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In this appendix, we present additional examples and results.

E Cointegration and Additional Examples

In this section, we present additional examples where knowledge on the rank of a matrix

is of interest. We single out the treatment of inference on cointegration rank because (i) it

is prominent in applied macroeconomics and (ii) Assumption 3.1 may take a generalized

form in this case where the convergence rates are heterogenous across entries of Π̂n (but

still falls within the scope of the Delta method).

E.1 Inference on Cointegration Rank

Let {Yt} be a time series in Rk such that all its entries are unit root processes. For ease

of exposition and to hight what is essential to our theory, we limit ourselves to processes

without deterministic terms throughout. By the Granger representation theorem, the

number h0 of independent cointegrating vectors is precisely equal to k − rank(Ω0) with

Ω0 the long run variance of ∆Yt.
1 Within this (nonparametric) system framework, one

may be interested in testing

H0 : h0 ≥ h v.s. H1 : h0 < h (E.1)

1By definition, Yt is said to be cointegrated if there is nonzero vector λ ∈ Rk such that λᵀYt is stationary,
in which case λ is called a cointegrating vector.
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for a given integer h = 1, . . . , k−1, which is equivalent to (1) with Π0 = Ω0 and r = k−h.

The special case with h = 1 is concerned with testing the null of cointegration. Problems

of similar nature have been studied by Stock and Watson (1988), Harris (1997), Snell

(1999) and Nyblom and Harvey (2000), but they test the null h0 = h instead. Note that

the nonparametric tests of Bierens (1997) and Shintani (2001) are not directly applicable

to (E.1) because they test the null h0 = h against h0 > h (larger cointegration rank).

The testing problem (E.1) is not only of interest in its own right (Hayashi, 2000),

but also important as a complement to tests against larger cointegration rank espe-

cially in view of the potentially poor power of the latter tests, as forcefully argued by

Kwiatkowski et al. (1992) and Maddala and Kim (1998). Nevertheless, through VAR or

error-correction representations, our framework can accommodate the hypotheses

H0 : h0 ≤ h v.s. H1 : h0 > h . (E.2)

To see this, suppose that the error-correction representation of {Yt} is given by

∆Yt = Φ0Yt−1 +

p−1∑
j=1

Φj∆Yt−j + εt , (E.3)

for some white noise {εt}. Then h0 = rank(Φ0) by the Granger representation theorem,

and hence (E.2) is equivalent to (1) with Π0 = Φ0 and r = h. The setup (E.2) is

studied in the seminal work of Johansen (1988, 1991), for which Johansen proposes the

celebrated maximum eigenvalue test and the trace test, and derives their asymptotic

distributions under h0 = h. The general limits under h0 ≤ h are presented in Johansen

(1995) but no critical values are provided.

Below we study the problems (E.1) and (E.2) separately as their treatments require

different arguments, and proceed with the former.

Nonparametric Cointegration Test

We start by estimating the long run variance Π0 ≡ Ω0 based on the periodogram.

Specifically, for a kernel/density function K : R→ R+, let

Π̂n =
2π

n

bn/2c∑
j=−b(n−1)/2c

Kbn(ωj)I∆Y,n(ωj) , (E.4)

where bac is the integer part of a ∈ R, Kbn(·) = K(·/bn)/bn, ωj = 2πj/n with j =

−b(n − 1)/2c, . . . , bn/2c are the natural frequencies, bn → 0 is a suitable bandwidth,
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and ω 7→ I∆Y,n(ω) ∈Mk×k is the periodogram of {∆Yt}nt=1, i.e.,

I∆Y,n(ω) =
1

2πn
(

n∑
t=1

∆Yte
−itω)(

n∑
t=1

∆Yte
−itω)H

for MH denoting the Hermitian transpose of a generic complex matrix M . Then Π̂n

is asymptotically normal at the rate
√
nbn under regularity conditions – see, for exam-

ple, Hannan (1970, Theorem V.5.11) and Brillinger (2001, Theorem 7.4.4) for classical

treatments, and Phillips et al. (2006) and Politis (2011) for recent developments.

