We consider the issue of measuring segregation in a population of small units, considering establishments in our application. Each establishment may have a different probability of hiring an individual from the minority group. We define segregation indices as inequality indices on these unobserved, random probabilities. Because these probabilities are measured with error by proportions, standard estimators are inconsistent. We model this problem as a nonparametric binomial mixture. Under this testable assumption and conditions satisfied by standard segregation indices, such indices are partially identified and sharp bounds can be easily obtained by an optimization over a low dimensional space. We also develop bootstrap confidence intervals and a test of the binomial mixture model. Finally, we apply our method to measure the segregation of foreigners in small French firms.

Keywords. Segregation, small units, partial identification.

JEL classification. C13, C14, J71.

1. Introduction

Suppose that we seek to measure the extent to which a minority group, such as foreigners, is concentrated in some firms only, because, for instance, some firms are reluctant to hire them. Measuring the magnitude of segregation is a crucial step to understand the underlying phenomena and design adequate policies. A natural way to do this would be to compute the proportion of minority workers X_i/K_i, with X_i the number of workers from the minority group and K_i the size of firm i, and then compute an inequality...
index on the sample \((X_i/K_i)_{i=1,...,n}\). However, even if firms all hire each of their workers from the minority group with the same probability, there will be some variation on \(X_i/K_i\) across firms just because \(K_i\) is finite. Hence, this approach will overestimate the actual level of segregation, an issue known as the small-unit bias.

Several works propose solutions to deal with this issue. The most common way is to provide corrected versions of the indices, in an attempt to extract the signal from the noise. Winship (1977) has been the first to propose a corrected Duncan index. The idea was developed by Carrington and Troske (1997), who propose an adjustment that can be applied to other indices. Allen, Burgess, Davidson, and Windmeijer (2015) proposed a correction based on bootstrap. These papers have received substantial attention, as the literature on the measurement of segregation, whether at the residential (see, e.g., Cutler and Glaeser (1997), Cutler, Glaeser, and Vigdor (1999, 2008), Echenique and Fryer (2007), Bayer and McMillan (2012)), school (see, e.g., Card and Rothstein (2007), Fredriksson, Öckert, and Oosterbeek (2013)), or workplace level (see, e.g., Carrington and Troske (1998), Hellerstein and Neumark (2008)), is large. Having only a small number of observations per unit is particularly frequent for workplace and school segregation as a large share of firms have less than 10 employees and classrooms are between 20 and 40 pupils. Residential segregation may also be affected when only surveys (and not censuses) are available. In their paper about ideological segregation of the Internet, Gentzkow and Shapiro (2011) have also to deal with small-unit bias.

In this paper, we propose a different approach: we consider that segregation should be measured directly through an inequality index on the distribution \(F_p\) of \(p_i\), the probability that firm \(i\) has to hire someone from the minority group. In line with the literature (see in particular Winship (1977), Carrington and Troske (1997), Rathelot (2012)), we impose an independence condition between hiring or, more generally, on the allocation process. In other words, conditional on \(K_i\) and \(p_i\), \(X_i\) is supposed to follow a binomial distribution \(B(K_i, p_i)\). This binomial assumption, which we show is testable, allows us to identify the first moments of \(F_p\). Because most of the existing segregation indices depend on the whole distribution of this probability, not only on its first moments, these indices are only partially identified in general. Bounds can be obtained by minimizing or maximizing these indices over distributions whose first moments match those identified in the data. This problem is a difficult one, as the space of corresponding distributions is of infinite dimension in general.

Another contribution of this paper is to prove that under a linearity condition satisfied by, among others, the Atkinson, Duncan, and Theil indices, the bounds on segregation indices for units of size \(K\) can be obtained by optimizing over discrete distributions with only \(K+1\) points of support at most. We also show, using the theory of Chebyshev systems (see, e.g., Krein and Nudel’man (1977)) that under another assumption satisfied, for instance, by the Theil index, bounds can be obtained without optimization by

3See also Söderström and Uusitalo (2010), Brunello and Rocco (2013), Leckie and Goldstein (2014) for recent papers about school segregation with attempts to correct for small-unit bias.

4In Section 2, we elaborate on when one should focus on \(F_p\) rather than on the distribution of the realized share \((X_i/K_i)_{i=1,...,n}\).
simply finding roots of appropriate polynomials. We also show how bounds on subpopulations can be combined to handle random unit sizes or to control for covariates at the unit (e.g., firms’ sectors) or at the position (e.g., skilled versus unskilled positions in the firm) level.

Our results are also related to a few papers on partial identification. Stoye (2010) also considers the partial identification of spread parameters such as the Gini, Theil, or Atkinson indices. Our paper complements his by considering a different type of measurement problem on the variable of interest \(p \). While Stoye (2010) considers missing or interval-valued data, we consider a setting where only restrictions on the first moments of \(p \) are available. Our identification result is also linked to a result of Chernozhukov, Fernandez-Val, Hahn, and Newey (2013) in the context of nonlinear panel data models. In such models, bounds on marginal effects can be obtained by maximizing some functionals over the distribution of the fixed effect. Similarly to us, they show that one can actually restrict to discrete distributions with a low number of support points.

We also develop estimation and inference on the segregation index using a two-step procedure. In the first step, we consider a maximum likelihood estimator for the distribution of \(X_i \) conditional on \(K_i \). Once the unobserved \(p_i \) is integrated out, \(X_i \) does not follow a binomial distribution in general, but a multinomial one, with some inequality constraints on the corresponding probabilities stemming from the underlying binomial model. The estimator takes a simple closed form when the constraints are slack. When they are not slack, we show that the estimator can be obtained through an optimization under linear equality and inequality constraints. In the second step, the bounds are estimated by optimizing over finite-dimensional distributions whose first moments match the first-step estimator. When the constraint on the vector of moments is binding, the lower and upper bounds coincide and no optimization is needed in this case. We show that the estimated bounds are consistent under minimal conditions and derive their asymptotic distribution under additional restrictions. This distribution is normal when the true vector of moments lies in the interior of the moment space, but is not when this vector is at the boundary of the moment space. We propose a bootstrap confidence interval that works in both cases. Finally, we develop a bootstrap likelihood ratio test of the binomial mixture model.

Monte Carlo simulations indicate that our method works well for finite samples, and is not computationally too demanding. They also show that even for modest unit sizes (\(K = 9 \), typically), the constraint on the vector of moment is binding most of the times for sample sizes as large as 10,000, leading in most cases to an estimated identification interval reduced to a single point. For typical unit and sample sizes, the length of the confidence intervals mostly stems from sampling variation, not from partial identification.

Finally, we apply our framework to measure the segregation of immigrants in small French firms. Our method proves to work well in this context. First, we do not reject the binomial mixture model for any plant sizes. Second, for plant sizes larger than 3, the identification region is already informative. Third, contrary to what is suggested by the naïve Carrington and Troske (1997) or Allen et al. (2015) estimators, we cannot reject at
standard levels that there is no relationship between plant size and the level of segregation, at least for very small firms. Finally, we show that the level of segregation we obtain is not explained by the fact that foreigners hold more unskilled positions. This result is consistent with those of Hellerstein and Neumark (2008) and Åslund and Skans (2010) for American and Swedish firms, respectively.

The paper is organized as follows. Section 2 presents the binomial mixture model and studies partial identification of parameters of interest in this model. Section 3 presents the estimation procedure for the bounds, as well as the inference results. The behavior of the bounds and their estimators is studied through simulations in Section 4. The application to workplace segregation is developed in Section 5. Section 6 concludes. Appendix A gathers all the proofs. In additional appendixes, available in a supplementary file on the journal website, http://qeconomics.org/supp/501/supplement.pdf, we extend our framework to handle random unit sizes and control for covariates, develop the bootstrap likelihood ratio test of the binomial mixture model, and provide additional discussion on inference. Replication files are available in a supplementary file on the journal website, http://qeconomics.org/supp/501/code_and_data.zip.

2. Identification

2.1 The setting and the object of interest

The population is assumed to be split into two groups: a group of interest, called the minority group hereafter, and the rest of the population. Individuals are distributed across units, which may represent geographic areas, classrooms, or, as in our application, firms. We assume that there exists a random variable \(p_i \) taking values in \([0, 1]\) that represents the probability for any individual belonging to unit \(i \) to be a member of the population of interest. The probabilities \(p_i \) are independent and identically distributed (i.i.d.) across units, with cumulative distribution function (cdf) \(F_p \). Because we have in mind units of small to moderate size, our asymptotic analysis here is in the number of units.\(^5\)

The object of interest of this paper is a segregation index of the minority group, \(\theta_0 \), which is a real functional of \(F_p \). Hereafter, we denote this index by \(g(F_p, m_{01}) \), with \(m_{01} = E(p) \). This notation may seem redundant, because \(m_{01} \) depends on \(F_p \), but the reason will become clearer below. Popular indices include the Duncan \(D \), the Theil \(T \), the Atkinson \(A_b \) parameterized by \(b \in (0, 1) \), and the co-worker index \(CW \), which satisfy, respectively,

\[
D = \frac{1}{2} E \left[\frac{p}{E(p)} - \frac{1 - p}{E(1 - p)} \right] = \int \frac{|u - m_{01}|}{2m_{01}(1 - m_{01})} dF_p(u),
\]

\[
T = 1 - \frac{E(p \ln(p))}{E(p) \ln(E(p))} = 1 - \frac{\int u \ln(u) dF_p(u)}{m_{01} \ln(m_{01})},
\]

\(^5\)This contrasts with the framework of Allen et al. (2015), where the size of the units tends to infinity while the number of units is fixed.
\begin{align*}
A_b &= 1 - m_{01}^{1-b} (1 - m_{01})^{-1} \left(\int (1 - u)^{1-b} u^b \, dF_p(u) \right)^{\frac{1}{1-b}}, \\
CW &= \int (u - m_{01})^2 \, dF_p(u) / (m_{01} - m_{01}^2).
\end{align*}

These definitions correspond to the limit in probability of the standard formulas given, for instance, by Massey and Denton (1988). Though our main results will not include it, let us also mention the Gini index, \(G = (1 - m_{01} - \int F_p^2(u) \, du) / m_{01} \). The probability \(p \) is not directly observed. Instead, we observe the size of the unit, \(K \), and the number \(X \) of minority individuals in that unit.\(^6\) Why is it interesting to learn about \(F_p \) rather than about the distribution of the realized share \(X/K \) or the number of minority individuals across units? While the realized shares may be more interesting for studying the consequences of segregation, as we discuss in the conclusion, we see at least two reasons for this choice.

First, let us consider the case where the available data are not exhaustive: suppose that only a subset of individuals in a school, a neighborhood, or a firm are sampled. In this case, \(F_{X/K} \), the distribution of the realized minority shares, is not observed. If one is interested in this distribution, we show that our analysis can be applied, up to a few changes detailed in Section 2.2. When the size of the underlying unit is very large (but the sample size remains small), our results can be applied as such.

Second, since the beginning of the segregation literature, computing segregation indices is often used to understand the features of the underlying allocation process of individuals across units. If the question is to investigate whether the allocation process, as a whole, is influenced by the ethnicity variable, the interesting distribution is less the realized one (which, by construction, incorporates the noise coming from the sampling process) than the one of the underlying probabilities. In one of the earliest paper of this literature, Jahn, Schmid, and Schrag (1947) characterizes in this way the absence of segregation: “[...] if there is no segregation then members of a minority racial group [...] will be distributed randomly throughout the various census tracts of a city.”

