we may obtain a lower bound as follows:

lim inf
n→∞ Pn

(
τ2
nφr(Π̂n) > ĉn�1−α

) ≥ P
( k−r0∑
j=r−r0+1

σ2
j

(
Pᵀ

0�2(M+�)Q0�2
)
> c1−α

)
�

where Pn denotes probability evaluated under Π0�n. While it appears challenging to
prove that the asymptotic local power is nontrivial under arbitrary local alternatives,
there is, nonetheless, an interesting case under which the asymptotic local power can be
proven to be nontrivial. This is the conventional setup where rank(Π0) is exactly equal
to the hypothesized value r and M is centered Gaussian. Since the derivative φ′′

r�Π0
then

coincides with the squared Frobenius norm; see Proposition 3.1(ii), we have along con-
tiguous local alternatives that

lim inf
n→∞ Pn

(
τ2
nφr(Π̂n) > ĉn�1−α

) ≥ P(∥∥Pᵀ
0�2(M+�)Q0�2

∥∥2
> c1−α

)
�

2This means that if (any) Tn is negligible (i.e., of order op(1)) under Π0 then it remains so under Π0�n.
Thus, contiguity simply formalizes the notion that the effect of “small” perturbations is negligible.
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An application of Anderson’s lemma (see, e.g., Lemma 3.11.4 in van der Vaart and Well-
ner (1996)) then yields

P
(∥∥Pᵀ

0�2(M+�)Q0�2
∥∥2
> c1−α

) ≥ P(∥∥Pᵀ
0�2MQ0�2

∥∥2
> c1−α

) = α�

If the localization parameter � is nontrivial (i.e., � �= 0) and belongs to the support of
M—which is the case, for example, if the covariance matrix of vec(M) is nonsingular,
then by Lemma B.4 in Chen and Santos (2018) (a strengthening of Anderson’s lemma),
the asymptotic local lower is in fact nontrivial, that is,

P
(∥∥Pᵀ

0�2(M+�)Q0�2
∥∥2
> c1−α

)
>α�

In view of the irregularities of the problem (1), one may also be interested in the size
control of our test. Under Assumption 3.1′ but with (i) replaced by rank(Π0�n)≤ r for all
n ∈ N so that the contiguous perturbations occur under the null, we may obtain

lim sup
n→∞

Pn
(
τ2
nφr(Π̂n) > ĉn�1−α

) ≤ P
(

k−r0∑
j=r−r0+1

σ2
j

(
Pᵀ

0�2(M+�)Q0�2
) ≥ c1−α

)
�

Now suppose rank(Π0)= r but without requiring M to be centered nor Gaussian. Since
φr(Π0�n)=φr(Π0)= 0, it follows by Assumption 3.1′(ii) and Proposition 3.1 that

0 = lim
n→∞τ

2
n

{
φr(Π0�n)−φr(Π0)

} =φ′′
r�Π0

(�)= ∥∥Pᵀ
0�2�Q0�2

∥∥2
�

Hence, we have Pᵀ
0�2�Q0�2 = 0, and consequently,

P

(
k−r0∑

j=r−r0+1

σ2
j

(
Pᵀ

0�2(M+�)Q0�2
) ≥ c1−α

)
= α�

if the quantile restrictions on c1−α as in Theorem 3.2 hold. Size control under arbitrary
local perturbations in H0, unfortunately, appears (to us) as challenging as establishing
nontrivial local power under arbitrary local alternatives. We pose these as open ques-
tions, and leave them for future study.

