A Toolbox for SMM Estimation of DSGE Models Approximated by

Extended Perturbation up to Fifth Order

Martin M. Andreasen
Aarhus University, the Danish Finance Institute, and CREATES

December 14, 2021

Contents

1 Introduction 2

2 A Stylized RBC Model 2
2.1 Households e 2
2.2 Firms e e 4
2.3 Market clearing and Model Summary L 4
2.4 The Steady State e e 5

3 Theory on SMM Estimation 6
3.1 The SMM estimator e e 6
3.2 Asymptotic Distribution of the SMM Estimator 8
3.3 Moments Applied for the SMM Estimator 8

4 Implementing SMM Estimation in the Toolbox
4.1 Overview of the Toolbox
4.2 Implementing The Model Equations 10
4.3 Implementing the Steady Stateo oo 15
4.4 Non-Standard Transformations in The Model 18
4.5 Generating Functions for the Numerical Derivatives 19
4.6 Executing the SMM Estimation L L oo 20
4.7 Evaluating Accuracy 26

1 Introduction

The purpose of this note is to document a Matlab toolbox for estimating dynamic stochastic gen-
eral equilibrium (DSGE) models by the Simulated method of moments (SMM) using the extended
perturbation approximation up to fifth order. We illustrate the use of the toolbox by estimating on
simulated data a stylized RBC model approximated up to fifth order. The toolbox also enables the
user to evaluate the accuracy of the considered approximation by computing the Euler equation errors
on either a simulated sample path or a grid.

The note is structured as follows. Section 2 presents the stylized RBC model. The required knowl-
edge about SMM estimation to understand and use our toolbox is provided in Section 3. We formally
present our toolbox in Section 4 by describing the steps required to carry out a SMM estimation of
the RBC model considered.

It is worth noticing that the toolbox is currently only coded up for linear shocks when using the
extended perturbation approximation. However, with an appropriate extension of the state variables,
it is possible to accommodate nonlinear features such as stochastic volatility, GARCH, etc. as shown in
Andreasen (2012). Note also that in this implementation, both lagged control variables and exogenous
states are concentrated out of the fixed-point problem for the Extended Path. This ensures consistency

between the states and the controls and it should also reduce the computational burden.

2 A Stylized RBC Model

This section presents a stylized RBC model similar to the one considered in King & Rebelo (1999).

2.1 Households

An infinitely lived representative household derives utility from consumption Cy and leisure L;. The

objective of this household is to maximize the utility function

_ 1-m,
0o . Crri —bC,s_ Al=ne g L. -1
max 5> By By (Crsj t—1+5) 4 gt ’
i=0 L= L—mn

where F; is the conditional expectation operator. This utility function is described by the structural
parameters {3, b,n,,n;,0} where § < 1is a discount factor. The variable d; is a preference shock which
evolves as

logdi1 = pglogds + o4€q 41

with €441 ~ NZD (0,1) and |p,| < 1. The parameter b € [0, 1] allows for internal consumption habits
if b > 0. The household’s time endowment is normalized to one and is allocated to leisure and hours
worked V¢, i.e.

Ny + Ly =1.

The capital stock Ky is assumed to be owned by the household who also conduct investments I;. The

law of motion for capital is given by

Ky = (1-9) K + I,

where K; is the capital level at the beginning of period ¢ and & controlling depreciations.!

To derive the budget constraint for the household, let W; denote the real wage in period ¢ and let
RF refer to the real rental rate of capital in period ¢. The representative household also receives real

dividends II; from firms, implying that its total real income in period t is given by
income;=W;N; + RFK; + 11;.

This income is used for either consumption or investments, meaning that the budget constraint reads
Ci + 1 < WiN; + RfKt + 1L;.

Thus the optimization problem faced by the representative household is

x Chij—bCi 1) 7 —1 1— Ny)t -1
i S Bide B (Cty t—1+5) N o t+5)
(Cotj s Netj Kevi4j:le+5)520 - =0 L=n. L—=mn

subject to
Cy+ I < WiNy + R K, + 11,

Kioi=1—-0)K, +1,

(and a no-Ponzi-game condition which we abstract from). The solution is a set of contingency plans
for Cy, N¢, K¢11, and I; as a function of the state variables. It is easy to show that the optimization

problem implies the following first-order conditions:

oL _ _
67@ : dt (Ct — th—l) Me BbEt [dt—l—l (Ct+1 — th) ”75] =)\t
oL _
aiNt . Hdt (1 — Nt) =)\tWt
oc . &
sic =P [mtﬂ (Rm +(1- 5))]

where)\; is the lagrange multiplier on the budget constraint.

!Note that capital is predetermined in period ¢ (i.e. it was set in period ¢t — 1) and some therefore find it more natural
to use the notation K; = (1 — §) K¢—1 + I, where K is the capital level at the end of period ¢. This alternative notation
is used in Dynare and may also be adopted in this toolbox.

2.2 Firms

Production Y; is carried out using a Cobb-Douglas production function

Y; = A K} TNy,

where A; refers to productivity shocks that evolves as

log At11 = palog Ay + 0 a€a141

with €441 ~ NZID(0,1) and |py| < 1. Firm profit is given by

II; = A KN — WiN; — REKG,

and when optimized across capital and hours worked we get the standard first-order conditions:

oIl o
TK}At(l_OJ)Kt Nt :Rf
oIl e
aijvt . AtOKKtl Nt 1 = Wt.

2.3 Market clearing and Model Summary

Equilibrium in the goods market implies C; + I; = Y;, which is satisfied via the budget constraint

because II; = 0 and W;N; + RfKt =Y;. Hence, our economy can be condensely expressed as:

© 00 N O Ot = W N -

—_ =
_ O

dy (Cy = bCy1) " — BbE; [diy1 (Cor — bCy) "] = N
0d, (1 — Ny)™ ™" = MW,y

At = Bp [BAep1 (R, + (1-10))]
Ar(1—a)K;“Np® = RF

AaK} NPT =W,

Ci+1I; =Y,

Y, = A K[TNy

Kip1=(1-06) K+ Iy
(Ci-1)y41 = Ci

log Ajy1 = palog Ay + o a€a 141
logdit1 = pglogd; + og€q 41

This economy has four state variables (K¢, Ci—1, Ay, d;) and seven control variables (Ct, A, W, Rf, Ny, I, Yt)

Note that we in Eq 9 introduce a so-called link equation, that relates lagged consumption next period

to the present consumption, i.e. (Cy—1),,; = C;.

2.4 The Steady State

The steady state solution is defined as the point where there are no shocks hitting the economy and
all dynamics have played out, implying that we can replace all time-subscript by ss and solve for all
variables as a function of the structural parameters. From Eq 10 and Eq 11 we have Ay, = 1 and
dss = 1. Eq 3 implies Ags = BAgs (RI;S +(1- 5)), and therefore

1

RI;SZB_(I_é)'

From Eq 4 we have A (1 — a) K .*N2& = RF

88

KSS Rk -1/«
Ngs - <Ass (1—a)> .