To fix ideas, consider the following model. In a first step, a job seeker has to choose to which firm \(i \) to apply. In a second step, firm \(i \) decides which job seekers they hire. To make their decision, job seekers will consider the nature of the job and the wage offered, as well as the distance between the job and his residence. Firms will try to assess candidates’ productivity based on observable information; they can also be prejudiced. The probability \(p_i \) of firm \(i \) will then depend on both the probability to apply of minority and majority job seekers, and, conditional on the application, on the probability for the firm to hire the majority or minority applicant. If at both stages ethnicity is not relevant, that is, if minority and majority apply to similar jobs and employers make similar hiring decisions when they face minority and majority candidates, we expect \(p_i \) to reflect the proportion of job seekers in the population, so that \(p_i = m_{01} \) for all \(i \) and \(D = T = A_b = CW = 0 \). However, given the small number of workers in firms, the actual

\(^6\)To ease the exposition, we omit subscripts \(i \) in this section.
proportion of minority workers may only be a poor approximation of \(p_i \), and the segregation indices based on the distribution of \(X/K \) instead of \(p \) would all be positive, even though ethnicity would play no role in the underlying process.\(^7\)

From this example, it is obvious that computing segregation based on the distribution of \(p \) does not exhaust the set of interesting questions relating to the underlying process. One of the most important caveats is that the segregation measured with respect to ethnicity may well be driven by any characteristics correlated with ethnicity. For instance, if minority and majority workers differ in their skill level, ethnic segregation may just be due to the fact that firms vary in the level of skill that they require. This issue is not specific to the small-unit case and also applies when units are large. In the Supplement, we propose a solution by including covariates at the unit level (e.g., firms’ sector) or at the position level (e.g., skilled vs unskilled positions). Another limit is that applications and hiring decisions may depend on the current, realized share of the minority in the firm. If so, realized shares may be of more interest than the unobserved probabilities. But such a case would also violate the binomial mixture model we consider below. To assess whether this issue is important in a given context, it is therefore important to run the test of the binomial mixture model that we develop in Section C.1 of the Supplement.

2.2 The main identification result

We suppose here that the size of units \(K \) is constant; the case of random size is considered in Section B.1 of the Supplement. We posit that individuals are selected into units independently from each other in terms of their membership in the group of interest. In this case, \(X \) follows, conditional on \(p \), a binomial distribution \(B(K, p) \). Because \(p \) is random and unobserved, this model is called a binomial mixture (see, e.g., Lord (1969), Wood (1999)). Note that the independence condition may not hold. The presence of an immigrant in a firm may, for instance, increase the probability that another immigrant is employed in this firm. However, in the absence of detailed data on the selection process into units, this seems to us to be the most transparent assumption. It is also assumed by Carrington and Troske (1997) or Rathelot (2012). It is also asymptotically equivalent to the allocation mechanism considered by Allen et al. (2015) when the number of individuals and the number of units tend to infinity at the same rate.\(^8\) Finally, as we shall see below, this assumption is testable.

Because the distribution of \(X \) is defined by \(K \) probabilities, namely \(P_0 = (P_{01}, \ldots, P_{0K})' \), with \(P_{0j} \) = \(\Pr(X = j) \), we expect it to convey information on \(K \) parameters of \(F_p \).

\(^7\)Similar reasoning would apply to education. School and classroom segregation results from the geographic distribution of ethnic groups, individual choices, and the principals’ decisions in accepting pupils and gathering them into classrooms.

\(^8\)Allen et al. (2015) suppose that individuals from group \(e \in \{0, 1\} \) (with \(e = 1 \) for the minority group, say) are allocated independently and with probability \(\pi^e_i \) to unit \(i \). However, if the number of individuals \(n \) tends to infinity together with the number of units, such that \(\pi^e_i n \to \rho^e_i \), then the number of individuals of group \(e \) in unit \(i \), \(X^e_i \), follows a Poisson distribution with parameter \(\rho^e_i \). Because \(X^1_i \) and \(X^0_i \) are independent, we finally get \(X^1_i | X^1_i + X^0_i = K \sim B(K, \rho^1_i/(\rho^0_i + \rho^1_i)) \), as here.
Letting \(m_{0i} = E(p^i) \), we have, after some algebra,

\[
P_{0j} = E[\Pr(X = j | p)] = \sum_{i=1}^{K} \binom{K}{i} \binom{i}{j} (-1)^{i-j} m_{0i}.
\]

Hence, letting \(m_0 = (m_{01}, \ldots, m_{0K})' \) and letting \(Q \) be the \(K \times K \) matrix of typical element \(\binom{K}{i} \binom{i}{j} (-1)^{i-j} \), we get

\[
P_0 = Q m_0. \tag{2.2}
\]

Moreover, \(Q \) is invertible as an upper triangular matrix with nonzero diagonal elements. Thus, there is a one-to-one mapping between \(P_0 \) and \(m_0 \). This has two implications. First, \(m_0 \) is identified from the distribution of \(X \). As a result, any parameter \(\theta_0 \) depending only on \(m_0 \) is point identified. This is, for instance, the case of the co-worker index \(CW \).

Because \(CW = (m_{02} - m_{01}^2)/(m_{01} - m_{01}^2) \), the co-worker index is point identified as soon as \(K \geq 2 \).

The second implication of (2.2) is that two different distributions of \(p \) with the same first \(K \) moments lead to the same distribution of \(X \) and are thus observationally equivalent. In other words, we do not learn anything about \(p \) beyond its first \(K \) moments. As a result, \(\theta_0 \) is not identified in general, and its sharp lower and upper bounds \(\underline{\theta}_0 \) and \(\overline{\theta}_0 \) satisfy

\[
\underline{\theta}_0 = \inf_{F \in \mathcal{D}_{m_0}} g(F, m_{01}), \quad \overline{\theta}_0 = \sup_{F \in \mathcal{D}_{m_0}} g(F, m_{01}), \tag{2.3}
\]

where \(\mathcal{D}_{m_0} \) is the subset of \(\mathcal{D} \), the set of cumulative distribution functions on \([0, 1] \), for which the vector of first \(K \) moments equals \(m_0 \).

Equation (2.3) provides the sharp bounds on \(\theta_0 \) but is not useful in practice because it amounts to optimizing over an infinite-dimensional set. We now show that under restrictions satisfied by most segregation indices, the problem can be much simplified. We use for that purpose related results on the so-called Chebyshev–Markov moment problem (see, e.g., Krein and Nudel’man (1977), for historical notes on this problem).

As a vector of raw moments \(m_0 \) cannot lie anywhere in \([0, 1]^K \). It should satisfy some restrictions; for instance, the variance has to be positive, implying \(m_{02} \geq m_{01}^2 \). Formally,

\[
m_0 \in \mathcal{M} = \left\{ \left(\int x dF, \ldots, \int x^K dF \right)', F \in \mathcal{D} \right\}.
\]

We provide a complete characterization of the moment space \(\mathcal{M} \) below, but first consider the case where \(m_0 \) belongs to its boundary \(\partial \mathcal{M} \). When \(m_0 \in \partial \mathcal{M} \), there is actually a unique distribution \(F^* \) corresponding to \(m_0 \). Moreover, \(F^* \) is discrete with at most \(L + 1 \) support points, where \(L \) is the integer part of \((K + 1)/2\) (for a proof of both points, see, e.g., Theorem IV.4.1 in Krein and Nudel’man (1977)). Then no optimization is required to solve (2.3), and \(\underline{\theta}_0 = \overline{\theta}_0 \).

Now, when \(m_0 \in \mathcal{M} \), the interior of \(\mathcal{M} \), we can also simplify the computation of the bounds, at the price of imposing the following assumption.
Assumption 2.1. We have \(g(F, m_{01}) = \nu(\int h(x, m_{01}) \, dF(x), m_{01}) \), where \(h \) and \(\nu \) are continuous and \(\nu(\cdot, m_{01}) \) is monotonic.

An important feature of the assumption is that \(F \mapsto \int h(x, m_{01}) \, dF(x) \) is linear. Assumption 2.1 does not hold for the Gini index but is satisfied by the Duncan, the Theil, and the Atkinson indices.\(^9\)

Assumption 2.1 also holds when one cares about the realized shares, but only a sample of each unit is observed. Specifically, let \(\tilde{X} \) denote the total number of minority people in a random unit of size \(L \), and suppose that the parameter of interest satisfies \(\theta_0 = \nu(\int h(x, m_{01}) \, dF_{\tilde{X}/L}(x), m_{01}) \). Assume that in each unit, only \(K < L \) individuals are sampled, among whom \(X \) belong to the minority. Then, using the fact that \(\tilde{X} - X \mid p, X \sim B(p, L - K) \), we obtain, after some algebra,

\[
\theta_0 = \nu\left(\int \tilde{h}(p, m_{01}) \, dF_p(p), m_{01} \right),
\]

with

\[
\tilde{h}(p, m_{01}) = \sum_{j=0}^{K} \sum_{k=0}^{L-K} \binom{K}{j} \binom{L-K}{k} h((j+k)/K, m_{01}) p^{j+k}(1-p)^{L-(j+k)}.
\]

Hence, Assumption 2.1 also holds in this context. Note that when \(L \to \infty \), the law of large numbers and continuity of \(h \) imply that \(\tilde{h}(p, m_{01}) \to h(p, m_{01}) \).

Under this condition, by a theorem of Carathéodory, the bounds on \(\int h(x, m_{01}) \, dF(x) \), and thus on \(\theta_0 \), are attained on distributions with no more than \(K + 1 \) support points (see, for instance, Theorem I.3.6 of Krein and Nudel’man (1977)).\(^{10}\) This makes the optimization computationally possible. Specifically, let \(D^\ell \) denote the subset of \(D \) with at most \(\ell \) points of support and let \(D^\ell_{m_{0}} = D^\ell \cap D_{m_{0}} \). Then define

\[
\theta_{0,\ell} = \inf_{F \in D^\ell_{m_{0}}} g(F, m_{01}), \quad \bar{\theta}_{0,\ell} = \sup_{F \in D^\ell_{m_{0}}} g(F, m_{01}). \tag{2.4}
\]

Because the optimization set is smaller than in (2.3), \(\theta_{0,\ell} \) and \(\bar{\theta}_{0,\ell} \) are only inner bounds in general, namely \(\theta_{0,\ell} \geq \theta_0 \) and \(\bar{\theta}_{0,\ell} \leq \bar{\theta}_0 \). Carathéodory’s result ensures, however, that under Assumption 2.1, these inner bounds coincide with the sharp bounds for \(\ell = K + 1 \). In concrete terms, this means that for finding the sharp lower and upper bounds on the segregation index, we can make as if there was a finite number of types of firms with the same underlying probability.

Theorem 2.1. If \(m_0 \in \partial M \), then \(\theta_0 = \bar{\theta}_0 = g(F^*, m_{01}) \), where \(F^* \) is the cdf of a discrete distribution with at most \(L + 1 \) support points, where \(L \) is the integer part of \((K + 1)/2\).

\(^9\)It suffices to choose \(\nu(u, v) = u/[2v(1-v)] \) and \(h(x, m_{01}) = |x - m_{01}| \) for the Duncan, \(\nu(u, v) = 1 - u/[v \ln(v)] \) and \(h(x, m_{01}) = x \ln(x) \) for the Theil, and \(\nu(u, v) = 1 - v^{-b}/(1-b)(1-v)^{-1}u^{b(1-b)} \) and \(h(x, m_{01}) = x^b(1-x)^{1-b} \) for the Atkinson indices.

\(^{10}\)Linearity of \(F \mapsto \int h(x, m_{01}) \, dF(x) \), together with convexity of \(D_{m_{0}} \) and continuity of \(\nu(\cdot, m_{01}) \), also implies that the identification region is the interval \([\theta_0, \bar{\theta}_0]\).
If \(m_0 \in \mathcal{M} \) and Assumption 2.1 holds, then \(\theta_{0,K+1} = \theta_0 \) and \(\bar{\theta}_{0,K+1} = \bar{\theta}_0 \).

Note that \(\mathcal{D}_{m_0}^{K+1} \) can be seen as a subset of \([0, 1]^{2K+1}\), as any \(F \in \mathcal{D}_{m_0}^{K+1} \) is defined by its support points and associated probabilities. As a result, \(\bar{\theta}_{0,K+1} \) and \(\theta_{0,K+1} \) can be obtained as an optimization over a subset of \([0, 1]^{2K+1}\). It is noteworthy that the result would also apply to the lower bound of concave functionals of \(F \). Because \(g(\cdot, m_{01}) \) is concave in the case of the Gini index, \(\theta_{0,K+1} = \theta_0 \) for the Gini. However, the upper bound cannot be obtained similarly.

The second result of Theorem 2.1 can be easily generalized to moment problems of the kind

\[
\inf_{F \in \mathcal{D}} \int q(x) \, dF(x) \quad \text{s.t.} \quad \int r(x) \, dF(x) = 0, \tag{2.5}
\]

where \(q(x) \in \mathbb{R} \) while \(r(x) \) belongs to \(\mathbb{R}^{K} \). Here as well, the infimum is attained by distributions with at most \(K + 1 \) support points, which makes the optimization feasible in practice. An example where bounds of an identification region satisfy problem (2.5) is average marginal effects in binary choice panel data (see Lemma 7 of Chernozhukov et al. (2013), for such a result). In that case, \(F \) represents the distribution of fixed effects and the constraints correspond to the fact that the probabilities of all possible sequences of choices should match those of the data.