3.3.2 Illustration: identification in linear IV models We now illustrate how to apply our
framework by testing identification in linear IV models due to their simplicity and pop-
ularity. Let (Y�Zᵀ)ᵀ ∈ R1+k satisfy

Y =Zᵀβ0 + u�

whereβ0 ∈ Rk and u is an error term. Let V ∈ Rm be an instrument variable withE[V u] =
0 and m ≥ k. Then global identification of β0 requires E[V Zᵀ] to be of full rank. Thus,
identification of β0 may be tested by examining (1) with

Π0 =E[
V Zᵀ] and r = k− 1�
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The hypotheses in (2) may be restrictive since it is generally unknown if rank(Π0)≥ k−1.
Analogous rank conditions also arise for global identification in simultaneous linear
equation models (Koopmans and Hood (1953), Fisher (1961)) and in models with mis-
classification errors (Hu (2008)), and for local identification in nonlinear/nonparametric
models (Rothenberg (1971), Roehrig (1988), Chesher (2003), Matzkin (2008), Chen, Cher-
nozhukov, Lee, and Newey (2014)) and in DSGE models (Canova and Sala (2009), Ko-
munjer and Ng (2011)).

To apply our framework, let {Vi�Zi}ni=1 be an i.i.d. sample. Then the estimator

Π̂n = 1
n

n∑
i=1

ViZ
ᵀ
i

satisfies Assumption 3.1 for τn = √
n and some centered Gaussian matrix M under suit-

able moment restrictions. In turn, let {Z∗
i � V

∗
i }ni=1 be an i.i.d. sample drawn with replace-

ment from {Zi�Vi}ni=1. Then M̂∗
n ≡ √

n{Π̂∗
n − Π̂n} with Π̂∗

n given by

Π̂∗
n ≡ 1

n

n∑
i=1

V ∗
i Z

∗ᵀ
i = 1

n

n∑
i=1

WniViZ
ᵀ
i � (20)

where (Wn1� � � � �Wnn) is multinomial over n categories with probabilities (n−1� � � � � n−1),
satisfies Assumption 3.2; see, for example, Theorem 23.4 in van der Vaart (1998). We have
thus verified the main assumptions.

Empirical research, however, is often faced with clustered data; for example, micro-
level data often cluster on geographical regions such as cities or states. To illustrate, sup-
pose that there are G clusters where G is large, and the gth cluster has observations
{Vgi�Zgi}ngi=1. The data are independent across clusters but may otherwise be correlated

within each cluster. Let n≡ ∑G
g=1 ng. In these settings,Π0 is identified as the probability

limit of

Π̂n ≡ 1
n

G∑
g=1

V ᵀ
g Zg

as G→ ∞, where Vg ≡ [Vg1� � � � � Vgng ]ᵀ and Zg ≡ [Zg1� � � � �Zgng ]ᵀ. Assumption 3.1 holds
for τn = √

n and some centered Gaussian matrix M, by the Lindeberg–Feller-type central
limit theorem. Following Cameron, Gelbach, and Miller (2008), we may construct

M̂∗
n ≡ 1

n

G∑
g=1

Wg
{
V ᵀ
g Zg − Π̂n

}
� (21)

where (W1� � � � �WG) may be a multinomial vector over G categories with probabilities
(1/G� � � � � /1G) (corresponding to the pairs cluster bootstrap) or other weights (such
as those leading to the cluster wild bootstrap); see also Djogbenou, MacKinnon, and
Nielsen (2018).

For the convenience of practitioners, we next provide an implementation guide of
our two-step test at significance level α.
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Step 1: (a) Sequentially test rank(Π0)= 0�1� � � � �k−1 at levelβ (e.g.,β= α/10) based
on Π̂n using the KP test and obtain the rank estimator r̂n; (b) Reject H0 if r̂n = k and move
on to the next step otherwise.

Step 2: (a) DrawB bootstrap samples by either the empirical bootstrap or the cluster
bootstrap depending on if clustering is present, construct {M̂∗

n�b}Bb=1 accordingly (i.e., as
in (20) or (21)), and set ĉ1−α+β to be the �B(1 − α+β)� largest number in

k−r̂n∑
j=r−r̂n+1

σ2
j

(
P̂ᵀ

2�nM̂
∗
n�1Q̂2�n

)
� � � � �

k−r̂n∑
j=r−r̂n+1

σ2
j

(
P̂ᵀ

2�nM̂
∗
n�BQ̂2�n

)
�

where P̂2�n and Q̂2�n are from the singular value decomposition of Π̂n as before; (b) Reject
H0 if nσ2

min(Π̂n) > ĉ1−α+β with σmin(Π̂n) the smallest singular value of Π̂n.
For our one-step test based on (9) and (17), one may directly proceed with Step 2,

but with r̂n constructed from (9) and reject if nσ2
min(Π̂n) > ĉ1−α.