K l1-a
WSS == ASSCY (]\],:::) .

which is equivalent to

From Eq 5 we directly get

The law of motion for capital in Eq 8 implies

ISS — 5KSS
NSS NSS ‘
The production function in Eq 7 gives
-«
YSS — A KSS
NSS 5 NSS

From Eq 6 we have

Combining Eq 1 and 2, we have

01— Ny L (=) (o =)
88 Nssnc - Ns_snc 8

CSS
NSS

6(1— Ny) ™ Nl = ()w (1= Bb) (1 b) " W

We can assume that Ny, is known (for instance Ngs = 1/3) and solve for the value of 6. Alternatively,
and as done in the current implementation, condition on a value of # and solve for Ny by a numerical
fixed-point algorithm. If ' = 7° =1 (i.e. log-log preferences) then we have the following closed-form

solution

o

Nis _ <Css

-1
-1
e =(5) a-ma-ptw

Css) ! (1 - /Bb) Wss

NSS:(I_NSS)<NSS 6(1—b)

() s

Css (lfﬁb)Wss
1+ <N> B1-0)

Given a value of Ny, we trivially have all the desired quantities using the previous expressions for

CSS ISS KSS YSS
N N N and g

Nss =

3 Theory on SMM Estimation

This section describes how our RBC model can be estimated by SMM. We proceed by introducing the
SMM estimator in Section 3.1. The asymptotic distribution of this estimator is given in Section 3.2,
and we finally discuss the considered moments for our SMM estimator in Section 3.3. For additional

introduction to SMM, see for instance Ruge-Murcia (2012).

3.1 The SMM estimator

To present the SMM estimator, let y; with dimension n, x 1 contain our observed variables in period
t, with the entire sample denoted by y1.7 = {y1,y2,...,¥y7r}. The structural parameters in our DSGE
model is denoted by € with dimension ng x 1. The objective in SMM is to estimate @ using a
set of moment conditions. We focus on first and second unconditional moments as typically done
when estimating DSGE models. More formally, consider n,, unconditional moments E° [m (8)] =
Zzzl m (0,y;) from our DSGE model, which we compute based on a simulated sample path of 77
observations. Here, T is the length of our empirical sample and 7 is an integer controlling the length
of the simulated sample path. We next define the function h® (8,y,) = m (y;) — E°[m(0)]. Let
6, denote the true value of 6, which implies £ [h(6,,y,)] = 0. The estimation applies the sample

analogue
1z
gS (07 yl:T) = T Z hs (07 yt)
t=1

as a substitute for the expectation operator, and the SMM estimator is then given by (see Duffie &
Singleton (1993))

Osning = arg min g% (0,y1.0) Wrg® (0,y1.7) . (1)
S

Here, W is an n,, X n,, positive definite weighting matrix that may depend on yi.7. Note that
nm > Ng is a necessary but not a sufficient condition for identification of 8. A weighting matrix W

is thus required to make SMM operational. One commonly used approach is to determine W from

y1.7- This can be done by using the Newey-West estimator, i.e.

q
A~ ~ v ~ ~

v=1
where
b= L3 (605 (00,) @
t=1
- L (02 m (6")]) (i £ ()]

(1
Here, 0() denotes a preliminary first step estimate of 8 using (1) with W7 = I, whereas the optimal
weighting matrix is given by S—1. Instead of using Wp =1 in the first step, another possibility is to
observe that for the true value of 8 we have E [gs (60, y1.7)] =0, implying

E = FEm(8,)].

1 T
T;m(}ﬁ:)

Hence, if we let mTE% Zthlm(yt), we can use the sample mean of the moments to estimate

E%[m(0,)] instead of F {m (9(1)>]. This leads to the alternative estimator

. 1 <
Fz/,mean = f Z (m (Yt) - mT) (m (yt) - mT),)
t=1

which does not require a preliminary estimate of 8. Hence, the weighting matrix may be obtain using

q
~ A v A~ ~
Smean:FO,mean + g (1 - q+ 1> (FV,mecm + F/V,mean) :
v=1

~ ~ -1 ~
Given S,,ean, We may either let Wp = (Smean) or only use the diagonal elements of S;,cq, and let

~

-1
W = (dz’ag (Smem)) . We prefer the latter option as it implies that all moments in the estimation

are scaled according to how precise they are estimated in the sample.
To summarize, the estimation procedure implemented in our toolbox by SMM is as follows:
. & -1 A1)
1. Step: Let W = (dzag (Sme(m)) and obtain 6" from (1).

2. Step: Use 8" to compute W(Tl) =S, and obtain 8 from (1)

3.2 Asymptotic Distribution of the SMM Estimator

Given standard regularity conditions, Duffie & Singleton (1993) show that the SMM estimator is

asymptotically normally distributed, i.e.

JT (@ . 90) LN <o, <1 + i) MOSOM2> ,

where
M, = (D,W7D,) ' D Wy
and S
0,y:.
p,- 28 Oyir)|
06 o0,

We estimate these matrices by replacing 8, by 6. If we use the optimal weighting matrix Wy = S 1)

the expression for the asymptotic variance simplifies to
~ 1 _
VT (e - 90) N <o, (1 + T) (DS, 'D,) 1) .
In this case a model specification test is given by (see Ruge-Murcia (2012))

J=T (1 + i) g (9,y1;T>I S'g (9aY1:T) X2

3.3 Moments Applied for the SMM Estimator

We allow three types of unconditional moments to be considered for the SMM estimation:
e Sample means, i.e. m; (y¢) = y;
e Contemporaneous covariances, i.e. ms (y;) = vech (yiy})

e The own auto-covariances, i.e. ms (y;) = {yi7tyi7t,k}?:y1 for various values of k
Hence, the total set of moments considered for the estimation is given by

m (yt)
m (y¢) = | my (y¢)
ms (yt)

Finally, the user can then freely decide which of the moments in m (y;) that are included in the

estimation.

4 Implementing SMM Estimation in the Toolbox

This section explains the steps required to carry out a SMM estimation of a DSGE model when
approximated up to fifth order by the extended perturbation method. The most demanding aspect
for the user relates to constructing two model specific m-files containing i) the model equations and ii)
the steady state solution. The requirements we impose on these two files are mainly due to our desire
to concentrate out lagged control variables and the exogenous states when solving for the Extended
Path.

We proceed as follows. Section 4.1 provides a brief overview of the toolbox. Section 4.2 outlines
how the model equations should be coded up, and Section 4.3 provide guidance on how to implement
the steady state solution. The case with non-standard transformations of any variable in the model is
discussed in Section 4.4. We then show in Section 4.5 how to automatically generate functions that
efficiently compute the numerical derivatives of the model up to fifth as needed for the perturbation
approximation, two additional files needed to run the Extended Path, and finally files for evaluating
the Euler equation errors. Section 4.6 illustrates how to estimate the stylized RBC model by SMM,

and Section 4.7 shows how to evaluate accuracy.