2.3 Additional results in special cases

In the interior case, computing the bounds still requires a nonlinear optimization under constraints that are also nonlinear in the support points. Interestingly, the Chebyshev–Markov problem has been further simplified under additional assumptions, using the theory of Chebyshev systems (see, e.g., Krein and Nudel’man (1977)). More precisely, we consider the following condition.

Assumption 2.2. The function \(g \) satisfies Assumption 2.1. Moreover, \(h \) does not depend on \(m_{01} \), is \(c^{K+1} \) on \((0, 1)\), and satisfies either \(h^{(K+1)}(x) > 0 \) for all \(x \in (0, 1) \) or \(h^{(K+1)}(x) < 0 \) for all \(x \in (0, 1) \).

Assumption 2.2 is satisfied for the Theil index. In this case, \(h(x) = x \ln x; h \) is \(C^\infty \) on \((0, 1)\) and satisfies \(h^{(K+1)}(x) = (-1)^{K+1}(K - 1)!/x^K \) for \(K \geq 1 \). Thus \(h^{(K+1)} \) has constant sign for all \(K \geq 1 \). In the case of the Atkinson index, \(h(x) = x^b(1 - x)^{1-b} \), we checked numerically that for all \(b \in (0, 1) \) and \(K \) odd between 3 and 49, \(h^{K+1}(x) < 0 \) for all \(x \in (0, 1) \), so that Assumption 2.2 is also satisfied for the Atkinson index for all odd \(K \leq 50 \).

Under Assumption 2.2, no numerical optimization is needed to compute the bounds \(\theta_0 \) and \(\bar{\theta}_0 \). The idea behind this is that special discrete distributions that rationalize the bounds, called principal representations, will also rationalize the bounds with \(h(x) = x^{K+1} \). Then one can show that in the latter case, the problem reduces to finding

11Interestingly, principal representations have found numerous other applications in statistics; see Dette and Studden (1997) for a survey or Dette and Schorning (2013) for a recent application to optimal design of experiments.
the roots of a polynomial, a task for which very efficient algorithms are available. Using principal representations to compute the bounds is therefore much simpler and faster than solving (2.4), a point that we confirm below in our simulations (see in particular Table 3).

Let us now detail how the principal representations can be obtained. We do not provide proofs of our claims hereafter but refer to the monograph of Krein and Nudel’man (1977) for more details. The principal representations are determined solely by the vector \[x = (x_1, \ldots, x_{L+1}) \] of their support points, with \(0 \leq x_1 < \cdots < x_{L+1} \leq 1 \). Then the associated vector of probabilities \(y = (y_1, \ldots, y_{L+1}) \) is uniquely defined by the \(L + 1 \) moment constraints \(V(x) y' = (1, E(p), \ldots, E(p^L))' \), where \(V(x) \) is the Vandermonde matrix associated with vector \(x \):

\[
V(x) = \begin{pmatrix}
 x_1^0 & \cdots & x_{L+1}^0 \\
 \vdots & \ddots & \vdots \\
 x_1^L & \cdots & x_{L+1}^L
\end{pmatrix}.
\]

The vector \(y \) is uniquely defined by \(V(x) y' = (1, m_0') \) because Vandermonde matrices are nonsingular (see, e.g., Horn and Johnson (1990)).

Now let us define the support points of the principal representations. For that purpose, let \(A_{m_0}, B_{m_0}, \text{and } C_{m_0} \) denote the square matrices of size \(L, L, \text{and } L - 1 \), respectively, with typical \((i, j)\) terms equal to \(m_{0i+j-2}, m_{0i+j-1}, \text{and } m_{0i+j} - m_{0i+j-1} \), respectively, with the convention that \(m_{00} = 1 \). If \(K \) is even, first define \(\underline{a} = (a_0, \ldots, a_{L-1})' \) and \(\overline{a} = (\overline{a}_0, \ldots, \overline{a}_{L-1})' \) by

\[
\underline{a} = -B_{m_0}^{-1}(m_{0L+1}, \ldots, m_{0K})',
\quad \overline{a} = (B_{m_0} - A_{m_0})^{-1}(m_{0L} - m_{0L+1}, \ldots, m_{0K-1} - m_{0K})'.
\]

That \(B_{m_0} \) and \(B_{m_0} - A_{m_0} \) are nonsingular is ensured by \(m_0 \in \mathcal{M} \) and \(K \) even (see Remark III 2.1 of Krein and Nudel’man (1977)). Then consider the polynomials \(P_{m_0} \) and \(\overline{P}_{m_0} \) defined by

\[
P_{m_0}(x) = \sum_{j=0}^{L-1} a_j x^j + x^L, \quad \overline{P}_{m_0}(x) = \sum_{j=0}^{L-1} \overline{a}_j x^j + x^L.
\]

The subscript \(m_0 \) underlines the dependency of these polynomials on \(m_0 \), through (2.6). The support points of the lower principal representation \(E_{m_0} \) are then \(0 \) and the roots of \(P_{m_0} \). Similarly, the support points of the upper principal representation \(\overline{P}_{m_0} \) are \(1 \) and the roots of \(\overline{P}_{m_0} \). The construction is the same in the odd case. The variables \(\underline{a} \) and \(\overline{a} = (\overline{a}_0, \ldots, \overline{a}_{L-2})' \) then satisfy

\[
\underline{a} = -A_{m_0}^{-1}(m_{0L}, \ldots, m_{0K})', \quad \overline{a} = C_{m_0}^{-1}(m_{0L} - m_{0L+1}, \ldots, m_{0K-1} - m_{0K})'.
\]

\footnote{We consider here the case where the principal representations have \(L + 1 \) support points. They may have less support points, in which case we should modify the dimension of \(x \) accordingly.}

\footnote{In the following discussion, Vandermonde matrices of different sizes will be used, depending on the size of \(x \). In the absence of ambiguity, we keep the notation \(V(x) \).}
The polynomials P_{m_0} and \overline{P}_{m_0} are defined similarly, and the support points of E_{m_0} (resp. \overline{E}_{m_0}) are the roots of P_{m_0} (resp. 0, 1 and the roots of \overline{P}_{m_0}).

In the case of the Atkinson index, Assumption 2.2 does not hold for K even. In this case, however, we can still rely on Chebyshev systems by remarking that $h(x) = x^{K+1}$ satisfies Assumption 2.2. In other words, the lower and upper bounds on m_{0K+1}, denoted, respectively, by m_{0K+1} and \overline{m}_{0K+1}, can be obtained by the previous construction. Then one possibility would be to compute the bounds on A_p given $(m_{01}, \ldots, m_{0K+1})$, for all possible values of m_{0K+1} in $[m_{0K+1}, \overline{m}_{0K+1}]$. But the bounds on A_p are even simpler to determine by properties of Chebyshev systems. Specifically, Theorem VI.2.2 of Krein and Nudel’man (1977) ensures that the bounds on A_p are attained on either m_{0K+1} or \overline{m}_{0K+1}.

We summarize our discussion in the following theorem.

Theorem 2.2. Suppose that Assumption 2.2 holds. Then

$$\{\theta_0, \overline{\theta}_0\} = \{g(E_{m_0}, m_{01}), g(\overline{E}_{m_0}, m_{01})\}.$$

Moreover, if Assumption 2.2 holds for $K + 1$ instead of K, then

$$\begin{align*}
\theta_0 &= \min\{g(E_{m_0}, m_{01}), g(E_{\overline{m_0}}, m_{01}), g(\overline{E}_{m_0}, m_{01}), g(\overline{E}_{\overline{m_0}}, m_{01})\}, \\
\overline{\theta}_0 &= \max\{g(E_{m_0}, m_{01}), g(E_{\overline{m_0}}, m_{01}), g(\overline{E}_{m_0}, m_{01}), g(\overline{E}_{\overline{m_0}}, m_{01})\},
\end{align*}$$

where $m_0 = (m_{01}, \ldots, m_{0K}, m_{0K+1})$ and $\overline{m}_0 = (m_{01}, \ldots, m_{0K}, \overline{m}_{0K+1})$.

2.4 Links with other approaches

Previous approaches in the literature have focused on the estimation of parameters that are identified, but different from θ_0 in general. The first and perhaps most natural possibility is to ignore the randomness due to the small size of the unit, and make as if $X = Kp$. This amounts to estimating the parameter $\theta_N = g(F_{X/K}, m_{01})$. However, the following proposition shows that if $g(\cdot, m_{01})$ is monotonic with respect to the second-order dominance, as is the case for all the inequality indices we consider, this parameter is always greater than $\overline{\theta}_0$. In other words, ignoring the randomness leads to overestimating the true level of segregation.

Proposition 2.3. Suppose that $g(\cdot, m_{01})$ is decreasing with respect to the second-order dominance. Then $\theta_N \geq \overline{\theta}_0$. Moreover, the inequality is strict if $g(\cdot, m_{01})$ is strictly decreasing\(^{14}\) and the support of p is not reduced to $[0, 1)$.

Several works have recognized this small-unit bias. The most commonly used correction method is the one introduced by Carrington and Troske (1997), based on earlier works by Winship (1977) and Cortese, Falk, and Cohen (1978). The idea is to define an index that corresponds to a distance from randomness. Specifically, let $\theta^\text{prt} = \ldots$\(^{14}\)Here we say that $g(\cdot, m_{01})$ is strictly decreasing with respect to the second-order dominance if, whenever $\int w(x) \, dF(x) > \int w(x) \, dG(x)$ for all strictly concave w, we have $g(F, m_{01}) > g(G, m_{01})$.\)
$g(F_{Xns/K, m_{01}})$, with $X^{ns} \sim B(E(p), K)$, denote the naive parameter that would be obtained if all units had the same probability, that is, if there was no segregation. Suppose also, without loss of generality if g is bounded, that g ranges from 0 to 1. The corrected index θ_{CT} of Carrington and Troske (1997) is defined by

$$\theta_{CT} = \frac{\theta_N - \theta_{ns}^N}{1 - \theta_{ns}^N}.$$

The index θ_{CT} is therefore an affine correction that coincides with θ_0 in the two polar cases where there is no segregation, because $\theta_{CT} = \theta_N = \theta_0 = 0$ in this case, or if segregation is maximal, because then $\theta_{CT} = \theta_0 = 1$. But in general θ_{CT} is not equal to θ_0; neither does it lie inside the interval $[\theta_0, \theta_0]$, as we will illustrate in Section 4.1.

Allen et al. (2015) propose a bootstrap correction of the segregation index. Their method aims to obtain a good approximation of the discrepancy between $\theta_N = g(F_{X/K, m_{01}})$ and θ_0 by bootstrap, and then to correct for this discrepancy. In our framework, this would amount to approximating this discrepancy by $\theta_N^* - \theta_N$, where $\theta_N^* = g(F_{X^*/K, m_{01}})$ and $X^*|X \sim B(K, X/K)$. The corrected index is then

$$\theta_{ABW} = 2\theta_N - \theta_N^* \quad (= \theta_N + \theta_N - \theta_N^*).$$

The idea behind this parameter is that if X/K was distributed as p, we would have $\theta_N - \theta_0 = \theta_N^* - \theta_N$ and $\theta_{ABW} = \theta_0$. More generally, one can show that the bias of θ_{ABW} decreases more quickly than the bias of θ_N as $K \to \infty$.

If focusing on θ_0 rather than θ_{ABW} or θ_{CT} raises some identification issues, an important advantage of our approach is that it sticks to indices whose axiomatic properties are well understood (see, e.g., James and Taeuber (1985), Chakravarty and Silber (1994), Hutchens (2001)). One particularly desirable property is size invariance, which is satisfied by all indices we consider James and Taeuber (1985). While θ_{ABW} or θ_{CT} correct for part of the small-unit bias, the resulting index will in general depend on the unit size and violate the size invariance principle.