4. Simulation studies

In this section, we examine the finite sample performance of our inferential framework
by Monte Carlo simulations. First, we compare our tests with the multiple KP test in
more complicated data environments with heteroskedasticity, serial correlation and dif-
ferent sample sizes. We shall pay special attention to the choices of tuning parameters.
We refer the reader to the Online Supplemental Appendix B where we provide additional
comparisons with Kleibergen and Paap (2006) based on their simulation designs and a
real dataset that they use. Second, we also conduct simulations to assess the perfor-
mance of our rank estimators, obtained by a sequential testing procedure employed in
the literature and formalized in the Online Supplemental Appendix C.

We commence by considering the following linear model:

Zt =Πᵀ
0Vt + V1�tut� (22)

where Zt ∈ R4 for all t, {Vt} i.i.d.∼ N(0� I4) and {ut} are generated according to

ut = εt − 1
4

141ᵀ
4εt−1

with {εt} i.i.d.∼ N(0� I4) independent of {Vt}, and V1�t the first entry of Vt . Moreover, we
configureΠ0 as: for δ ∈ {0�0�1�0�3�0�5},

Π0 = diag(12�02)+ δI4�

We test the hypotheses in (1) for r ∈ {2�3} at level α= 5%. Thus, for both cases, H0 is true
if and only if δ = 0, and they respectively correspond to rank(Π0) = r and rank(Π0) < r

under H0. We estimate Π0 by Π̂n = 1
n

∑n
t=1 VtZ

ᵀ
t for sample sizes n ∈ {50�100�300�1000},

and for each n, the number of simulation replications is set to be 5000 with 500 boot-
strap repetitions for each replication. As the data exhibit first-order autocorrelation,
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we adopt the circular block bootstrap (Politis and Romano (1992)) with block size
b = 2. To implement the multiple KP test, labeled KP-M, we estimate the variance
of vec(Π̂n) by the HACC estimator with one lag (West (1997)). To carry out our tests,
we choose κn ∈ {n−2/5�1�5n−2/5� n−1/5� n−1/4� n−1/3�1�5n−1/5, 1�5n−1/4�1�5n−1/3} for both
the numerical estimator in (16) and the analytic estimator in (9) and (17), and β ∈
{α/5�α/10�α/15�α/20, α/25�α/30} for the two-step test. As in Section 2, we respectively
label these three tests as CF-N, CF-A, and CF-T.

Table 2 summarizes the simulation results for tuning parameters in the middle range
of the choices, while Tables 3 and 4 collect results for the remaining choices. For the case
of r = 2 (so that rank(Π0) = r under H0), the performance of CF-A and CF-T is compa-
rable with that of KP-M especially when the sample size is large, though CF-T exhibits
more size distortion than KP-M for n= 50 and CF-N appears to be somewhat sensitive to
the choice of κn. For the case of r = 3 (so that rank(Π0) < r under H0), KP-M is markedly
undersized even in large samples, while its local power is uniformly dominated by our
three tests, across all the choices of the tuning parameters, sample sizes, and the local
parameter δ. With regards to comparisons among our three tests, there are also some
persistent patterns. First, CF-N overall tends to be the most oversized especially in small
samples, and the most sensitive to the choice of the tuning parameters. Second, between
CF-A and CF-T, one does not seem to dominate the other. The former appears to per-
form better overall in terms of size control and local power in small samples, though the
differences become smaller as the sample size increases. The latter, on the other hand,
seems to be the least sensitive to the choice of the tuning parameters especially in the
irregular case when r = 3, as desired. Thus, it seems sensible to employ CF-A in small
samples and CF-T instead in large samples.