4.1 Overview of the Toolbox

The toolbox has the following folders:

e AccuracyEuler: Codes needed for computing Euler equation errors.

e DisplayModelDeriv: This folder contains a set of general m-files that is used to generate
functions to compute the DSGE model at the steady state, compute the Extended Path, and
compute the Euler equation errors. These files are called by the executable scripts "createFiles -

Derivatives model.m" and "createFiles ExtendedPathAndAccuracy.m".
e Documentation: The documentation of the toolbox is saved here.

e ExtendedPer: Codes accompanying the paper by Andreasen & Kronborg (2020) on how to
compute the Extended Path efficiently and hence compute the extended perturbation approxi-

mation.

e files: Contains the required files for using the codes by Levintal (2017) to compute the standard

perturbation approximation up to fifth order.

e ModelSpecification: The content of this folder is reserved to the user and should contain the

following files:

— An m-file with the equations of the DSGE model
— An m-file computing the steady state of the DSGE model

The remaining files in this folder will be generated automatically when running "createFiles -

Derivatives model.m" and "createFiles ExtendedPathAndAccuracy.m".
e Perturbation Levintal: This folder contains the code accompanying Levintal (2017).

e SMMtoolbox: This folder contains a set of general m-files needed to carry out the SMM estima-
tion of a DSGE model solved by the extended perturbation method and standard perturbation
(with pruning) up to fifth order. The latter is included as a useful benchmark or to obtain good

starting values for an estimation based on extended perturbation.

In addition to these folders, the toolbox contains five executable scripts:

e "createFiles ExtendedPathAndAccuracy.m" uses the m-file for the DSGE model and its steady
state solution to automatically generate "DSGEforesight N.m", "getModelDeriv_ EP.m", "EulerEqEr-

ror.m", and "EulerEqErrorPruning.m"

e "createFiles Derivatives model.m" computes the required derivatives for a standard fifth order

perturbation approximation.
e "Run_accuracyEuler.m" a script to evaluate the Euler equation errors

e "Run_solveAndSimulateModel.m" a script to simulate a sample path from the DSGE model by

extended perturbation.

e "SunGMM.m" is the main script for carrying out the SMM estimation.

4.2 Implementing The Model Equations

When implementing the model equations describing the DSGE model, we adopt the notation and
framework of Schmitt-Grohé & Uribe (2004). That is, we use the symbolic toolbox in Matlab to
set up a function that reports the model equations along with the state and control vectors. Our
implementation of the RBC model is available in "RBCmodel.m" which appears in the folder "Mod-
elSpecification".

The first section of the file "RBCmodel.m" is given below:

10

function [f, X, xp,y, yp, synparans, Phi] = RBCnhodel (unitFree)

%% Section 1: Declaring coefficients and variabl es

%efi ne the structureal paraneters

syms DELTA BETTA B ETAI ETAc THETA ALFA RHOA RHOD

synpar anms=[DELTA, BETTA, B, ETAl , ETAc, THETA, ALFA, RHOA, RHOD ;

%efine the state variables in this period (_cu) and the next
peri od

% cup). Variables | agged by one period appear as "_bal"

syms k cu c_bal a cu d_cu

synms k_cup c_balp a cup d_cup

%efine the control variables in this period (_cu) and the next
period (_cup)

synms c_cu iv_cu y cu lacu n.cu rk cu w.cu

syms c_cup iv_cup y_cup la_cup n_cup rk_cup w_cup

We start by using the Matlab option "syms" to define the structural parameters of the model as
symbolic objects. All these symbolic variables are then stored in "symparams." Then we define the
state variables as symbolic objects and then the control variables. When defining these variables, we

adopt the following notation (explained using a few examples)

n

e K, is coded as k_cu where " cu" is an abbreviation for "current"

e K1 iscoded as k_cup where "

_cup" is an abbreviation for "current, plus one"
e (1 is coded as ¢_bal where " ba" is for "back" and 1 refers to one lag

The second section of the file "RBCmodel.m" contains Eq 1 to 8 of our model. That is

%% Section 2: Endogenous nopdel equations
% Eq 1: FOC for consunption
if unitFree == 1
eql = -1 + d_cu*((c_cu-B*c_bal)"(-ETAc) -
BETTA*B*d_cup*(c_cup-B*c_cu)~(-ETAc))/l a_cu;

el se

eql = -la_cu +d_cu*(c_cu-B*c_bal)"(-ETAc) -
BETTA*B*d_cup*(c_cup-B*c_cu) ~(- ETAc) ;
end

% Eq 2: Househol d's FOC for |abor

if unitFree == 1

eq2 = (- THETA*d_cu*(1-n_cu)”-ETAl)/(la_cu*w cu) + 1;
el se

eq2 = - THETA*d_cu*(1-n_cu)”~-ETAl + la_cu*w_cu;
end

% Eq 3: FOC for capital

if unitFree == 1

eq3 = -1 + (BETTA*l a_cup*(rk_cup + (1-DELTA)))/l a_cu;
el se

eq3 = -la_cu + BETTA*l a_cup*(rk_cup + (1-DELTA));
end

% EQ 4: Firmis FOC for capital

if unitFree == 1

eq4 = -a_cu*(1- ALFA)*k_cu”(-ALFA)*n_cu”(ALFA) + rk_cu;
el se

eg4 = (-a_cu*(1-ALFA)*k_cu”(-ALFA) *n_cu®(ALFA))/rk_cu + 1;
end

11

and

%EQS5: Firmis FOC for |abor

if unitFree == 1

eqg5 = (-a_cu*ALFA*k_cu”(1-ALFA) *n_cu”(ALFA-1))/w cu + 1;
el se

eq5 = -a_cu*ALFA*k_cu”(1-ALFA)*n_cu”(ALFA-1) + w cu;
end

% EQ 6: National inconme identity

if unitFree ==

eg6 = (-c_cu - iv_cu)/y_cu + 1,
el se

eg6b = -c_cu - iv_cu + y_cu;
end

% EQ 7: Production function

if unitFree == 1

eq7 = -1 + (a_cu*k_cu”(1-ALFA)*n_cu”(ALFA))/y_cu;
el se

eq7 = -y_cu + a_cu*k_cu™(1- ALFA) *n_cu”(ALFA);
end

% EQ 8: Law of notion for capital

if unitFree == 1

eg8 = (-k_cup + (1-DELTA)*k_cu)/iv_cu + 1;
el se

eq8 = -k_cup + (1-DELTA)*k_cu + iv_cu;
end

Note that we do not explicitly write the conditional expectation operator, as the perturbation
codes automatically takes the conditional expectation at time ¢ to all equations of the model. For
the Extended Path, it is useful to also accommodate the case where all the model equations (and
hence their errors) are expressed in unit free terms to make them mutually comparable. This is done
by scaling each of the equilibrium equations such that we equal 0 or 1. For instance, the equation
Cy+ I =Y, is expressed as Cy/Y; + I;/Y; = 1.