Rathelot (2012) follows a closer approach to ours by considering the same parameter θ_0. But contrary to our approach, he imposes the distribution of p to be a mixture of beta distributions. Combined with the binomial assumption on X, the model becomes fully parametric and can be estimated by maximum likelihood. The segregation indices can be easily deduced as a function of the parameters of the beta mixture. Note that such a model is overidentified in general. For instance, a mixture of two beta distributions has five parameters, so that most vectors of first K moments will not be compatible with this model when $K \geq 6$. In such cases, the segregation index obtained may not lie inside the interval $[\theta_0, \theta_0]$. Importantly, this corrected index will only converge to θ_0 as $K \to \infty$ if one lets the number of components of the mixture tend to infinity with K.

\[\text{footnote} 6\] In their framework, θ_N^* is not exactly defined this way, because the two allocation models differ. The two are however expected to be close when the sample size is large, for the reasons detailed in footnote 6.
3. Estimation and inference

3.1 Estimation of the bounds

In this section, we suppose we have in hand an i.i.d. sample \((X_1, \ldots, X_n)\) of \(n\) units. Unit sizes are still constant equal to \(K\). Following the identification part, we estimate the identified set by estimating its sharp bounds. We first estimate \(P_0\) and thus \(m_0 = Q^{-1}P_0\). We then use Theorems 2.1 or 2.2 to yield the estimates of the bounds.

First, we estimate \(P_0\) by constrained maximum likelihood, where the constraints come from the binomial mixture model. By what precedes, the model is equivalent to \(P_0 \in \mathcal{P} = \{Qm : m \in \mathcal{M}\}\). We then let

\[
\hat{P} = \arg\max_{P \in \mathcal{P}} \sum_{k=1}^{K} N_k \ln(P_k) + N_0 \ln\left(1 - \sum_{k=1}^{K} P_k\right),
\]

where \(N_k = \sum_{i=1}^{n} 1\{X_i = k\}\). This optimization may look complicated because \(\mathcal{M}\), and thus \(\mathcal{P}\), is defined in a complicated way. We can use, however, a simpler characterization of \(\mathcal{M}\) to simplify the optimization greatly, as Lemma 3.1 below shows. Hereafter, we let \(\mathcal{S}_{L+1} = \{(x_1, \ldots, x_{L+1}) : 0 \leq x_1 < \cdots < x_{L+1} \leq 1\}\) and \(\mathcal{T}_{L+1} = \{(y_1, \ldots, y_{L+1}) \in [0, 1]^{L+1} : \sum_{k=1}^{L+1} y_k = 1\} \).

Lemma 3.1. The maximum likelihood estimator \(\hat{P} = (\hat{P}_1, \ldots, \hat{P}_K)'\) satisfies

\[
\hat{P}_k = \left(\frac{K}{L+1}\right) \sum_{j=1}^{L+1} \hat{y}_j \hat{x}_j^k (1 - \hat{x}_j)^{K-k}, \quad k \in \{1, \ldots, K\},
\]

where \(\hat{x} = (\hat{x}_1, \ldots, \hat{x}_{L+1})\) and \(\hat{y} = (\hat{y}_1, \ldots, \hat{y}_{L+1})\) are given by

\[
(\hat{x}, \hat{y}) = \arg\max_{(x,y) \in \mathcal{S}_{L+1} \times \mathcal{T}_{L+1}} \sum_{k=0}^{K} N_k \ln\left(\sum_{j=1}^{L+1} y_j x_j^k (1 - x_j)^{K-k}\right).
\]

Following (2.2), we then estimate \(m_0\) by \(\hat{m} = Q^{-1}\hat{P}\). Note that by construction, \(\hat{m} \in \mathcal{M}\).

Now let us turn to the segregation index. We rely on Theorems 2.1 and 2.2 to estimate its bounds. We first check whether \(\hat{m} \in \partial\mathcal{M}\) or not, because if this is the case, the bounds are equal and no optimization is required. A simple way to test this is to consider whether the unconstrained maximum likelihood estimator \(\bar{P} = (\bar{P}_1, \ldots, \bar{P}_K)\), which satisfies \(\bar{P}_k = N_k/n\), does or does not belong to \(\mathcal{P}\). We propose a simple procedure for testing \(\bar{P} \notin \mathcal{P}\) in Section D.1 of the Supplement. Our Monte Carlo simulations show that \(\hat{m} \in \partial\mathcal{M}\) occurs with probability close to 1 when \(K \geq 10\), even with sample sizes as large as 10,000 (for similar evidence, see Wood (1999)). In this case, we simply estimate the bounds by

\[
\hat{\theta} = \hat{\theta} = g(\hat{P}, \hat{m}_1),
\]

where \(\hat{P}\) is the cdf corresponding to \((\hat{x}, \hat{y})\).
If $\mathcal{P} \subset \mathcal{P}$ with probability approaching 1. Then \mathcal{P} is not reduced to a single distribution, and if Assumption 2.2 is not satisfied, optimization is required to obtain the estimated bounds. We then use estimators of $\theta_{0,K+1}$ and $\theta_{0,K+1}$. Given a vector of moments $m = (m_1, \ldots, m_K)$, any $F \in \mathcal{K}_{m+1}$ is defined by its support points $x \in \mathcal{S}_{K+1}$ and the associated probabilities $y \in \mathcal{T}_{K+1}$. Moreover, the moment constraints are written $V(x)y = (1, m')$. Thus, the vector of probabilities y satisfies $V(x)^{-1}(1, m') \geq 0$, where the inequalities are understood componentwise. Because $F \in \mathcal{K}_{m+1}$ depends on x and m only, we may rewrite $g(F, m_1)$ as a function of x and m only. We denote this function by $q(x, m)$. The bounds on the true parameter $\theta_0 = \theta(m)$ when the vector of moments is $m_0 = m$ satisfy

$$\theta(m) = \min_{x \in \mathcal{S}_{K+1}} q(x, m), \quad \theta(m) = \max_{x \in \mathcal{S}_{K+1}} q(x, m).$$

Our estimators of θ_0 and θ_0 are, respectively, $\hat{\theta} = \hat{\theta}(\hat{m})$ and $\tilde{\theta} = \tilde{\theta}(\tilde{m})$.

Finally, when Assumption 2.2 holds, we simply estimate the principal representations F_{m_0} by \tilde{F}_{m_0} and F_{m_0}, and let

$$\hat{\theta} = \min\{g(F_{\hat{m}}, \hat{m}_1), g(\tilde{F}_{\tilde{m}}, \tilde{m}_1)\}, \quad \tilde{\theta} = \max\{g(F_{\tilde{m}}, \tilde{m}_1), g(\tilde{F}_{\tilde{m}}, \tilde{m}_1)\}. \quad (3.5)$$

3.2 Inference on the segregation index and its identified set

We first show that the estimators of the bounds are root-n consistent and characterize their asymptotic distribution. We consider hereafter both the cases where $m_0 \in \mathcal{M}$ and $m_0 \in \partial \mathcal{M}$, since the corresponding asymptotic distributions differ. We obtain the result under the following two conditions.

Assumption 3.1. The distribution of p is not a Bernoulli distribution.

Assumption 3.2. The functions θ and $\tilde{\theta}$ are directionally differentiable at m_0 in the following sense: $\theta'(m, h) = \lim_{t \downarrow 0}(\theta(m_0 + th) - \theta(m_0)) / t$ exists for all $h \in \mathbb{R}^K$ such that $h, m + th, \in \mathcal{M}$ for t small enough. Moreover, $\theta'(m, \cdot)$ is continuous.

The first assumption excludes total segregation, where we would either have units with only people from the minority group or only people from the majority. We rule out such situations for inference, because estimators are then degenerated, namely they coincide with the true values. Assumption 3.2 is more substantial, but can be proved to hold in two cases of interest (see Section D.2 of the Supplement).

Before giving the asymptotic distribution of the estimated bounds, we introduce additional notation. For any vector P, let us define $\Sigma(P) = [\text{diag}(P) - PP']$, $\text{diag}(P)$ being the diagonal matrix with diagonal vector equal to P. We let $C_{\lambda_0} = \{\lambda(P - P_0), P \in \mathcal{P}\}$.
P, $\lambda > 0$) and let $\pi_{C_{\theta_0}}$ be the projection onto the closure of C_{θ_0} with respect to the norm $\|x\| = x'(\text{diag}(P_0)^{-1} + M_1/P_{00})x$, where M_1 is the $K \times K$ matrix of 1s.

Theorem 3.1. Suppose that Assumption 2.1 holds. Then $(\hat{\theta}, \tilde{\theta}) \to (\theta, \theta)$. If Assumptions 3.1 and 3.2 also hold, then

$$\sqrt{n}(\hat{\theta} - \theta_0, \tilde{\theta} - \theta_0)' \overset{d}{\to} (\theta'(m_0, Q^{-1}\pi_{C_{\theta_0}}(Z)), \theta'(m_0, Q^{-1}\pi_{C_{\theta_0}}(Z)))',$$

where $Z \sim N(0, \Sigma(P_0))$.

Importantly, our results apply whether or not m_0 lies in the interior of \mathcal{M}. If $m_0 \in \hat{\partial}\mathcal{M}$ and θ and $\bar{\theta}$ are differentiable rather than simply directionally differentiable, the estimated bounds are asymptotically normal, because $\pi_{C_{\theta_0}}(Z) = \mathcal{Z}$. But if $m_0 \in \partial\mathcal{M}$, the asymptotic distribution of the estimated bounds is a function of the projection of a normal variable onto a convex cone.

Because the estimated bounds are not asymptotically normal when $m_0 \in \partial\mathcal{M}$, the confidence interval proposed by Imbens and Manski (2004) for partially identified parameters does not apply here. Moreover, standard bootstrap typically fails here because of the lack of continuity in m_0 of the asymptotic distribution (see Andrews (2000), for a similar counterexample). To build valid confidence intervals, we therefore propose a modified bootstrap procedure. We project \hat{m} onto $\partial\mathcal{M}$ whenever $\hat{m} \in \hat{\partial}\mathcal{M}$ but is close to the boundary. Let $d_n = \sqrt{n}(\hat{\theta} - \theta_0)/\sqrt{n} + 1/n$, with $k_n \to \infty$, $n/\sqrt{n} \to \infty$. Observe that when $m_0 \in \partial\mathcal{M}$, $\theta = \bar{\theta}$ so that $d_n \overset{p}{\to} 0$ and $I_n \overset{p}{\to} 1$. When $m_0 \in \hat{\partial}\mathcal{M}$, on the other hand, $\theta < \bar{\theta}$ in general because there is an infinity of distributions rationalizing m_0. Thus $d_n \overset{p}{\to} \infty$ and $I_n \overset{p}{\to} 0$. Then we define

$$\hat{m}_b = \pi_{\hat{\partial}\mathcal{M}}(\hat{m})I_n + \hat{m}(1 - I_n),$$

where $\pi_{\hat{\partial}\mathcal{M}}$ denotes the projection onto $\hat{\partial}\mathcal{M}$.\footnote{Because $\partial\mathcal{M}$ is not convex, this projection may not be well defined. This is not an issue here. In this case, $\pi_{\hat{\partial}\mathcal{M}}(\hat{m})$ denotes any element in the set arg min $m \leq \hat{m}$ $\|\hat{m} - m\|$.}

The bootstrap distribution of X that we consider hereafter is given by the vector of probabilities $\hat{P}_b = Q\hat{m}_b$.

We now define the bootstrap confidence intervals. We have to take into account the fact that the lower and upper bounds collapse when $m_0 \in \partial\mathcal{M}$, whereas they are in general distinct when $m_0 \in \hat{\partial}\mathcal{M}$. For any statistic T, let T^* denote the corresponding bootstrap statistic. For example, if $T = \sqrt{n}(\hat{\theta} - \theta)$, we let $T^* = \sqrt{n}(\hat{\theta}^* - \theta)$, where $\hat{\theta}^*$ is the bootstrap estimator of θ. We let $c_a(T^*)$ denote the ath quantile of the distribution of T^* conditional on \hat{m}_b. We first define a confidence interval for the interior case by

$$\text{CI}_{1-a}^{\text{interior}} = \left[\hat{\theta} - \frac{c_{1-a}(T^*)}{\sqrt{n}}, \hat{\theta} - \frac{c_a(T^*)}{\sqrt{n}}\right],$$

$$\text{CI}_{1-a}^{\text{interior}} = \left[\hat{\theta} - \frac{c_{1-a}(T^*)}{\sqrt{n}}, \hat{\theta} - \frac{c_a(T^*)}{\sqrt{n}}\right].$$
where $\bar{\mathcal{T}}$ is defined as \mathcal{T}. The reason why we use $c_\alpha(\bar{\mathcal{T}}^*)$ and $c_{1-\alpha}(\bar{\mathcal{T}}^*)$ instead of $c_\alpha/2(\bar{\mathcal{T}}^*)$ and $c_{1-\alpha/2}(\bar{\mathcal{T}}^*)$ is that when $m_0 \in \mathcal{M}$, $\theta_0 < \bar{\theta}_0$ in general and only one of the two bounds matters in the asymptotic coverage.