We now compare with Kleibergen and Paap (2006) in terms of estimation by mak-
ing use of the same data generating process as specified by (6) and (7) with δ= 0�1 and
0�12 so that rank(Π0)= 6 (i.e., full rank) in both cases for all d = 1� � � � �6. Our estimation
is based on the analytic derivative estimator (17) with r̂n given by (9) and κn = n−1/4—
the results for κn = n−1/3 are similar and available upon request. In each configuration,
we depict the empirical distributions of the estimators based on 5000 simulations, 500
bootstrap repetitions for each simulation, and α= 5%. As shown by Figures 4 and 5, our
rank estimators, labeled CF-A, pick up the truth with probabilities higher than the KP
estimators, uniformly over d ∈ {2� � � � �6} and δ ∈ {0�1�0�12}; when d = 1, the two sets of
estimators are very similar. Note that the empirical probabilities of r̂n = r0 are lower in
Figure 4 than in Figure 5 because Π0 is closer to a lower rank matrix (due to a smaller
value of δ), and in each figure, the probabilities for both sets of estimators decrease as
Π0 becomes more degenerate (as d increases). There are two additional interesting per-
sistent patterns. First, the distributions of the KP estimators are more spread out and
tend to underestimate the true rank, especially when d is large, that is, when Π0 is local
to a matrix whose rank is small. This is in accord with the trivial power of the KP test in
this scenario; see Figure 2. Second, the probability of our rank estimators equal to the
truth can exceed that of the KP rank estimator by as high as 57�84%, and in 5 out of the
12 data generating processes considered, the probabilities of our rank estimator cover-
ing the truth are at least 48�70% higher. Once again, this happens especially when Π0 is
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Table 2. Rejection rates of rank tests for the model (22) at α= 5%.

CF-T CF-A CF-N

Sample Size α/10 α/15 α/20 n−1/5 n−1/4 n−1/3 n−1/5 n−1/4 n−1/3 KP-M

Rejection rates for r = 2

δ= 0

50 0�17 0�17 0�17 0�04 0�04 0�04 0�29 0�28 0�21 0�08
100 0�08 0�08 0�08 0�04 0�04 0�04 0�23 0�20 0�12 0�08
300 0�04 0�04 0�04 0�05 0�05 0�05 0�16 0�12 0�05 0�06

1000 0�04 0�04 0�04 0�05 0�05 0�05 0�11 0�08 0�04 0�05

δ= 0�1

50 0�23 0�23 0�23 0�08 0�08 0�08 0�37 0�35 0�27 0�13
100 0�18 0�17 0�17 0�12 0�12 0�12 0�38 0�34 0�23 0�19
300 0�34 0�34 0�34 0�35 0�35 0�35 0�57 0�51 0�36 0�44

1000 0�89 0�90 0�90 0�90 0�90 0�90 0�95 0�92 0�88 0�92

δ= 0�3

50 0�67 0�67 0�66 0�48 0�48 0�48 0�80 0�79 0�72 0�40
100 0�85 0�85 0�85 0�80 0�80 0�80 0�95 0�93 0�89 0�77
300 1�00 1�00 1�00 1�00 1�00 1�00 1�00 1�00 1�00 1�00

1000 1�00 1�00 1�00 1�00 1�00 1�00 1�00 1�00 1�00 1�00

δ= 0�5

50 0�95 0�95 0�94 0�89 0�89 0�89 0�98 0�98 0�97 0�55
100 1�00 1�00 1�00 1�00 1�00 1�00 1�00 1�00 1�00 0�87
300 1�00 1�00 1�00 1�00 1�00 1�00 1�00 1�00 1�00 1�00