The third section in the file "RBCmodel.m" is reserved for link-equations. Our RBC model has

only one link-equation for consumption, i.e.

% Section 3: Link equations
% EQ 9: Link for |agged consunption

if unitFree == 1

eq9 = -c_balp/c_cu + 1;
el se

eq9 = -c_balp + c_cu;
end

Note if we have additional lagged control variables in the model, then they appear as additional state
variables and lead to additional link-equations. It is important to note that the link equations must
appear after the main equations of the model in order to exploit the fact that we do not separately
need to solve for C;_1 in the Extended Path.

The fourth section in the file "RBCmodel.m" specifies the exogenous shocks to the model using

the representation in Eq 10 and Eq 11, i.e.

12

%0 Section 4. The exogenous shocks
% EQ 10: Law of notion for technol ogy
eql0 = -log(a_cup) + RHOA*| og(a_cu);

% EQ 11: Law of notion for technol ogy
eqll = -log(d_cup) + RHOD*l og(d_cu);

It is important that the equations for the exogenous shocks appear last in the f-function when com-
puting the certainty equivalent solution by the Extended Path. Note also that we do not explicitly
type in the structural innovations, i.e. we do not need to write o 4€4,¢41. Note also that the adopted

timing convention for the exogenous shocks differs from the one used in Dynare, where the law of

motion for technology typically would be represented as

log Ay = palog A1+ 0a€ay.

This is because Dynare considers both A;_1 and €4, as state variables. By using the representation
in Eq 10, i.e. log A1 = pylog Ay + 0 a€a,441, only A; appears as a state variable, which reduces the

computational burden when solving the DSGE model. We finally stack all equations in section 4 and

construct the vector function f.
The final section of the file "RBCmodel.m" defines the state vector
Xt = { Ky Civ Ay dy }

and the control vector
ye=|C L Y M N Rf W]

in the following way:

%6 Section 5: Defining x,xp,y,yp

% Define the vector of states, x and xp

X =k cu c_bal a.cu d_cul];

xp = [k_cup c_balp a_cup d_cup];

% Define the vector of controls, y and yp

y = [c_cu iv_.cu y cu lacu ncu rk cu wecul;
yp = [c_cup iv_cup y _cup la _cup n_cup rk_cup w cup];

% For the | og-approximation
f = subs(f, [x,y,xp,yp]. exp([x,y,xp,yp]));

% Phi: the expected value for the exogenous shocks,

[]

Phi = [RHOA*I og(a_cu); RHOD*| og(d_cu)];

% For the | og-approximation

Phi = subs(Phi, [x,y,xp,yp], exp([X,y,Xxp,yp]));

el se use Phi

Note the that x; is coded as x and x:y1 is coded as xp following the convention introduced by

Schmitt-Grohé & Uribe (2004), and similarly for the control vector. In order to only solve for the

13

control variables and the endogenous states in the Extended Path, we impose that the state and control

vector must be defined as follows:

< = endogenous states controls appearing in x; exogenous states (3)
t - v
~ mx myx ne
nx
controls appearing in x; remaining controls
yr = ~ (4)
myx

ny
Note that the size of the vectors are given below, i.e. x; has nx elements and so on. Applying these
rules to our RBC model, this explains why the state vector is defined as K; (the endogenous state
variable), C;_1 (the lagged control variable), and (A, d;) (the exogenous states). Note also that the
order of the variables "controls appearing in x;" must be the same in x; and y;. This explains why
C} appears as the first control variable in yy.
The final line in the codes above is needed for a log-approximation as it replaces all elements in

[Xt, Vi, Xe41,Yer1] by exp{[X¢, ¥t, Xe4+1,¥e+1]} in the f-function. That is, the f-function changes from

f =

d_cu/(c_cu - B*c_bal)"ETAc - la_cu - (B*BETTA*d_cup)/(c_cup - B*c_cu)”~ETAc
la_cu*w cu - (THETA*d_cu)/(1 - n_cu)ETA

BETTA*l a_cup*(rk_cup - DELTA + 1) - la_cu
(a_cu*n_cuMALFA* (ALFA - 1))/ (k_cutALFA*rk_cu) + 1
w_cu - ALFA*a_cu*k_cu”®(1 - ALFA)*n_cu~(ALFA - 1)
y_cu - iv_cu - c_cu

a_cu*k_cu”™(1l - ALFA)*n_cu™ALFA - y_cu

iv_cu - k_cup - k_cu*(DELTA - 1)

c_cu - c_balp

RHOA*| og(a_cu) - |og(a_cup)

RHOD* | og(d_cu) - log(d_cup)

to

f o=

exp(d_cu)/ (exp(c_cu) - Brexp(c_bal)) ETAc - exp(la_cu) - (B*BETTA*exp(d_cup))/(exp(c_cup) - B*exp(c_cu))” ETAc
exp(la_cu)*exp(w_cu) - (THETA*exp(d_cu))/(1 - exp(n_cu))” ETA
BETTA*exp(l a_cup) *(exp(rk_cup) - DELTA + 1) - exp(la_cu)
(exp(-rk_cu)*exp(a_cu)*exp(n_cu) "ALFA*(ALFA - 1))/exp(k_cu)“ALFA + 1
exp(w_cu) - ALFA*exp(a_cu)*exp(k_cu)~(1 - ALFA)*exp(n_cu)”(ALFA - 1)
exp(y_cu) - exp(iv_cu) - exp(c_cu)

exp(a_cu)*exp(k_cu)~(1 - ALFA)*exp(n_cu)"ALFA - exp(y_cu)

exp(iv_cu) - exp(k_cup) - exp(k_cu)*(DELTA - 1)

exp(c_cu) - exp(c_balp)

RHOA*| og(exp(a_cu)) - |og(exp(a_cup))

RHOD* | og(exp(d_cu)) - |og(exp(d_cup))

Effectively, this transformation implies that the perturbation approximation is carried out for a log-

transformation of the state and control variables, i.e. for
xt = | logK; logCi_q1 logA; logd; }

14

yi=| logC; logl; logY; log\; logN; logRF loth}. (5)

However, the package also accommodates the possibility of using a simple ’level” approximation, which
in this case corresponds to omitting "f = subs(f, ...)". Another possibility which is also accommodated
is to use a logistic transformation of a variable. This may be a convenient transformation to consider

if a variable lies within the unit interval. For instance, for some variable X; in the model, we may let

1

X= TR
1+e At

and do the approximation in X;.
Finally, in "Phi" the user has the opportunity to report the conditional expectation of the exogenous
shocks, which may be used by the codes of Levintal (2017) when computing the standard perturbation

approximation.