This is not the case however when $m_0 \in \partial \mathcal{M}$. Because $\theta_0 = \bar{\theta}_0 = \theta_0$, the asymptotic coverage of $\mathcal{C}_{1-\alpha}^{\text{interior}}$ is in general smaller than $1 - \alpha$. We consider instead the symmetric confidence interval

$$\mathcal{C}_{1-\alpha}^{\text{boundary}} = \left[\hat{\theta} - \frac{c_{1-\alpha}(T_s^*)}{\sqrt{n}}, \hat{\theta} + \frac{c_{1-\alpha}(T_s^*)}{\sqrt{n}} \right],$$

where $\hat{\theta} = (\hat{\theta} + \bar{\theta})/2$ and $T_s = \sqrt{n}(\hat{\theta} - (\theta_0 + \bar{\theta}_0)/2)$. When $m_0 \in \partial \mathcal{M}$, $\hat{\theta}$ is a consistent estimator of $\theta_0 = (\theta_0 + \bar{\theta}_0)/2$ and we show in the proof of Theorem 3.2 below that the bootstrap statistic T_s^* has the same distribution as T_s. Thus, $\mathcal{C}_{1-\alpha}^{\text{boundary}}$ has an asymptotic coverage rate of $1 - \alpha$.

Finally, to obtain a confidence interval with a correct asymptotic coverage in all situations, we let

$$\mathcal{C}_{1-\alpha} = I_n \mathcal{C}_{1-\alpha}^{\text{boundary}} + (1 - I_n) \mathcal{C}_{1-\alpha}^{\text{interior}}.$$

The idea is that we will eventually pick $\mathcal{C}_{1-\alpha}^{\text{boundary}}$ when the true parameter is at the boundary, because $I_n \to 1$ in this case, and pick $\mathcal{C}_{1-\alpha}^{\text{interior}}$ otherwise. The validity of this confidence interval, established in Theorem 3.2 below, relies on the following condition.

Assumption 3.3. The functions $\hat{\theta}(\cdot)$ and $\bar{\theta}(\cdot)$ are differentiable at m_0 (and we let $\hat{\theta}'(m_0)$ and $\bar{\theta}'(m_0)$ denote their gradient). Moreover, one of the following statements is true:

- $m_0 \in \mathcal{M}$, $\theta_0 < \bar{\theta}_0$ and $\bar{\theta}'(m_0) \neq 0$, $\theta'(m_0) \neq 0$.
- $m_0 \in \partial \mathcal{M}$, with \mathcal{C}_{m_0} a half space and the cdf of the asymptotic distribution of T_s is continuous at its $1 - \alpha$ quantile.

Assumption 3.3 is rather mild. Lemma D.2 shows that the bounds are differentiable almost everywhere in almost everywhere in several cases. When $m_0 \in \mathcal{M}$, the set of distributions \mathcal{D}_{m_0} is infinite, so that $\theta_0 < \bar{\theta}_0$ holds in general. The important restriction, when $m_0 \in \partial \mathcal{M}$, is that \mathcal{M} is smooth at m_0, so that \mathcal{C}_{m_0} is a half space. This holds everywhere except at $(0, 0)$ and $(1, 1)$ when $K = 2$, because in this case $\partial \mathcal{M} = \{(m_{01}, m_{02}), m_{01} \in [0, 1]\} \cup \{(m_{01}, m_{02}^2), m_{01} \in [0, 1]\}$. We conjecture that it also holds almost everywhere when $K \geq 3$, though the analysis of the geometry of $\partial \mathcal{M}$ is beyond the scope of this paper.

Theorem 3.2. Suppose that Assumptions 2.1, 3.1, 3.2, and 3.3 hold. Then, with probability 1,

$$\inf_{\theta_0 \in [\theta_0, \bar{\theta}_0]} \lim_{n \to \infty} \Pr(\theta_0 \in \mathcal{C}_{1-\alpha}) = 1 - \alpha.$$
Theorem 3.2 shows that bootstrap confidence intervals are asymptotically valid in general. The conditions for obtaining this result are the differentiability of the bounds and the fact when \(m_0 \in \partial M \), \(\overline{C}_{m_0} \) is a half space. Theoretically speaking, it is possible to drop these conditions and still make valid inference by using subsampling as, for instance, Chernozhukov, Hong, and Tamer (2007) or Romano and Shaikh (2010). However, Monte Carlo simulations (not reported here) seem to indicate that, in our context, subsampling does not provide reliable results unless the sample size \(n \) is very large.

The confidence interval \(CI_{1-\alpha} \) is asymptotically valid whether \(m_0 \) lies in the interior or at the boundary of \(M \). It is unclear, on the other hand, whether it is uniformly valid. The confidence interval considered by Imbens and Manski (2004) in a related setting is uniformly valid, but this is because they assume a uniform convergence in distribution of the estimated bounds. Such a uniform convergence does not hold here, as asymptotic normality fails to hold at the boundary. That inference on a partially identified parameter may not be uniform is underlined by Andrews and Han (2009), in a related context where the endpoints of the identification interval are estimated. We consider in the Supplement (see Section D.3) another confidence interval that satisfies the uniformity requirement but is generally conservative.

4. Simulations

4.1 Identified bounds and other approaches

Figure 1 presents a comparison, for the Theil and Duncan index, between the sharp bounds, the naive approach, and the corrections proposed by Carrington and Troske (1997), Allen et al. (2015), and Rathelot (2012). We consider \(\Phi^{-1}(p) \sim N(\mu, \sigma^2) \), with \(\mu \approx -3.12 \) and \(\sigma^2 \approx 1.56 \) chosen so as to be close to the first two estimated moments of \(p \) in our application in Section 5. The sharp bounds are obtained by solving (2.4), the naive parameter, and the Carrington and Troske parameter by using their theoretical expressions, the Allen et al. corrected index by simulations on a very large sample \((n = 10^5)\), and the corrected index of Rathelot (2012) by maximizing the theoretical log-likelihood of the model.

First, the length of the identification region shrinks quickly between \(K = 2 \) and \(K = 6 \) for both indices, and less so thereafter. As expected, the naive approach is well above the upper bound of the identification region. For both indices, the corrected indices proposed by Allen et al. (2015) or Carrington and Troske (1997) always lie outside of the identification interval: the former is always above and the latter always below (except for the Theil index with \(K = 2 \)). The correction proposed by Carrington and Troske (1997) performs better with the Theil than with the Duncan index. The parametric method of Rathelot (2012) lies within the bound for all \(K \leq 10 \) with this DGP, but this need not be the case in general. Table 1 presents a comparison of the different approaches when the unit size is random and uniform on \((2, \ldots, 10)\). As discussed in Section B.2 of the Supplement, we can consider an “unweighted” index, focused on the unit (Equation (B.1)), or a “weighted” index, focused on the worker (Equation (B.2)). With our DGP for which \(K \perp p \), the two indices coincide, but they lead to different identification sets because the identification interval shrinks with \(K \) and larger values of \(K \) are weighted more with the
individual-weighted index. Consistent with the results obtained with a fixed unit size, the naive index as well as the corrected indices by Carrington and Troske or Allen et al. do not lie in the identification set. Conversely, the corrected index by Rathelot does, in this case.

4.2 Monte Carlo simulations

We now assess the performance of the estimators and confidence intervals considered in this paper so as to solve small-unit biases. We first study whether the constraint that \(P_0 \) belongs to \(P \) is binding in practice when estimating \(P_0 \). The data generating process is

<table>
<thead>
<tr>
<th>Method</th>
<th>Theil Index</th>
<th>Duncan Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sharp bounds</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unweighted</td>
<td>[0.48, 0.60]</td>
<td>[0.69, 0.83]</td>
</tr>
<tr>
<td>Weighted</td>
<td>[0.51, 0.59]</td>
<td>[0.72, 0.81]</td>
</tr>
<tr>
<td>Naive</td>
<td>0.74</td>
<td>0.92</td>
</tr>
<tr>
<td>Carrington–Troske</td>
<td>0.45</td>
<td>0.55</td>
</tr>
<tr>
<td>Allen et al.</td>
<td>0.68</td>
<td>0.89</td>
</tr>
<tr>
<td>Rathelot</td>
<td>0.57</td>
<td>0.78</td>
</tr>
</tbody>
</table>

Note: We have \(\Phi^{-1}(p) \sim \mathcal{N}(-3.12, 1.56) \). With this DGP, the Theil index is \(T \simeq 0.562 \) and the Duncan index is \(D \simeq 0.775 \).
defined as previously \((\Phi^{-1}(p) \sim N(-3.12, 1.56))\), and we estimate \(\Pr(\tilde{P} \notin P)\) for different sample and unit sizes. Figure 2 presents the results for \(n \in \{50; 200; 1000; 10,000\}\) and \(K \in \{2, \ldots, 12\}\).

For any \(n\), the probability grows quite quickly to 1 with \(K\). This reflects the aforementioned fact that the set \(P\) shrinks very quickly with \(K\). For instance, with 200 units, the estimated probability (with 1000 simulations) is 1 as soon as \(K\) is 7. Obviously, the probability is systematically lower when \(n\) is larger because the estimation precision increases, but for \(K \geq 10\), this probability remains very close to 1 for samples as large as 10,000. This implies that for \(K \geq 10\), we should expect to generally get a point estimate for the estimated identification region of \(\theta_0\), even though the true identification region is not reduced to a singleton. Hence, the length of the true identification interval for such values of \(K\) and \(n\) is far below the length due to estimation. Our ignorance on the true parameter mostly stems from finite sampling rather than partial identification issues.

Table 2 displays the properties of the estimated bounds and the confidence intervals \(\text{CI}_{0.95}^1\) for different sample sizes. We consider here both the Theil and Duncan indices, and the data generating process is defined as before by \(\Phi^{-1}(p) \sim N(-3.12, 1.56)\). For this distribution, \(T \approx 0.562\) and \(D \approx 0.775\). The function \(CR(\theta_0)\) denotes the coverage rate of the true parameter by the confidence interval. We consider designs with fixed \(K\) in \(\{3, 6, 9, 12\}\) as well as a random design where \(K\) is drawn in this same set with equal probability. Finally, to build confidence intervals, we use, following the law of iterated logarithm, \(k_n = (2 \ln \ln(n) / [n V^*(\tilde{\theta} - \hat{\theta})]^{1/2}) \{\tilde{\theta} > \hat{\theta}\}\), where \(V^*(\tilde{\theta} - \hat{\theta})\) denotes the bootstrap estimator of \(V(\tilde{\theta} - \hat{\theta})\).
Overall, the estimator of the identification interval is quite precise even for small samples. In our setting, we only observe a significant bias on \(\hat{\theta}_0 \), which however does not lead to a low coverage of the confidence intervals. We also see that even for \(n = 10,000 \), standard errors are far larger than the length of the identification region for \(K \geq 9 \). This means that for \(K \geq 9 \), uncertainty mostly stems from estimation, not from partial identification. The bootstrap confidence interval \(CI_{0.95}^{\hat{\theta}} \) is also usually conservative, with a true coverage rate lying mostly between 0.92 and 1. This is expected, since with our DGP, \(\theta_0 \notin \{ \hat{\theta}_0, \tilde{\theta}_0 \} \), so that the asymptotic coverage is 1. In the Supplement, we obtain similar results for other DGPs and show that the bootstrap test for the binomial mixture model performs well in practice.

Table 2. Performance of \(\hat{\theta}, \tilde{\theta} \) and properties of \(CI_{0.95}^{\hat{\theta}} \).