1000 1�00 1�00 1�00 1�00 1�00 1�00 1�00 1�00 1�00 1�00

Rejection rates for r = 3

δ= 0

50 0�09 0�09 0�10 0�07 0�06 0�04 0�14 0�14 0�12 0�01
100 0�06 0�07 0�07 0�06 0�06 0�03 0�12 0�12 0�09 0�01
300 0�04 0�05 0�05 0�05 0�05 0�03 0�09 0�08 0�06 0�01

1000 0�05 0�05 0�05 0�06 0�06 0�05 0�08 0�07 0�05 0�00

δ= 0�1

50 0�12 0�12 0�12 0�10 0�09 0�05 0�18 0�18 0�16 0�01
100 0�12 0�13 0�13 0�13 0�11 0�06 0�21 0�19 0�16 0�02
300 0�25 0�26 0�27 0�32 0�29 0�16 0�38 0�36 0�31 0�09

1000 0�63 0�65 0�67 0�82 0�81 0�59 0�84 0�82 0�77 0�54

δ= 0�3

50 0�43 0�44 0�45 0�39 0�33 0�25 0�57 0�56 0�52 0�12
100 0�61 0�63 0�64 0�66 0�57 0�50 0�80 0�79 0�74 0�43
300 0�96 0�96 0�96 0�98 0�96 0�96 1�00 0�99 0�99 0�96

1000 1�00 1�00 1�00 1�00 1�00 1�00 1�00 1�00 1�00 1�00

δ= 0�5

50 0�76 0�77 0�78 0�68 0�64 0�63 0�88 0�88 0�84 0�37
100 0�92 0�93 0�93 0�92 0�91 0�91 0�99 0�99 0�98 0�79
300 1�00 1�00 1�00 1�00 1�00 1�00 1�00 1�00 1�00 1�00

1000 1�00 1�00 1�00 1�00 1�00 1�00 1�00 1�00 1�00 1�00

Note: The three values under CF-T are the choices of β, and those under CF-A and CF-N are the choices of κn as in (9) and
(16), respectively.
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Figure 4. The rank estimation: rank(Π0)= 6, α= 5%, and δ= 0�1.

local to a matrix whose rank is small. These observations suggest that our estimators are
more robust to local-to-degeneracy.

5. Saliency analysis in matching models

In this section, we study a one-to-one, bipartite matching model with transferable utility,
where a central question is how many attributes are statistically relevant for the sorting
of agents (Dupuy and Galichon (2014), Ciscato, Galichon, and Goussé (2018)). As shall
be seen shortly, this question can be answered by appealing to our framework developed
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Figure 5. The rank estimation: rank(Π0)= 6, α= 5%, and δ= 0�12.

previously. Following the literature, we shall call the two sets of agents men and women,
though the theory obviously extends under the general setup.

5.1 The model setup and saliency analysis

LetX ∈ X ⊂ Rm and Y ∈ Y ⊂ Rk be vectors of attributes of men and women respectively,
with P0 andQ0 the probability distributions ofX and Y , respectively. A matching is then
characterized by a probability distribution π on X × Y such that its density fπ(x� y) de-
scribes the probability of occurrence of a couple with attributes (x� y). Since we only
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consider matched couples and matching is one-to-one, π must have marginals P0 and
Q0. A defining feature of the transferrable utility framework is that matched couples be-
have unitarily, that is, there is a single surplus function s : X × Y → R generated by the
matching, and how the surplus is shared between the spouses is endogenous. A final
ingredient crucial to the matching game is the equilibrium concept. As standard in the
literature, we employ the notion of stability (Gale and Shapley (1962)), and call a match-
ing stable if (i) no matched individual would rather be single and (ii) no pair of individu-
als would both like being matched together better than their current situation. It is well
known that stability (a game theoretical concept) and surplus maximization (a social
planner’s problem) are equivalent (Shapley and Shubik (1971), Chiappori, McCann, and
Nesheim (2010)). Consequently, the matching π0 in equilibrium can be characterized by
the centralized problem:

max
π∈Π(P0�Q0)

Eπ
[
s(X�Y)