We acknowledge that the required ordering of the model equations and the state and control
variables perhaps may seen a bit strange. So let us briefly explain why this ordering is required.
Firstly, in the Extended Path we do not need to separately solve for control variables and lagged
control variables (i.e. Ci—; and C; in our case). Instead, we exploits that we only need to solve for
the control variables once and this increases the numerical efficiency of the codes. To exploit this
numerical trick, the codes require that the link equations appear after the main model equations and
that the state and control vectors are ordered as outlined in (3) and (4). Secondly, we also exploit that
for linear shock processes, we can easily solve for these variables in the Extended Path independently
of any of the endogenous variables in the model. This explains why the exogenous shocks must appear
last in the f-function and the exogenous shocks must appear last in the state vector. We should finally
note that the user may "turn off" both of these optimized features in the codes by letting mx = nx

and myxz = 0. This may for instance be useful when debugging the codes.

4.3 Implementing the Steady State

Our implementation of the steady state solution for our RBC model is available in "RBCmodel -
ss.m" appearing in the folder "ModelSpecification". The first part of this function defines the output

arguments as follows:

15

function [auxCQut, errorMes] = RBCnodel _ss(parans)

%% Section 1:
% The size of the nodel

ny =7 9Nunber of control vari ables

nx = 4; %Nunber of state variabl es

ne = 2; YNunmber of shocks

X = 1; %\unber of endogenous state variables (nust cone first in Xx)
ny x = 1; %\unber of |agged control variabl es appearing as states.

% hese | agged control variables nust come first in y AND nust
Y%appear in x after the endogenous states.

All output are stored in "auxOut" (auxiliary output) and "errorMes", which is a flag for reporting

errors. We then set the size of the model.

The next step is to unfold the structural parameters in the structure "params". We also define
the eta-matrix 7 which in our framework is the square-root of the covariance matrix to the structural
shocks. Note that technology A; appears at the third position in x¢, and o4 therefore appears at
position 7 (3,1) and so on. Finally, we set the higher order moments, which we specify to be Gaussian
(using the codes provided by Levintal (2017)).

%Jnfol d the parans vector
DELTA = parans. DELTA;

BETTA = parans. BETTA,
B = pararns. B;

ETAl = parans. ETA ;
ETAc = parans. ETAc;
THETA = par ans. THETA;
ALFA = parans. ALFA;
RHOA = parans. RHOA,
RHOD = parans. RHOD;
STDA = parans. STDA;
STDD = parans. STDD;

% The eta matri x: nx*ne

eta = zeros(nx, ne);
eta(3,1) = STDA
eta(4,2) = STDD;

% The hi gher order nonents

% M M is the expected val ue of kron(eps, eps).

% M M3 is the expected val ue of kron(eps, eps,eps) and so on.

% Here | assunme that the shock is standard nornal.

% M M2=1; M M3=0; M M4=3; M Mb=0;

% 1f the shocks are independent standard normal you can use the
conmmand:

nmonEps =gaussi an_nonent s(ne) ;

The second section of "RBCmodel ss.m" reported on the next page simply computes the steady

state as a function of the structural parameters.

16

%% Section 2: Solving for the steady state
% Initializing errorMes: O for no errros, else 1
errorMes = O;

% The val ue of technol ogy
A=1;

% The val ue of the preference shock
D=1,

% The rental rate of capital
RK = 1/ BETTA - (1-DELTA);

% Capi tal divided by |abor
K_ON = (RK/(A*(1-ALFA)))"(-1/ ALFA);
if KON<=0
errorMes = 1;
end

% The wage | evel
W= A*ALFA* (K_O_N) ~(1-ALFA);

% | nvest nent over | abor
IV_ON = DELTA*K_O N,

% Qut put over | abor
Y_ON = A*K O N (1-ALFA);

% Consunption over | abor
CON=YON- IVON
if CON<=0

errorMes = 1;
end

and

% The | abor | evel
if ETAc == 1 && ETAl ==
% Cl osed-form solution for N
N = (1-BETTA*B)*(C_O N*(1-B))"-1*W THETA/ (1+(1- BETTA*B) *(C_O_N+*(1- B)) - 1* W THETA) ;
el se
% No cl osed-form solution and we therefore use a fixed-point algorithm
if errorMes ==
options = optinmset('Display', off'," Tol X ,1e-12,"' Tol Fun', le-12);
NO = 1/3;

[N, ~, exitflag] fsol ve(@i ndN, NO, opti ons);

if exitflag <= 0
errorMes = 1;
end
el se
N = NaN;

end
end

% Val ue of renmining variables

C = CONN
Y =Y ONN
IV = IV.ONN
K = KONN
LA = (C B*C)~(- ETAc) - BETTA*B*(C B*C) (- ETAC) ;

To find the steady state value of hours worked, i.e. Ngg, the function "findN" is defined in the
bottom of the file "RBCmodel ss.m" as follows

17

%6 Section 4: auxiliary function for the steady state

function error = findN(N)

error = THETA*(1-N)~(-ETA)*N'ETAc - (1-BETTA*B)*(C O N*(1-B))"(-ETAc)*W
end

The third section in "RBCmodel ss.m" simply assigns the steady state values to all elements in
the states (in "Xg") and the controls (in "Yg") in the appropriate order. Then we also provide the
name of the variables in "labelx" and "labely", respectively. Finally, we indicate in "transformX"
and "transformY", which transformation that is applied for each of the variables in the model. Note
that we use a log-transformation of the steady state because all variables in "RBCmodel.m" were

transformed by the exp-function.

%% Section 3: Reporting the output for the perturbation approxinmation
% For | evel approxinmation: k_cu = K;

% For log transformation: k_cu = | og(K);

% For logistic transformation: k_cu = -log(1/Vss-1)

%he | evel of the states

auxQut . Xss =[KCAD"';

%he | evel of the controls

auxQut. Yss =[CIVYLANRW';

auxQut . | abel x = [{"kt"},{"c {t-1}"},{"at"},{"dt"}];

auxQut . | abel y = [{ et }, it {0yt lastt b 0 n ey Urk et b {0 wett]

% for a log-transformation, 2 for logistic transformation, O for a | evel approx
auxQut . transfornX = ones(1, nx);
auxQut.transformy = ones(1,ny);

Within the third section of "RBCmodel ss.m" we finally save some auxiliary output in the struc-

ture.