<table>
<thead>
<tr>
<th>(K)</th>
<th>(n)</th>
<th>([\hat{\theta}_0, \tilde{\theta}_0])</th>
<th>([E(\hat{\theta}), E(\tilde{\theta})])</th>
<th>(CR(\hat{\theta}_0))</th>
<th>([\hat{\theta}_0, \tilde{\theta}_0])</th>
<th>([E(\hat{\theta}), E(\tilde{\theta})])</th>
<th>(CR(\hat{\theta}_0))</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>100</td>
<td>[0.426, 0.644]</td>
<td>[0.494, 0.593]</td>
<td>0.928</td>
<td>[0.627, 0.890]</td>
<td>[0.701, 0.818]</td>
<td>0.960</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>[0.434, 0.639]</td>
<td>(0.064) (0.043)</td>
<td>0.998</td>
<td>[0.635, 0.881]</td>
<td>(0.088) (0.041)</td>
<td>0.975</td>
</tr>
<tr>
<td></td>
<td>10,000</td>
<td>[0.426, 0.643]</td>
<td>(0.009) (0.013)</td>
<td>1.000</td>
<td>[0.626, 0.886]</td>
<td>(0.027) (0.030)</td>
<td>0.988</td>
</tr>
<tr>
<td>6</td>
<td>100</td>
<td>[0.516, 0.588]</td>
<td>[0.536, 0.537]</td>
<td>(0.112)</td>
<td>0.958</td>
<td>[0.7210.804]</td>
<td>(0.107)</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>[0.541, 0.552]</td>
<td>(0.053) (0.052)</td>
<td>0.975</td>
<td>[0.774, 0.787]</td>
<td>(0.056) (0.046)</td>
<td>0.950</td>
</tr>
<tr>
<td></td>
<td>10,000</td>
<td>[0.524, 0.579]</td>
<td>(0.027) (0.027)</td>
<td>0.930</td>
<td>[0.738, 0.801]</td>
<td>(0.035) (0.020)</td>
<td>0.978</td>
</tr>
<tr>
<td>9</td>
<td>100</td>
<td>[0.540, 0.575]</td>
<td>[0.544, 0.544]</td>
<td>(0.092)</td>
<td>0.955</td>
<td>[0.733, 0.798]</td>
<td>(0.080)</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>[0.552, 0.552]</td>
<td>(0.037) (0.037)</td>
<td>0.958</td>
<td>[0.781, 0.781]</td>
<td>(0.034) (0.034)</td>
<td>0.952</td>
</tr>
<tr>
<td></td>
<td>10,000</td>
<td>[0.555, 0.557]</td>
<td>(0.023) (0.023)</td>
<td>0.998</td>
<td>[0.779, 0.782]</td>
<td>(0.024) (0.023)</td>
<td>0.985</td>
</tr>
<tr>
<td>12</td>
<td>100</td>
<td>[0.549, 0.569]</td>
<td>[0.538, 0.538]</td>
<td>(0.092)</td>
<td>0.920</td>
<td>[0.753, 0.788]</td>
<td>(0.075)</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>[0.557, 0.557]</td>
<td>(0.032) (0.032)</td>
<td>0.955</td>
<td>[0.780, 0.780]</td>
<td>(0.028) (0.028)</td>
<td>0.975</td>
</tr>
<tr>
<td></td>
<td>10,000</td>
<td>[0.557, 0.557]</td>
<td>(0.018) (0.018)</td>
<td>0.990</td>
<td>[0.775, 0.775]</td>
<td>(0.024) (0.024)</td>
<td>1.000</td>
</tr>
<tr>
<td>Random u.</td>
<td>100</td>
<td>[0.508, 0.594]</td>
<td>[0.547, 0.563]</td>
<td>(0.062)</td>
<td>0.942</td>
<td>[0.708, 0.820]</td>
<td>(0.063)</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>[0.526, 0.577]</td>
<td>(0.026) (0.022)</td>
<td>0.958</td>
<td>[0.742, 0.808]</td>
<td>(0.028) (0.023)</td>
<td>0.998</td>
</tr>
<tr>
<td></td>
<td>10,000</td>
<td>[0.519, 0.583]</td>
<td>(0.011) (0.011)</td>
<td>1.000</td>
<td>[0.730, 0.811]</td>
<td>(0.013) (0.010)</td>
<td>1.000</td>
</tr>
<tr>
<td>Random w.</td>
<td>100</td>
<td>[0.528, 0.582]</td>
<td>[0.546, 0.557]</td>
<td>(0.052)</td>
<td>0.947</td>
<td>[0.728, 0.804]</td>
<td>(0.044)</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>[0.542, 0.565]</td>
<td>(0.025) (0.021)</td>
<td>0.894</td>
<td>[0.764, 0.792]</td>
<td>(0.021) (0.019)</td>
<td>0.924</td>
</tr>
<tr>
<td></td>
<td>10,000</td>
<td>[0.537, 0.569]</td>
<td>(0.012) (0.012)</td>
<td>0.944</td>
<td>[0.754, 0.793]</td>
<td>(0.013) (0.012)</td>
<td>0.961</td>
</tr>
</tbody>
</table>

Note: For each \((n, K)\), simulations are based on 400 draws of samples. The distribution of \(p \) is \(\Phi^{-1}(p) \sim N(-3.12, 1.56) \), leading to \(T \sim 0.562 \) and \(D \sim 0.775 \). \(CR(\hat{\theta}_0) = Pr(\hat{\theta}_0 \in CI_{0.95}^{\hat{\theta}}) \). "Random" corresponds to a random \(K \), drawn with equal probability in \{3, 6, 9, 12\}. "u." and "w." refer, respectively, to the unweighted and weighted indices defined by (B.1) and (B.2).
Finally, we provide some evidence regarding the computational cost of our method. Two cases should be distinguished. When $\tilde{P} \in \mathcal{P}$, which can be tested simply as explained in Section D.1 of the Supplement, the maximum likelihood estimator is trivial to compute since $\hat{P} = \tilde{P} = (N_1/n, \ldots, N_K/n)'$. However, the bounds can be costly to obtain in this case. Table 3 shows that computing the bounds based on Equations (3.3) and (3.4) is actually quick for small K, but becomes demanding for high K. On the other hand, it is almost immediate for any K when we can rely on Equation (3.5), as is the case with the Theil index. Conversely, when $\tilde{P} \notin \mathcal{P}$, the bounds can be computed at almost no cost in view of (3.2), but the computation of \hat{P}, based on Lemma 3.1, becomes the bottleneck in terms of computer processing units (CPU). As discussed above, this case prevails when $K \geq 10$ for typical sample sizes. The first row of Table 3 shows that the corresponding time increases with K, which makes sense because the dimension over which we optimize increases, but remains very manageable even with $K = 20$. Finally, computing bootstrap confidence intervals is, as expected, much more expensive because we have to go through these steps many times (200 in our simulations).

5. An application to workplace segregation by nationality across French establishments

Understanding why and how employers make their hiring decisions and employees apply for jobs requires the ability to measure workplace segregation. Early works focused on gender or race segregation across occupations or industries; see, for example, Fields and Wolff (1991). Groshen (1991) is the first contribution to use the information available at the scale of establishments. Carrington and Troske (1995) use the 1983 Current Population Survey (CPS) to compute Duncan indices for gender segregation across establishments, with a focus on small firms. Another strand of literature, which aims at linking skill dispersion with wage distribution, requires the computation of segregation indices. Kremer and Maskin (1996) and Kramarz, Lollivier, and Pelé (1996) analyze, in
the U.S. and the French cases, how skill dispersion, measured by segregation indices, accounts for changes in the wage structure. Iranzo, Schivardi, and Tosetti (2008) investigate a similar issue in the case of Italy and find that most overall skill dispersion is within, not between, firms. However, few of these works acknowledge the issue of small-unit bias and attempt to correct the indices.18 Carrington and Troske (1997) present new results on black/white segregation, introducing their method to correct for small-unit bias. Hellerstein and Neumark (2008) use the 1990 Decennial Employer–Employee Database to measure workplace segregation by education, language, and ethnicity. They compute adjusted indices using Carrington and Troske’s method. Åslund and Skans (2010) and Glitz (2014) also use Carrington and Troske’s method to attempt to compute workplace segregation in Sweden and in Germany.

In this section, we aim to compute the Theil and Duncan indices to measure the segregation between French citizens and foreigners across French businesses. Do all establishments have the same share of foreigners or, on the contrary, do some firms specialize in hiring foreign workers while others avoid them? As a large share of workers are employed in small establishments, not taking into account the small-unit bias would certainly lead to upward-biased estimates of segregation levels. We use the method introduced in this paper to compute either point or set estimates of the Theil and Duncan indices. As a matter of comparison, we also display the naive estimate and the estimates proposed by Carrington and Troske (1997), Allen et al. (2015), and Rathelot (2012).

We rely on the 2007 Déclarations Annuelles de Données Sociales (DADS), the French matched employer–employee data base, which is exhaustive on the private sector (1.77 million establishments). In what follows, we restrict the sample to the 1.04 million establishments that have between 2 and 25 employees. We define the minority group as individuals born abroad and with the nationality of a country outside of Europe. In the total population, 3.7% of workers are considered as minority workers. We distinguish two categories of jobs: the least-skilled category gathers white-collar unskilled jobs (employés) and blue-collar jobs (ouvriers); the other occupations form the skilled category. Forty-one percent of jobs belong to the unskilled category. While 40.7% of majority workers work in unskilled jobs, this is the case for 57.4% of minority workers. Regressing the net wages of each worker on his and the job’s characteristics, we check the economic relevance of our categories. We find that, conditional on sex, age, and the number of days in the year, workers in unskilled jobs earn 29% less than those in skilled jobs, minority workers earn 8% less than majority workers, and being a minority worker in an unskilled job is associated with an additional penalty of 1.6%.

Before presenting our results, we first check that the binomial mixture model is not rejected in these data. For that purpose, we use the test that we consider in Section C.1 of the Supplement. For \(K = 2, \ldots, 8 \), \(\tilde{P} = \hat{P} \), so the test is automatically accepted. For \(K \geq 9 \), \(\tilde{P} \neq \hat{P} \), but this may be expected even if \(P_0 \in \mathcal{P} \) given the results of our Monte Carlo simulations (see Figure 2). Performing the bootstrap test detailed above for \(K \geq 8 \), we do not reject the binomial mixture model at the 10% level for any value of \(K \) (see Table 4). We see this as evidence that the binomial mixture model is reasonable here.

18Kremer and Maskin (1996) and Kramarz, Lollivier, and Pelé (1996) interpret their segregation measure as an \(R \)-squared and suggest that using adjusted \(R \)-squared might be a way to deal with small-unit issues.
Table 4. Test of the binomial mixture model.

<table>
<thead>
<tr>
<th>Unit Size</th>
<th>p-Value of the Bootstrap Test</th>
<th>Unit Size</th>
<th>p-Value of the Bootstrap Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td></td>
<td>K</td>
<td></td>
</tr>
<tr>
<td>≤8</td>
<td>1</td>
<td>17</td>
<td>0.54</td>
</tr>
<tr>
<td>9</td>
<td>0.80</td>
<td>18</td>
<td>0.34</td>
</tr>
<tr>
<td>10</td>
<td>0.56</td>
<td>19</td>
<td>0.11</td>
</tr>
<tr>
<td>11</td>
<td>0.98</td>
<td>20</td>
<td>0.61</td>
</tr>
<tr>
<td>12</td>
<td>0.80</td>
<td>21</td>
<td>0.19</td>
</tr>
<tr>
<td>13</td>
<td>0.72</td>
<td>22</td>
<td>0.07</td>
</tr>
<tr>
<td>14</td>
<td>0.77</td>
<td>23</td>
<td>0.73</td>
</tr>
<tr>
<td>15</td>
<td>0.99</td>
<td>24</td>
<td>0.17</td>
</tr>
<tr>
<td>16</td>
<td>0.49</td>
<td>25</td>
<td>0.37</td>
</tr>
</tbody>
</table>

Note: For K ≤ 8, \(\tilde{P} = \hat{P} \), so that LR\(_0\) = 0 and p-value = 1.

Figure 3 displays the estimates of workplace segregation for different firm sizes, using the Theil and Duncan indices across French establishments. In line with Figure 1, we observe that the sharp bounds become very informative for \(K ≥ 5 \). The estimated identification region reduces to a singleton for \(K ≥ 9 \), as expected since for these values, \(\tilde{P} \neq \hat{P} \). Both for the Theil and the Duncan indices, the naive estimator is well above the upper bound of the 95% confidence interval. Carrington and Troske’s correction works quite well for the Theil index, remaining inside the 95% confidence interval or close to its lower bound. However, in line with Figure 1, it strongly underestimates the Duncan index, the difference with our point estimate lying between 0.10 and 0.15 for \(K ≥ 9 \). We observe a reversed pattern for the Allen et al. estimator. Their corrected Theil index remains outside the 95% confidence intervals for all unit sizes, while their corrected Duncan index is close to our point estimate and mostly within the confidence interval for

![Theil index](image1.png) ![Duncan index](image2.png)

Figure 3. Theil and Duncan indices, by firm size.
Table 5. Equality tests of segregation indices across unit sizes.