]
� (23)

where Π(P0�Q0) is the family of distributions on X ×Y with marginals P0 andQ0.
Without further appropriate modeling, the optimal transport problem (23), implies

pure matching under regularity conditions (Becker (1973), Chiappori, McCann, and
Nesheim (2010)), that is, a certain type of men is for sure going to be matched with a
certain type of women. One empirical strategy to reconcile such unrealistic predictions
with data is to incorporate unobserved heterogeneity into the surplus function. Follow-
ing Choo and Siow (2006) and Chiappori, Salanié, and Weiss (2017), we assume that

s(x� y)=�(x�y)+ εm(y)+ εw(x)�
where�(x�y) is the systematic part of the surplus, and εm(y) and εw(x) are unobserved
random shocks. Note that εm(y) and εw(x) enter the surplus function additively and sep-
arably, which is by no means a haphazard restriction: it makes an otherwise extremely
difficult problem more tractable (Chiappori and Salanié (2016), Chiappori (2017)). Non-
parametric identification of both � and the error distributions, however, remains a
challenging task. Following Dagsvik (2000) and Choo and Siow (2006), we thus further
assume that the errors follow the type-I extreme value distribution, though we note
that such distributional assumption can be completely dispensed with (Galichon and
Salanié (2015)). The matching distribution π0 can in turn be characterized by

max
π∈Π(P0�Q0)

Eπ
[
�(X�Y)

] −Eπ
[
log fπ(X�Y)

]
� (24)

and � is nonparametrically identified (Galichon and Salanié (2015)). For the purpose of
estimation, we further assume that, for someA0 ∈ Mm×k and any (x� y) ∈ X ×Y ,

�(x�y)≡�A0(x� y)= xᵀA0y� (25)

whereA0 is called the affinity matrix. Such a parametric specification has also been em-
ployed by Galichon and Salanié (2010, 2015) and Dupuy and Galichon (2014).

Heuristically, the (i� j)th entry aij of A0 measures the strength of mutual attractive-
ness between attributes xi and yj . The rank of A0 provides valuable information on the
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number of dimensions on which sorting occurs, and helps construct indices of mutual
attractiveness (Dupuy and Galichon (2014, 2015)). Following Dupuy and Galichon (2014)
and Galichon and Salanié (2015), we estimateA0 by matching moments:

Eπ(A0�P0�Q0)

[
XY ᵀ] =E[

XY ᵀ]� (26)

where π0 ≡ π(A0�P0�Q0) is the matching distribution in equilibrium. By Lemma D.11,
if X and Y are finitely discrete-valued with probability mass functions p0 and q0, then
equation (26) defines not only a uniqueA0, but also an implicit map (p0� q0�E[XY ᵀ]) �→
A(p0� q0�E[XY ᵀ]) ≡ A0 which is differentiable. This has two immediate implications.
First, the estimator Ân defined by the sample analog of (26), that is,

E
π(Ân�p̂n�q̂n)

[
XY ᵀ] = 1

n

n∑
i=1

XiY
ᵀ
i � (27)

where p̂n and q̂n are sample analogs of p0 and q0, respectively, is asymptotically normal.
Second, the bootstrap estimator Â∗

n defined by the bootstrap analog of (27), that is,

E
π(Â∗

n�p̂
∗
n�q̂

∗
n)

[
XY ᵀ] = 1

n

n∑
i=1

X∗
i Y

∗ᵀ
i �

where p̂∗
n and q̂∗

n are bootstrap analogs of p̂n and q̂n, respectively, is consistent in esti-
mating the asymptotic distribution of Ân. We have thus verified the main assumptions
in order to apply our framework. We note in passing that it appears challenging to verify
Assumption 3.2 when X and Y are continuous, and we believe it should be based on
arguments different from those above.