4.4 Non-Standard Transformations in The Model

In some cases it may also be necessary to "untransform" the solution from the approximation to get
the model output to match with the corresponding output in the data. This should currently only
be the case if a logistic function is used, but it may also be the case for a log-transformation if the
empirical data is not log-transformed. In any case, it is recommended that one briefly checks the

content of the file "untransformYandX.m" which currently reads:

18

function [Ysim Xsinm = untransformyandX(Ysi m nodel , Xsi m
ny = size(Ysiml1l);
% undo the transfornmation
for i=1:ny
if nodel.transfornmy(i) == 1
% | og-transfornation

el seif nodel.transformy(i) == 2
% | ogi stic transformation
Ysim(i,:) = 1./ (1l+exp(-Ysin(i,:)));
el seif nodel.transforny(i) == 0
% Level approximation

end
end
if exist('Xsim," 'var")
nx = size(Xsim1l);
for i=1:nx
if nmodel .transfornX(i) == 1
% | og-transfornation
el seif nodel.transfornX(i) == 2
% | ogi stic transformation
Xsim(i,:) = 1./ (1l+exp(-Xsin(i,:)));
el seif nodel.transformX(i) == 0
% Level approximation
end
end
end
end

4.5 Generating Functions for the Numerical Derivatives

Based on the two model specific m-files, we are now able to generate functions that compute the
required numerical derivatives of the model.
To generate these functions for standard perturbation, open the executable script called "create-

Files Derivatives model.m". The user specific part of this script is given below:

or der App=5;
unitFree = 0;

%% Model specific part
[f, X, Xp,Y,yp, synparans, Phi] = RBCnodel (unitFree);

% A string with the nane of the steady state file
nameSt eadyStateFil e = '[auxCQut, error Mes] = RBCnodel ss(parans);';

We first specify the order of the approximation using "orderApp". Then we call the m-file containing
the model equations - i.e. "RBCmodel.m" in our case. Finally, we need to provide the name of the
file computing the DSGE model in the steady state. Here, the name of the file (i.e. RBCmodel ss) is
optional but the output arguments must be as indicated above. Based on these inputs, running the

script then uses the codes of Levintal (2017) to compute the required derivatives.

To generate the functions for the Extended Path (as needed for the extended perturbation method)
and to generate codes to compute the Euler equation errors, open the executable script called "cre-

ateFiles ExtendedPathAndAccuracy.m". The user specific part of this script is given below:

19

%% Model specific part
unitFree = 1;
[f,X, xp,Y,yp,synmparans] = RBCnodel (unitFree);

% The nunber of endogenous states (nx) and nunber of |agged controls (nyx)
nx 1;
nmyx 1

For the Extended Path, it is useful to express all the model equations (and hence their errors) in unit
free terms to make the errors comparable across the various equations in the model. We account for
this in the current implementation by letting "unitFree = 1". Finally, we need to specify the number
of endogenous states "mx=1" and the number of lagged controls "myx = 1" in our case.

Following the construction of these files, we are now ready to carry out the SMM estimation.

4.6 Executing the SMM Estimation

To start the SMM estimation, open the file called "RunSMM.m", which simulates a sample path from
our RBC model and then estimates the RBC model on this sample path. The first section of this file

lists the main user settings:

%6 Section 1: User settings for the SMM estimation

appMet hod = 2; % 1 for pruning and 2 for extended perturbation

tau = 5; % nodel nonents conmputed froma sanple of tau*T observations
or der App = 2; % Appr oxi mati on order of DSCGE nodel

T = 200; % Length of the sinmulated sanple path

aut oLagsl dx =[1 5]; % Nunber of | agged covariances included in the GW estination
selectyY =[1,2,5]"; % The control variables selected for the estinmation

gLag = 20; % Nunber of |ags for the Newey-West estimator of W

epsVal ue = le-6; % st epsi ze for computing standard errors

% Anong the variables in selectY, we include the followi ng noments in the
% estimation, where 1 indicates inclusion and 0 otherwi se.

i ncl Moms_Ey =[111]"; % or first nonents
i ncl Moms_Eyy =[111; % or contenporaous second nonents
011;
001];
incl Moms_autoEyy = repmat([1 1 1]',1,length(autoLagsldx)); % or auto-cov

That is, we select the approximation method ("appMethod") and the length of the simulated sample
path ("tau") used to compute the model implied moments. We also set the order of the approximation
("orderApp"), and the length of the sample path ("T"). Then we specify the number of moments

which we can select from in the estimation. Here

e "autoLagsldx" specifies the considered lags for the own auto-covariances of y; which appear in

the moment conditions. In this case, we include {ymyi’t,l}?:yl and {yi’ty@t,g;}?:yl in m3 (yy)

20

e "selectY" selects the elements in the control vector which we consider for the SMM estimation. In
our case, we use position 1,2, and 5 in y, implying that we use moments for [logCy logl; log Ny

in the estimation (see (5))

Below in the "inclMoms _Ey", etc. we then specify which of the moments among the ones consid-
ered for the estimation that we really want to include. Here, a 1 indicates that a moment is include,
and zero otherwise. Finally, "qLag" is the number of lags when computing the Newey-West estimate
of the weighting matrix, and "epsValue" is the step size used when computing standard errors for the
SMM estimator.

The next part of the control settting relates to the optimizer

% The optim zer
optim = 2; % 1 for the CMAES
% 2 for a gradient based optim zer
%3 for the sinple algorithmby Nel der-Mad.

nunOpt i nSt epl = 2; % Nunber of optimzations in step 1

numOpt i nSt ep2 = 2; % Nunber of optimzations in step 1

Max| t er = 5000; % Max nunber of iterations for the optim zer

MaxEval s = 5000 % Max nunber of function evaluations for the optim zer

Tol Fun = 1D 6; % Function tol erance at the objective function

Tol X = 1D 6; % Function tol erance for the coefficients

PopSi ze = 50; % Nunmber of draws per generation i.e. |anbda in the CMAES

e "optim" = 1 for the CMAES routine considered in Andreasen (2010)

e "optim" = 2 for the Levenberg-Marquard algorithm in Matlab as the objective function in the

SMM estimation can be expressed as

Q = g (9 yir) WTg (60,y1.7)

= g (9 Y1) STSTg (60.y1.7)
(9 INAT T)) (STgS (97Y1:T))
g(e Y T) 0, y1.7)

where W = S/.S7 is the Cholesky decomposition. Hence, the structure of the SMM estimator
is equivalent to a non-linear least squares regression problem for which the Levenberg-Marquard

algorithm applies.
e "optim" = 3 for the Nelder-Mead simplex algorithm

¢ "numOptimStepl" and "numOptimStep2" is the number of times we restart the optimizer in

step 1 and step 2, respectively.

e The following five options specified in section 1 of "RunSMM.m" relate to the optimizers and

should be obvious.

21

% Configurations for the Extended Perturnation

set upEPer . Nmax = 200; %vbax steps in the Extended Path sol ution

set upEPer . Nmi n = 50; %M n steps in the Extended Path sol ution

set upEPer . maxDi st SS = 0.001; %vax distance to SS when determining N

set upEPer . or der AppSt ar t = 4, % der of approximation for the starting val ues

% n the fixed point solver (nmax 4th order)
set upEPer . fi xedPoi nt Sol ver= 1; %l for the Newton-Raphson sol ver,
%2 Newt on- Raphson solver with optinmal delta,
%3 for an LM algorithmthat mninmzes the residuals
% for an LM algorithmthat mnimzes the weighted residuals

set upEPer . Jacobi anOption = 3; %l for using numerical J and nunerically

% solving the systemJ*x = -f

9% for using analytical J to solve the systemJ*x = -f

%3 for using analytical J conputed recursively to solve

% the systemJ*x = -f
set upEPer . | anbdaO = le-6; % ui ni ng paraneter for fixedPointSolver = 3
set upEPer . | anhdaBackup = le-2; %lui ni ng paraneter for the LM al gorithm when used as backup
set upEPer.tol f = le-6; %ol erance | evel for optimization problem
set upEPer . MaxI t er = 1D4; %veaxi mum nunber of iterations allowed in the Extended Path
al gorithm
set upEPer . r esi dual Max = 0.0001; %vbex all owed val ue of a residual - for the hybrid sinmulator
set upEPer . MexOn =1, % For using MEX-files, else O

For extended perturbation, there is an additional set of options which the user needs to set. Let us
briefly go through these options and explain how they are related to Andreasen & Kronborg (2020).