<table>
<thead>
<tr>
<th>K</th>
<th>Theil Index</th>
<th>Duncan Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>$K \leq 25$</td>
<td>$<2.10^{-3}$</td>
<td>$<2.10^{-3}$</td>
</tr>
<tr>
<td>$K \leq 9$</td>
<td>0.45</td>
<td>0.25</td>
</tr>
<tr>
<td>$10 \leq K \leq 25$</td>
<td>$<2.10^{-3}$</td>
<td>0.11</td>
</tr>
</tbody>
</table>

Note: We use the subsampling test detailed in Section C.2 of the Supplement, with 500 subsamples.

$k \geq 14$. The method proposed by Rathelot (2012) seems to perform well here for both indices, suggesting that the mixture of two beta distributions is a reasonable approximation for the distribution of p.

A striking difference between the naive and Allen et al. estimates, on the one hand, and the identification region we estimate, on the other hand, is that segregation seems to be strongly negatively correlated with K in the first case and much less so in the second case. The negative correlation between the index and the unit size is not surprising for the naive and the Allen et al. estimates, as the magnitude of their bias decreases with K (proportional to $1/K$ for the naive estimator and $1/K^{3/2}$ or $1/K^2$ for the Allen et al. estimator). But there may still exist a true negative dependence of the segregation level on firm sizes. For instance, small firms may rely more heavily on social networks in their hiring process, resulting in a higher segregation between firms (people from the minority tending to hire other people from the same minority, and conversely).

To test for this correlation, we consider the null hypothesis that $K \mapsto \theta_0(K)$ is constant over K, where $\theta_0(K)$ is the true parameter corresponding to firms of size K and K is a subset of firm sizes. Because of partial identification, developing such a test is not trivial; see Section C.2 of the Supplement for details. We consider three subsets K here: the whole range $\{2, \ldots, 25\}$, $\{2, \ldots, 9\}$, which corresponds to the definition of very small firms in France, and $\{10, \ldots, 25\}$. The results are displayed in Table 5. For both the Duncan and Theil indices, we do not reject the null hypothesis that $K \mapsto \theta_0(K)$ is constant on very small firms. We also accept at the 10% level the hypothesis of a constant Duncan index on $\{10, \ldots, 25\}$. We perform the same tests with the alternative methods (naive, Carrington and Troske's correction, and Allen et al.'s correction), using the asymptotic normality of the corresponding estimators and estimating the asymptotic variance with bootstrap. For the three methods, three possible subsets K, and two indices, we always reject the null hypothesis at the 1% level. Contrary to our results, these approaches do not satisfy the size invariance axiom mentioned above, which might cause the apparent dependence of segregation in K.

Finally, we compute the bounds on the segregation indices for the whole set of firms. Results are displayed in Table 6. When considering the worker level and thus

19Pistaferri (1999) shows that in Italy, smaller firms more often tend to use informal hiring channels. In a similar vein, Giuliano, Levine, and Leonard (2009) show, for the United States, that the manager's race affects the racial composition of new hires.
using the weighted index, we estimate the bounds to be [0.428, 0.514] on the Theil index and [0.634, 0.740] on the Duncan index. The uncertainty is thus quite large, a result mostly driven by the lack of information on very small firms, which represent a large proportion of our sample (83% of the firms are of size less than 9). When the index is unweighted, even more importance is given to the small firms and the identification set is wider. Because of the very large number of observations, the confidence intervals are not much wider than the identification sets in this case. For both the Theil and the Duncan indices, the naive and Allen et al. estimates are above the upper bound, while the Carrington–Troske estimates are below the lower bound. The index corrected by the Rathelot method is just below the lower bound for the Theil index but within the bounds for the Duncan index.

We have shown that minority workers are disproportionately represented in unskilled positions. Because the proportion of unskilled positions varies across firms, we can imagine that this simple correlation would increase the segregation of the minority across firms. The last rows of Table 6 show that this is not the case. First, segregation seems to remain of the same magnitude once we restrict our sample to either skilled or unskilled positions within the firm. Second, when we consider the average conditional index, which is the weighted average of the indices on the two types of positions, we also find that segregation remains at a very similar level. While the descriptive results mentioned above make us confident that the job categories we have built are economically sensible, our results show that workplace segregation of minority does not merely reflect the higher share of unskilled jobs among minority workers and the uneven distribution of unskilled positions across establishments. Rather, the same level of segregation seems to exist for both types of jobs.

Our result is in line with Hellerstein and Neumark (2008). Using a correction à la Carrington and Troske, they find that ethnic workplace segregation in the United States

<table>
<thead>
<tr>
<th>Method</th>
<th>Theil Index Estimate</th>
<th>Theil Index CI_{0.95}</th>
<th>Duncan Index Estimate</th>
<th>Duncan Index CI_{0.95}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sharp bounds</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weighted</td>
<td>[0.428, 0.514]</td>
<td>[0.423, 0.521]</td>
<td>[0.634, 0.740]</td>
<td>[0.620, 0.746]</td>
</tr>
<tr>
<td>Unweighted</td>
<td>[0.423, 0.604]</td>
<td>[0.419, 0.609]</td>
<td>[0.596, 0.819]</td>
<td>[0.584, 0.823]</td>
</tr>
<tr>
<td>Alternative methods</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Naive</td>
<td>0.749</td>
<td>[0.747, 0.750]</td>
<td>0.915</td>
<td>[0.914, 0.915]</td>
</tr>
<tr>
<td>Carrington–Troske</td>
<td>0.421</td>
<td>[0.418, 0.424]</td>
<td>0.502</td>
<td>[0.500, 0.504]</td>
</tr>
<tr>
<td>Allen et al.</td>
<td>0.685</td>
<td>[0.683, 0.686]</td>
<td>0.888</td>
<td>[0.888, 0.889]</td>
</tr>
<tr>
<td>Rathelot</td>
<td>0.425</td>
<td>[0.421, 0.428]</td>
<td>0.659</td>
<td>[0.654, 0.661]</td>
</tr>
<tr>
<td>Conditional on job skill level</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unskilled</td>
<td>[0.425, 0.514]</td>
<td>[0.422, 0.524]</td>
<td>[0.628, 0.730]</td>
<td>[0.614, 0.732]</td>
</tr>
<tr>
<td>Skilled</td>
<td>[0.423, 0.543]</td>
<td>[0.415, 0.551]</td>
<td>[0.620, 0.774]</td>
<td>[0.602, 0.782]</td>
</tr>
<tr>
<td>Average (θ)</td>
<td>[0.424, 0.532]</td>
<td>[0.418, 0.541]</td>
<td>[0.623, 0.757]</td>
<td>[0.607, 0.763]</td>
</tr>
</tbody>
</table>

Note: The conditional indices correspond to the θ_{0.95} defined in Section B.2, while θ is a weighted average of those two.
is not accounted for by differences in education across ethnic groups. However, they find that taking the language spoken into account explains an important part of segregation. In the case of France, we conjecture that language will not play as important a role as in the United States but we lack the appropriate data to test this hypothesis. Similarly, Åslund and Skans (2010) show that controlling for human capital does not affect the segregation index much in the case of ethnic workplace segregation in Sweden, using again an extended version of Carrington and Troske’s correction.

6. Conclusion

In this paper, we investigate what can be learned about segregation indices when only an imperfect measure of \(p \), distributed according to a binomial variable \(B(K, p) \), is available. We show that in general this leads to partial identification of the segregation index. We then develop inference on the bounds. We have not considered segregation indices here that do not take the form imposed by Assumption 2.1, such as the Gini index. Optimizing over distributions with finite support, as done here, leads to bounds that are in general strictly included in the sharp identified set. To obtain valid confidence intervals, a solution would be to choose a number of points in the support that are large compared to the sample size, so that this problem becomes negligible compared to the sample variability.

Given their initial purposes, we believe that segregation indices should be functions of \(F_p \). This does mean, however, that when studying segregation, focusing on \(p \) rather than on \(X \) (or \(X/K \)) is always preferable.\(^{20}\) When concern is for the consequences of segregation, the distribution of interest might be that of the realized shares. In the school or the residential context, the question is often about how some groups affect others’ decisions and outcomes. For instance, in the school context, an important issue is how low- and high-performing students affect each other in a classroom and whether more or less segregation is desirable from an aggregate point of view. Along this line, Bhattacharya (2009) investigates how the actual allocation has to be modified so as to maximize an aggregate measure of welfare. Similarly, Graham, Imbens, and Ridder (2010) aim to estimate the impact on the average outcome of a change in the allocation of individuals, increasing or decreasing actual segregation.

Even if one aims at understanding the causes of segregation, the distribution of \(X/K \) may matter, depending on the theoretical model we consider. Specifically, suppose that when choosing firms (or neighborhood), individuals value the composition of the firm in terms of the minority (for such an analysis on urban segregation, see Kasy (2015)). If they observe the actual composition, then \(X/K \) would matter as well. If not, because, for example, all individuals choose simultaneously as in Kasy (2015), then \(F_p \) is more an object of interest.

\(^{20}\)We thank an anonymous referee for his detailed suggestions about this aspect.
APPENDIX A: PROOFS

A.1 Proof of Proposition 2.3

For any increasing and concave function u, by Jensen’s inequality,

$$E[u(X/K)] = E[E[u(X/K)|p]]$$

$$\leq E[u(E[X/K]|p)]$$

$$\leq E[u(p)].$$

Hence, F_p stochastically dominates $F_{X/K}$ at the second order, and by monotonicity, $g(F_p,m_0) \leq \theta_N$. Moreover, this is true for any distribution $F_p \in D_{m_0}$ since such distributions rationalize the distribution of X/K. Choosing a sequence $(F_n)p_{n\in\mathbb{N}}$ in D_{m_0} such that $\lim_{n\to\infty} g(F_{n,p},m_0) = \theta_0$, we thus get $\theta_0 \leq \theta_N$. When the support of p is not reduced to $\{0,1\}$, X/K is not a deterministic function of p with probability equal to 1. Hence, for any strictly concave function u, the event $E[u(X/K)|p] < u(E[X/K]|p)$ holds with a positive probability. Consequently, $E[u(X/K)] < E[u(p)]$, and the result follows by strict monotonicity of $g(\cdot,m_0)$. \square

A.2 Proof of Lemma 3.1

By Theorems III.4.1 and III.5.1 of Krein and Nudel’man (1977),

$$\mathcal{M} = \left\{ \left(\int x dF, \ldots, \int x^K dF \right) : F \in D^{L+1} \right\}.$$

In other words, for any $m \in \mathcal{M}$, there exists a distribution with only $L+1$ support points that rationalize this distribution. This implies that $P = (P_1, \ldots, P_K) \in \mathcal{P}$ if and only if there exists $(x, y) \in S_{L+1} \times T_{L+1}$ such that

$$P_k = Q_k \left(\sum_{j=1}^{L+1} y_j x_j^1, \ldots, \sum_{j=1}^{L+1} y_j x_j^K \right).$$

Using the definition of Q and after some algebra, we obtain

$$P_k = \binom{K}{k} \sum_{j=1}^{L+1} y_j x_j^K (1 - x_j)^{K-k}, \quad k \in \{1, \ldots, K\}.$$

The result follows. \square

A.3 Proof of Theorem 3.1

We first establish the asymptotic distribution of \hat{P} before turning to the bounds. The unconstrained maximum likelihood estimator \hat{P} is simply the vector of sample proportions $(N_1/n, \ldots, N_K/n)$. Therefore, by the central limit theorem,

$$\sqrt{n}(\hat{P} - P_0) \overset{d}{\to} Z,$$
where \(Z \sim \mathcal{N}(0, \Sigma(P_0)) \). Now, the constrained maximum likelihood estimator \(\hat{P} \) satisfies \(\hat{P} = \rho(\tilde{P}) \), where \(\rho \) is defined as in Lemma F.1. Therefore, by this lemma,

\[
\sqrt{n}(\hat{P} - P_0) = \pi_{\mathcal{C}_0} \left(\frac{1}{n} \sum \mathbb{1}\{X^*_i = 1\} \right) + o_P(1).
\]

By continuity of the projection, we obtain

\[
\sqrt{n}(\hat{P} - P_0) \overset{d}{\longrightarrow} \pi_{\mathcal{C}_0}(Z).
\]

As a result,

\[
\sqrt{n}(\hat{m} - m_0) \overset{d}{\longrightarrow} Q^{-1} \pi_{\mathcal{C}_0}(Z). \tag{A.1}
\]

Hence \(\hat{m} \) is consistent, and \(\theta \) and \(\tilde{\theta} \) are continuous by Lemma F.2. Consistency of the estimated bounds follows by the continuous mapping theorem. The asymptotic distribution of the bounds also follows from (A.1) and the extended delta method of Shapiro (1991).

\[\square\]

A.4 Proof of Theorem 3.2

The proof consists of five steps.