Alternatively, Dupuy and Galichon (2014) estimate the rank of A0 by employing the
test of Kleibergen and Paap (2006), which they call the saliency analysis. There are two
motivations of using our inferential procedure. First, as argued previously, the KP test
is designed for the more restrictive setup (2) and can be invalid and/or conservative for
the hypotheses in (1). Consequently, estimation of rank(A0) by sequentially conduct-
ing the KP tests may be less accurate. Second, the KP test relies on an estimator of the
asymptotic variance of Ân which appears to be somewhat complicated (see the formula
(B18) in Dupuy and Galichon (2014)), while one generic merit of bootstrap inference is
to avoid analytic complications by repetitive resampling (Horowitz (2001)).

5.2 Data and empirical results

We use the same data source as Dupuy and Galichon (2014), that is, the 1993–2002 waves
of the DNB Household Survey, to estimate preferences in the marriage market in Dutch.
The panel contains rich information about individual attributes such as demographic
variables (e.g., education), anthropometry parameters (e.g., height and weight), person-
ality traits (e.g., emotional stability, extraversion, conscientiousness, agreeableness, au-
tonomy) and risk attitude; see Nyhus (1996) for more detailed descriptions of the data.
In order to apply our framework, we have discretized the variables in the following way:
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Table 5. Model specifications.

Model Attributes Included

(1) Education, BMI, risk aversion
(2) Education, BMI, risk aversion, conscientiousness
(3) Education, BMI, risk aversion, extraversion
(4) Education, BMI, risk aversion, agreeableness
(5) Education, BMI, risk aversion, emotional stability
(6) Education, BMI, risk aversion, autonomy
(7) Education, BMI, risk aversion, conscientiousness, extraversion
(8) Education, BMI, risk aversion, conscientiousness, autonomy
(9) Education, BMI, risk aversion, extraversion, autonomy

(i) BMI3 is converted into a trinary variable according to the international BMI clas-
sification, that is, BMI is set to be 1 if BMI < 18�50, 2 if 18�50 ≤ BMI < 24�99, and 3 if
BMI ≥ 24�99; (ii) Five personal traits variables and risk aversion are also converted into
trinary data by taking the value 1 if they are below the corresponding 25% quantiles, 2 if
they are between the 25% and the 75% quantiles, and 3 if they are strictly larger than the
75% quantiles; (iii) Education remains unchanged since it is discrete as it is. We make
use of the same sample as Dupuy and Galichon (2014) which has 1158 couples, but only
include subsets of the 10 attribute variables that they considered to reduce the compu-
tational burden; see Table 5. Following Dupuy and Galichon (2014) still, we demean and
standardize the data beforehand, and then compute the optimal matching distribution
by the iterative projection fitting procedure (Rüschendorf (1995)).

For each model specification, we study two problems: testing singularity of the cor-
responding affinity matrix and estimating its true rank. In carrying out our inferen-
tial procedures, we estimate the derivative through either (17) or (16), for which we
choose the tuning parameter κn ∈ {n−1/5� n−1/4� n−1/3}. The corresponding results are
labeled as CF-A and CF-N, respectively. We also implement the two-step procedure with
β ∈ {α/10�α/15�α/20}, labeled as CF-T. The significance level is α = 5%. As shown by
Table 6, our three inferential procedures yield overall consistent results, with the excep-
tion of models (3), (5), and (7). For example, for model (3), all our procedures estimate
the rank to be 4, except CF-A with κn = n−1/3 which estimates the rank to be 3. Such dis-
crepancies may be due to the choices of tuning parameters or finite sample variations.
Nonetheless, what is comforting to us is that, in the three models, the majority of the 9
estimates point to the same rank. We also note that the p-values and estimates of the
rank based on CF-T are the same across all three choices of β, for all model specifica-
tions except for model (5).

There are, however, noticeable differences between our results and those obtained
by the KP test. First, there are sizable discrepancies between thep-values of our tests and
those for the KP-M tests, especially for model specifications (3), (5), (7), and (9). Second,
in terms of estimation, there are also marked differences. For example, for model (9), our

3The body mass index (BMI) is defined as the body mass divided by the square of the body height, which
provides a simple numeric measure of a person’s thinness.
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Table 6. Empirical results.