These options are stored in the struct setupEPer as follows:

"Nmax" denotes the maximal horizon for the Extended Path and is denoted by Npax in An-
dreasen & Kronborg (2020).

e "Nmin" denotes the shortest allowed horizon for the Extended Path and is denoted by Ny, in
Andreasen & Kronborg (2020).

e "maxDistSS" is the maximal allowed distance to the steady state, which is allowed when setting
the horizon N in the Extended Path. Hence, "maxDistSS" corresponds to "Dg" in Andreasen
& Kronborg (2020).

e "orderAppStart" is the approximation order used in standard perturbation to obtain good start-
ing values for the Extended Path.

e "fixedPointSolver" determines which fixed-point solver is used in the Extended Path. The two
first options are standard fixed-point algorithms, whereas the latter two simply minimizes the
euler-equation errors by a type of Levenberg-Marquard (LM) algorithm. When "fixedPoint-
Solver=4", then we put decaying weights on euler equation errors from period "t" and until
period "t+N". Note also if these algorithms are unable to solve for the certainty equivalence

solution, then we restart the Extended Path using a "backup" LM algorithm.

e "JacobianOption" specifies how we solve a linear equation system within each iteration of the
Newton-Rapson solver, i.e. when "fixedPointSolver = 1" or "fixedPointSolver = 2". Here,

"JacobianOption = 2" uses analytical derivatives of the model to formulate this linear problem,

22

which is solved by standard methods (although exploiting the sparcity of the system). When
"JacobianOption = 3", then we recursively solve this linear system as outlined in Boucekkine

(1995). Normally, the fastest option is to let "JacobianOption = 3", whereas "JacobianOption

= 1" is only for debugging.

e "lambda0" and "lambdaBackup" are tuning coefficients for the LM algorithm.

e "tolf" is the tolerance used when solving for the Extended Path.

e "MaxIter" is the max number of iterations allowed for when solving for the Extended Path.

e "ResidualMax" is "EE" in Andreasen & Kronborg (2020).

e "MexOn" allows you to use an Mex implementation of "CondMoments 4th level CE.m". BUT,

here you probably need to recompile the Mex-file unless you can use my compiled version (applies

to 64bit computer windows machine)

In the second section of "RunSMM.m" the user first needs to list in "allModelParams" all the

names of the structural parameters appearing in the DSGE model. We use this list of coefficients to

check that a given structural coefficient is either calibrated or estimated.

al | Model Par ans =
{' DELTA' ,' BETTA'",'B',"

% The vari abl es which
assi gned val ues

%0 Section 2: Mddel paraneters

ETAl ', " ETAc' ,' THETA',' ALFA' ,' RHOA' ,' RHOD , ' STDA' , ' STDD };

we do not select for estinmtion are calibrated to the

cal i brateParans. ETAI = 1.00;
cal i br at ePar ans. THETA = 3. 48;
cal i brat eParans. RHOD = 0. 95;
cal i brateParans. STDD = 0.01;
cal i brateParans. DELTA = 0. 025;
% Starting val ues

par ans0. BETTA = 0.984;
par ans0. B = 0.5
par ans0. ETAc = 5;

par ans0. ALFA = 0. 667,
par ans0. RHOA = 0.979;
par ans0. STDA = 0.0072;

In the structure "calibrateParams", we denote the parameters which are calibrated and their calibrated

values. In the structure "params0", we denote the parameters which are estimated and their starting

value for the SMM estimation.

Section 3 of "RunSMM.m" reads:

23

%hb Section 3: We |load the data or sinulate the nodel using parans0

I oad([pwd, '\ Model Speci fication\setuphodel']," setuphdel ")

data =

dat aFor SMM par ans0, cal i br at ePar ans, or der App, T, sel ect Y, set upMdel , set upEPer, appMet hod) ;

% Conput e enpirical nonents
incl Mons = col | ect Monent s(i ncl Mons_Ey, i ncl Mons_Eyy, i ncl Mons_aut oEyy, aut oLags| dx) ;
dat al nf o = nonment sGWDat a(dat a, aut oLags| dx, i ncl Mons) ;

% Transform ng parans0 for estinmation

sel ect Paranms = fiel dnanmes(parans0);

parans0Val ues = struc2val ues(paransO, sel ect Parans) ;

% Test of enought nonents for estinmation

numvbm = sumn(i ncl Mons) ;
nunPar ans = size(sel ect Parans, 1) ;
disp([' Paraneters to estimate = ', nunRstr(nunParans) ,'. Mnents for estimation =",

nun@str (sun(incl Mons))]);
i f numvbm < nunPar ams

error (' W nust have at |east as many nonents as paraneters for GW)
end

% For CMAES, the standard deviations for the search
I nsi gma. DELTA
I nsi gma. BETTA
I nsi gna. B

I nsi gma. ETAl

I nsi gma. ETAc

I nsi gma. ALFA
I nsi gma. RHOA
I nsi gma. RHOD
I nsi gma. STDA
I nsi gma. STDD

% For CMAES, the |ower and upper bounds for the paraneters
| ower Bounds. DELTA = 0;

| ower Bounds. BETTA
| ower Bounds. B

| ower Bounds. ETAI

| ower Bounds. ETAc

| ower Bounds. ALFA
| ower Bounds. RHOA
| ower Bounds. RHOD
| ower Bounds. STDA
| ower Bounds. STDD

ereLeLeereee

upper Bounds. DELTA
upper Bounds. BETTA
upper Bounds. B
upper Bounds. ETA
upper Bounds. ETAc
upper Bounds. ALFA
upper Bounds. RHOA
upper Bounds. RHOD
upper Bounds. STDA
upper Bounds. STDD

(TR TR TR TR TR TR TR TR
e e

RPRRRRRRR R R

% Test of all variables nanes are either estinated or calibrated
paransTest (al | Mbdel Par ans, par ans0, cal i br at ePar ans)

That is, we load our empirical data, which in our case is a simulated sample path. Then we compute
the chosen moments on the empirical data and test if we have sufficient moments for the estimation.
We finally set the search distribution in the CMAES routine ("Insigma") and the lower and upper

bounds for all parameters in the model.

In section 4 of "Run_SMM.m", we simply save all relevant information for the SMM estimation

in the structure "setupStepl".