Step 1. Asymptotic normality of \(\tilde{P}^* \) Our bootstrap consists of drawing an i.i.d. sample \((X_1^*, \ldots, X_n^*)\) with

\[
(\Pr(X_1^* = 1), \ldots, \Pr(X_n^* = K))' = \hat{P}_b.
\]

Moreover, introducing the function \(I(x) = (\mathbb{1}\{x = 1\}, \ldots, \mathbb{1}\{x = K\})' \), we have \(\tilde{P}^* = \frac{1}{n} \sum_{i=1}^n I(X_i^*) \). Fix \(\varepsilon > 0 \). For \(n \) large enough, \(\|I(X_i^*)\| \leq \varepsilon \sqrt{n} \). Therefore,

\[
\frac{1}{n} \sum_{i=1}^n E[\|I(X_i^*)\|^2 \mathbb{1}\{\|I(X_i^*)\| > \varepsilon \sqrt{n}\}] \rightarrow 0.
\]

Besides,

\[
V(I(X_i^*)|\hat{P}_b) = \Sigma(\hat{P}_b) \overset{p}{\longrightarrow} \Sigma(P_0).
\]

Hence, by the Lindeberg–Feller central limit theorem (see, e.g., van der Vaart (2000, Theorem 2.27)), we have, conditional on \(\hat{P}_b \) and with probability approaching 1,

\[
\sqrt{n}(\tilde{P}^* - \hat{P}_b) \overset{d}{\longrightarrow} \mathcal{N}(0, \Sigma(P_0)). \tag{A.2}
\]
Step 2. Asymptotic distribution of \hat{P}^* We now prove that

$$\sqrt{n}(\hat{P}^* - \hat{P}) \xrightarrow{d} \pi_{C_{P_0}}(Z),$$

(A.3)

where $Z \sim N(0, \Sigma(P_0))$.

First, suppose that $P_0 \in \mathcal{P}$. Then with probability approaching 1, $\hat{P}_b \in \mathcal{P}$ and thus also $\hat{P}^* \in \mathcal{P}$. As a result, with probability approaching 1, $\hat{P}^* = \hat{P}^*$. Thus, (A.2) also holds when replacing \hat{P}^* by \hat{P}^*. Equation (A.3) follows by noting that $C_{P_0} = \mathbb{R}^K$, so that $\pi_{C_{P_0}}(Z) = Z$.

Next, suppose that $P_0 \not\in \partial \mathcal{P}$. Let $Z_n = \sqrt{n}(\hat{P}^* - \hat{P}_b)$. By the continuous mapping theorem, $\pi_{C_{P_0}}(Z_n) \xrightarrow{d} \pi_{C_{P_0}}(Z)$. Therefore, it suffices to prove that

$$\sqrt{n}(\hat{P}^* - \hat{P}_b) - \pi_{C_{P_0}}(Z_n) \xrightarrow{P} 0.$$

(A.4)

For that purpose, note that by Lemma F.1,

$$\sqrt{n}(\hat{P}^* - \hat{P}_b) = \sqrt{n}(\hat{P}^* - P_0) + \sqrt{n}(P_0 - \hat{P}_b) = \pi_{C_{P_0}}(\sqrt{n}(\hat{P}^* - P_0)) + \sqrt{n}(P_0 - \hat{P}_b) + o_P(1).$$

(A.5)

By Assumption 3.3, the boundary ∂C_{P_0} of C_{P_0} is linear. Thus, it is the tangent space of \mathcal{P} at P_0, and by definition,

$$\| \hat{P}_b - \pi_{\partial C_{P_0}}(\hat{P}_b) \| = o_P(\| \hat{P}_b - P_0 \|).$$

Let $\pi_{\partial C_{P_0}}$ denotes the linear projection onto the tangent space ∂C_{P_0} of C_{P_0} and let $u_n = \pi_{\partial C_{P_0}}(\sqrt{n}(P_0 - \hat{P}_b)).$ We get

$$\| \sqrt{n}(P_0 - \hat{P}_b) - u_n \| = \sqrt{n} \| \hat{P}_b - \pi_{\partial C_{P_0}}(\hat{P}_b) \|$$

$$= \sqrt{n} o_P(\| \hat{P}_b - \hat{P} \| + \| \hat{P} - P_0 \|)$$

$$= o_P(\sqrt{n} \| \hat{P} - P_0 \|) = o_P(1),$$

where the first equality stems from linearity of $\pi_{\partial C_{P_0}}$, the second stems from the triangular inequality, and the third stems from $\| \hat{P}_b - \hat{P} \| = \min_{P \in \partial \mathcal{P}} \| P - \hat{P} \|$. Combining (A.5) and (A.6) yields

$$\sqrt{n}(\hat{P}^* - \hat{P}_b) = \pi_{C_{P_0}}\left(\sqrt{n}(\hat{P}^* - P_0) \right) + u_n + o_P(1).$$

(A.7)

Now, note that

$$\pi_{C_{P_0}}(h) = h 1\{ h \in \bar{C}_{P_0} \} + \pi_{\partial C_{P_0}}(h) 1\{ h \notin \bar{C}_{P_0} \}.$$

In addition, for all $h_1 \in \mathbb{R}^K$ and $h_2 \in \partial C_{P_0}$, $h_1 + h_2 \in C_{P_0}$ if and only if $h_1 \in \bar{C}_{P_0}$. As a result, for all $h_1 \in \mathbb{R}^K$ and $h_2 \in \partial C_{P_0}$,

$$\pi_{C_{P_0}}(h_1) + h_2 = \pi_{C_{P_0}}(h_1 + h_2).$$

(A.8)
Hence,
\[\sqrt{n}(\hat{P}^* - \bar{P}_b) = \pi_{\mathcal{C}_{L_0}}(\sqrt{n}(\hat{P}^* - P_0) + u_n) + o_P(1) = \pi_{\mathcal{C}_{L_0}}(Z^*_n) + o_P(1), \] (A.9)

where the first equality follows by (A.7), (A.8), and the fact that \(u_n \in \partial \mathcal{C}_{P_0} \), and the second equality follows by (A.6) and the fact that projections are continuous. Equation (A.4), and therefore (A.3), follow.

Step 3. Asymptotic distribution of \((\mathcal{T}^*, \mathcal{T}^*)\) We have \(\hat{m}^* = Q^{-1} \hat{P}^* \). Moreover, \((\hat{\theta}, \bar{\theta})\) is differentiable at \(m_0 \). Applying the delta method for the bootstrap (see, e.g., van der Vaart (2000, Theorem 23.9)) then yields
\[\left(\mathcal{T}^*, \mathcal{T}^* \right) \overset{d}{\rightarrow} \begin{pmatrix} \bar{\theta}(m_0)Q^{-1}\pi_{\mathcal{C}_{L_0}}(Z) \\ \theta'(m_0)Q^{-1}\pi_{\mathcal{C}_{L_0}}(Z) \end{pmatrix}. \] (A.10)

Step 4. Asymptotic validity of the confidence interval when \(m_0 \in \mathcal{M} \) When \(m_0 \in \mathcal{M} \), \(I_n \to 0 \) and it suffices to show that
\[\inf_{\theta_0 \in [\theta_0, \bar{\theta}_0]} \lim_{n \to \infty} \Pr(\theta_0 \in \text{CI}_{1 - \alpha}) = 1 - \alpha. \] (A.11)

Suppose first that \(\theta_0 = \bar{\theta}_0 \). Then
\[
\Pr(\theta_0 \in \text{CI}_{1 - \alpha}) = \Pr(\mathcal{T} \leq c_{1 - \alpha}(\mathcal{T}^*), \mathcal{T} + \sqrt{n}(\bar{\theta}_0 - \theta_0) \geq c_\alpha(\mathcal{T}^*))
= \Pr(\mathcal{T} \leq c_{1 - \alpha}(\mathcal{T}^*)) - \Pr(\mathcal{T} \leq c_{1 - \alpha}(\mathcal{T}^*), \mathcal{T} + \sqrt{n}(\bar{\theta}_0 - \theta_0) < c_\alpha(\mathcal{T}^*)). \] (A.12)

Let \(P_1 \) and \(P_2 \) denote the two probability terms in (A.12). The function \(\hat{\theta} \) is differentiable at \(m_0 \), with a nonzero gradient by Assumption 3.3. Besides, when \(m_0 \in \mathcal{M} \), \(\pi_{\mathcal{C}_{L_0}}(Z) = Z \). Thus, by Theorem 3.1, the asymptotic distribution of \(\mathcal{T} \) is normal with strictly positive variance. This distribution is therefore continuous at \(c_{1 - \alpha}(\mathcal{T}) \). By Step 3 of the proof and Theorem 1.2.1 of Politis, Romano, and Wolf (1999) (see also their Remark 1.2.1), \(P_1 \to 1 - \alpha \) with probability 1.

Additionally, with probability 1,
\[P_2 \leq \Pr(\mathcal{T} + \sqrt{n}(\bar{\theta}_0 - \theta_0) < c_\alpha(\mathcal{T}^*)) \to 0, \]
since \(c_\alpha(\mathcal{T}^*) = Op(1) \) and \(\sqrt{n}(\bar{\theta}_0 - \theta_0) \to \infty \). As a result, with probability 1,
\[\Pr(\theta_0 \in \text{CI}_{1 - \alpha}) \to 1 - \alpha. \]

The same holds when \(\theta_0 = \bar{\theta}_0 \). Finally, if \(\theta_0 \in (\theta_0, \bar{\theta}_0) \),
\[\Pr(\theta_0 \in \text{CI}_{1 - \alpha}) = \Pr(\mathcal{T} + \sqrt{n}(\bar{\theta}_0 - \theta_0) \leq c_{1 - \alpha}(\mathcal{T}^*), \mathcal{T} + \sqrt{n}(\bar{\theta}_0 - \theta_0) \geq c_\alpha(\mathcal{T}^*)). \]
Because $T + \sqrt{n}(\bar{\theta}_0 - \theta_0) \to -\infty$ and $\bar{T} + \sqrt{n}(\bar{\theta}_0 - \theta_0) \to +\infty$, the probability on the right-hand side tends to 1. Hence, (A.11) holds.

Step 5. Asymptotic validity of the confidence interval when $m_0 \in \partial M$ In this case, $\theta_0 = \bar{\theta}_0 = \hat{\theta}_0$. Thus, we have, by Theorem 3.1, $\sqrt{n}(\hat{\theta} - \theta) = O_P(1)$. Because $k_n \to \infty$, $I_n \to P$ and it suffices to show that with probability 1,

$$\lim_{n \to \infty} \Pr(\theta_0 \in \text{CI}^\text{boundary}_{1-\alpha}) = 1 - \alpha.$$ \hfill (A.13)

We have

$$\Pr(\theta_0 \in \text{CI}^\text{boundary}_{1-\alpha}) = \Pr\left(\sqrt{n}\left|\hat{\theta} - \frac{\theta_0 + \bar{\theta}_0}{2}\right| \leq c_{1-\alpha}(T^*_s)\right)$$

$$= \Pr(T_s \leq c_{1-\alpha}(T^*_s)),$$

where in the first equality we have used the definition of $\text{CI}^\text{boundary}_{1-\alpha}$ and the fact that $\bar{\theta}_0 = \hat{\theta}_0 = \theta_0$. Note that $T^*_s = |T^* + \bar{T}^*|/2$. Thus, by Step 3 above, the continuous mapping theorem, Assumption 3.3, and Theorem 1.2.1 of Politis, Romano, and Wolf (1999) once more,

$$\Pr(T_s \leq c_{1-\alpha}(T^*_s)) \to 1 - \alpha$$

with probability 1. The result follows.

References

Co-editor Rosa L. Matzkin handled this manuscript.

Manuscript received 8 October, 2014; final version accepted 7 May, 2016; available online 28 July, 2016.