CF-T CF-A CF-N

Model Maximum Rank α/10 α/15 α/20 n−1/5 n−1/4 n−1/3 n−1/5 n−1/4 n−1/3 KP-M‡

The p-values for full rank tests†

(1) 3 0�00 0�00 0�00 0�00 0�00 0�00 0�00 0�00 0�00 0�00
(2) 4 0�01 0�01 0�01 0�00 0�00 0�01 0�00 0�00 0�00 0�03
(3) 4 0�04 0�04 0�04 0�01 0�04 0�18 0�01 0�02 0�04 0�25
(4) 4 0�88 0�88 0�88 0�86 0�88 0�92 0�85 0�86 0�87 0�94
(5) 4 0�23 0�08 0�08 0�03 0�08 0�23 0�02 0�03 0�06 0�35
(6) 4 0�01 0�01 0�01 0�00 0�00 0�01 0�00 0�00 0�00 0�03
(7) 5 0�02 0�02 0�02 0�00 0�02 0�14 0�00 0�00 0�01 0�19
(8) 5 0�00 0�00 0�00 0�00 0�00 0�01 0�00 0�00 0�00 0�03
(9) 5 0�00 0�00 0�00 0�00 0�00 0�03 0�00 0�00 0�00 0�22

Estimates of the true rank (α= 5%)
(1) 3 3 3 3 3 3 3 3 3 3 3
(2) 4 4 4 4 4 4 4 4 4 4 4
(3) 4 4 4 4 4 4 3 4 4 4 3
(4) 4 3 3 3 3 3 3 3 3 3 3
(5) 4 3 3 3 4 3 3 4 4 3 3
(6) 4 4 4 4 4 4 4 4 4 4 4
(7) 5 5 5 5 5 5 4 5 5 5 3
(8) 5 5 5 5 5 5 5 5 5 5 5
(9) 5 5 5 5 5 5 5 5 5 5 3

Note: † The three values under CF-T are the choices of β, and those under CF-A and CF-N are the choices of κn as in (9)
and (16), respectively.
‡ The p-value for KP-M is given by the smallest significance level such that the null hypothesis is rejected, which is equal to the
maximum p-value of all Kleibergen and Paap’s (2006) tests implemented by the multiple testing method.

tests unanimously estimate the rank to be 5, while the KP test estimates the rank to be
3. Similar patterns occur for models (3) and (7) for which the KP test provides a smaller
rank estimator. Inspecting these differences, it seems that extraversion is not important
for matching in the Dutch marriage market according to the KP results, while our results
show that it is important. Overall, we obtain estimates different from those based on
Kleibergen and Paap (2006) in 3 out of the 9 model specifications.

6. Conclusion

In this paper, we have developed a general framework for conducting inference on the
rank of a matrix Π0. The problem is of first-order importance because we have shown,
through an analytic example and simulation evidences, that existing tests may be invalid
due to overrejections when in truth rank(Π0) is strictly less than the hypothesized value
r, while their multiple testing versions, though valid, can be substantially conservative.
We have then developed a testing procedure that has asymptotic exact size control, is
consistent, and meanwhile accommodates the possibility rank(Π0) < r. A two-step test
is proposed to mitigate the concern on tuning parameters. We also characterized classes
of local perturbations under which our tests have local size control and nontrivial local
power. These attractive testing properties in turn lead to more accurate rank estimators.
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We illustrated the empirical relevance of our results by conducting inference on the rank
of an affinity matrix in a two-sided matching model.

We stress that our framework is limited to matrices of fixed dimensions and inap-
plicable to examples where the dimensions diverge as sample size increases. This is be-
cause Assumption 3.1 is being violated in these settings, as Π0 typically does not admit
weakly convergent estimators. While we find extensions allowing varying dimensions
important in, for example, many IV problems and high-dimensional factor models, a
thorough treatment is beyond the scope of this paper, and hence left for future study.
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