24

%6 Section 4: Constructing the struct setupStepl
set upSt epl. set uphMbdel = set upMbdel ;
set upSt epl. sel ect Par ans = sel ect Par ans;
set upSt epl. cal i br at ePar ans = cal i br at ePar ans;
setupSt epl. data = dat a;

set upSt epl. dat al nfo = dat al nfo;

set upSt epl. aut oLagsl dx = aut oLagsl dx;
set upSt epl.incl Mons = i ncl Morms;
setupStepl. optim = optim
setupStepl. Maxlter = Maxlter;
setupSt epl. MaxEval s = MaxEval s;

set upSt epl. Tol Fun = Tol Fun;

set upSt epl. Tol X = Tol X

set upSt epl. PopSi ze = PopSi ze;
setupStepl. sel ectY = selectY,;

set upSt epl. or der App = order App;
setupStepl. I nsi gma = I nsi gnm;

set upSt epl. | ower Bounds = | ower Bounds;
set upSt epl. upper Bounds = upper Bounds;
set upSt epl. opti mAéi ght Mat = 0;

setupSt epl. gLag = glLag;
setupStepl.tau = tau;

set upSt epl. appMet hod = appMet hod;
set upSt epl. set upEPer = set upEPer;

The first step of the SMM estimation is carried out in section 5 of "RunSMM.m":

%% Section 5: Step 1 of the SMM estimation
Wt epl get Opt i mal Wi ghti ng(qlLag, dat aMonent s, set upSt epl) ;
set upSt epl. Sw chol (di ag(di ag(Wstepl)));
for i=1:nunmDptinttepl
[paransSt epl, setupStepl] =
parans0 = paranmsSt epl,;

runOptim zati on(setupSt epl, paransO);

end
resul tsStepl

= get SESMM st ruct 2array(paransStepl) ', epsVal ue, set upStepl);

We start by computing the weighting matrix using the value of the moments in the empirical sample,
that is we compute Wp = (Smean) ! using the notation introduced in Section 3. Then we use the
diagonal of W and save its square-root in "setupStepl.Sw". We then run the first step of the SMM
estimation and compute standard errors. All results from the first estimation step are available in the

structure "resultsStepl" which takes the following form:

resul tsStepl =
parans: [1x1 struct]
paransSE: [1x1 struct]
Jacobi an: [15x8 doubl €]
Q 0.4853
nodel : [1x1 struct]
nodel Morents: [15x1 doubl €]
dat aMonents: [15x1 doubl e]
nameMents: {1x15 cel |}
nmodel Monent sScal ed: [15x1 doubl €]
nanmeMonent sScal ed: {1x15 cel |}
dat aMonent sScal ed: [15x1 doubl €]

That is, we report the estimated parameters ("params"), the standard errors ("paramsSE"), the

jacobian to test for local identification ("Jacobian"), the value of the objective function at optimum

25

("Q"), the perturbation approximation in the structure "model", the moments in the RBC model
("modelMoments"), the moments in the empirical sample ("dataMoments"), and the type of the i’th

moments considered in "nameMoments". Finally, we also report the scaled version of these moments.

The second step of the SMM estimation is carried out in section 6 of "RunSMM.m":

%% Section 6: Step 2 of the SMM esti mation

[~, rodel Monent s] obj ect Func(struct2array(paransStepl)', setupStepl);
Wpt get Opt i mal Wi ghti ng(gLag, nodel Monent s, set upSt epl);
set upSt ep2 set upSt epl;

set upSt ep2. Sw chol (Wopt);
set upSt ep2. opti mAéi ght Mat 1;
di sp([' Rank of Wopt ="', nunmRstr(rank(Wpt))])
par ans0St ep2 = paransSt epl;
for i=1:numOpti nBt ep2
[paransSt ep2, set upStep2] = runOptim zati on(setupSt ep2, par ans0St ep2) ;

parans0St ep2 = paransStep2;
end

% The standard errors
resul tsStep2 = get SESMM st ruct 2array(paransStep2)', epsVal ue, set upSt ep2) ;

We start by getting the model moments from the first step and use these moments to compute the
optimal weighting matrix ("Wopt"). Then we run the second estimation step and obtain standard
errors. All results from the second estimation step are available in the structure "resultsStep2" which

has the following form:

resul tsStep2 =

Jtest: 5.4194
JtestDf: 7
ProbJtest: 0.6089
parans: [1x1 struct]
paranmsSE: [1x1 struct]
Jacobi an: [15x8 doubl e]
0. 0090
nmodel : [1x1 struct]
nodel Morents: [15x1 doubl €]
dat aMonent s: [15x1 doubl e]
nameMonents: {1x15 cel |}
nodel Morrent sScal ed: [15x1 doubl e]
nameMonent sScal ed: {1x15 cell}
dat aMonent sScal ed: [15x1 doubl €]

Compared to resultsStepl, the only new items are the reported test statistic for the J-test ("Jtest"),
the number of degrees of freedom for the J-test ("JtestDf"), and the related P-value ("ProbJtest").

4.7 Evaluating Accuracy

The script "Run_accuracyEuler.m" allows you to evaluate the accuracy of the approximation by
computing the Euler equation errors along a simulated sample path or an a grid. When computing
the Euler equation errors, Gauss-Hermite polynomials are used to carry out the numerical integration

impled by the conditional expectation operator.

26

References

Andreasen, M. M. (2010), ‘How to maximize the likelihood function for a DSGE model’, Computational
Economics 35(2), 127-154.

Andreasen, M. M. (2012), ‘On the Effects of Rare Disasters and Uncertainty Shocks for Risk Premia
in Non-Linear DSGE Models’, Review of Economic Dynamics 15(3), 295-316.

Andreasen, M. M. & Kronborg, A. (2020), ‘The Extended Perturbation Method: With Applications
to the New Keynesian Model and the Zero Lower Bound’, Aarhus University: Working Paper .

Boucekkine, R. (1995), ‘An alternative methodology for solving nonlinear forward-looking models’,
Journal of Economic Dynamics & Control 19, 711-734.

Duffie, D. & Singleton, K. J. (1993), ‘Simulated Moments Estimation of Markov Models of Asset
Prices’, Econometrica 61(4), 929-952.

King, R. G. & Rebelo, S. T. (1999), ‘Resuscitating Real Business Cycles’, Handbook of Macroeconomics
1, 927-1007.

Levintal, O. (2017), ‘Fifth-Order Perturbation Solution to DSGE Models’, Journal of Economics
Dynamic and Control 80, 1-16.

Ruge-Murcia, F. (2012), ‘Estimating Nonlinear DSGE Models by the Simulated Method of Moments:
With an Application to Business Cycles’, Journal of Economics Dynamic and Control 36(6), 914—
938.

Schmitt-Grohé, S. & Uribe, M. (2004), ‘Solving Dynamic General Equilibrium Models Using a Second-
Order Approximation to the Policy Function’, Journal of FEconomic Dynamics and Control
28(4), 755-775.

27