We construct the estimator M̂∗n employing the multivariate linear process bootstrap

recently developed by Jentsch and Politis (2015). Let Γ̂n,j =
∑n−j

t=1 ∆Yt∆Y
ᵀ

t+j/n for

j ≥ 0 and Γ̂n,j = Γ̂ᵀn,−j if j < 0. Define V̂n ∈ Mnk×nk to be a block matrix whose

(i, j)th block is given by %((i − j)/ln)Γ̂n,i−j for i, j = 1, . . . , n, where % : R → R is

a flat-top kernel and ln is a banding parameter (Politis, 2001, 2011). The matrix V̂n

serves as an estimator of the covariance matrix of ∆n = [∆Y ᵀ

1 , . . . ,∆Y
ᵀ
n]ᵀ ∈ Rnk. One

may modify V̂n if necessary to ensure that it is positive definite (Jentsch and Politis,

2015, p.1124). Let Zn = L−1
n ∆n ∈ Rnk where Ln is from the Cholesky decomposition

V̂n = LnL
ᵀ
n, Zn,i the ith entry of Zn, and Z̄n,i = (Zn,i− Z̄n)/σ̂n for Z̄n =

∑nk
i=1 Zn,i/(nk)

and σ̂2
n =

∑nk
i=1(Zn,i − Z̄n)2/(nk). Now, draw an i.i.d. sample {Z∗n,i}nki=1 from {Z̄n,i}nki=1

with replacement. Define Z∗n ∈ Rnk whose ith entry is Z∗n,i, and let ∆∗n = LnZ
∗
n ∈ Rnk.

Finally, our bootstrap sample {∆Y ∗t }nt=1 is such that ∆∗n = (∆Y ∗ᵀ1 , . . . ,∆Y ∗ᵀn )ᵀ, and

then the bootstrap estimator Π̂∗n is defined analogously to Π̂n but with {∆Yt}nt=1 replaced

by {∆Y ∗t }nt=1. In order to construct a bootstrap estimator M̂∗n that satisfies Assumption

3.2, we need to properly center Π̂∗n, as is well understood for bootstrap in nonparametric

settings (Hall, 1992). To this end, define

Π̃n =

n−1∑
j=−(n−1)

%(
j

ln
)Γ̂n,j . (E.5)

Under regularity conditions, the bootstrap consistency of M̂∗n ≡
√
nbn{Π̂∗n − Π̃n} is

formally established by Theorem 4.2 in Jentsch and Politis (2015). We refer the reader

to Jentsch and Kreiss (2010), Politis and Romano (1993), Politis and Romano (1994),

and Berkowitz and Diebold (1998) for alternative resampling schemes.

Cointegration Test in Error-Correction Models

Now consider the error-correction model, and suppose that {εt} is a white noise having

nonsingular covariance matrix Σ0. Since h0 = rank(Φ0) under (E.3), the problem (E.2)

is equivalent to (1) by identifying Π0 with Φ0 and r with h ∈ {0, 1, . . . , k−1}. The special

case h = 0 reduces to a test of no cointegration against existence of cointegration. For
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ease and transparency of our exposition, suppose p = 1 and hence there are no lagged

variables ∆Yt−j in (E.3); the general case can be handled in a straightforward manner

by combining our arguments below with Lemma A.6 in Liao and Phillips (2015).

We proceed with some clarifications on notation. Let Π0 = P0Σ0Q
ᵀ

0 be a singular

value decomposition of Π0; write P0 = [P0,1, P0,2] and Q0 = [Q0,1, Q0,2] where P0,1 ∈
Sk×r0 and Q0,1 ∈ Sk×r0 with r0 ≡ rank(Π0). On the other hand, it is more common to

have Π0 = α0β
ᵀ

0 where α0 ∈Mk×r0 (whose columns are called adjustment coefficients)

and β0 ∈ Mk×r0 (whose columns are cointegrating vectors) both have full rank r0

(Johansen, 1995). As pointed out by Johansen (1988, 1991), α0 and β0 are not identified,

but their column spaces are. To flesh out the connections between these two sets of

notation, let Σ0,1 ∈ Mr0×r0 be the left top block of Σ0. By direct calculations, we

obtain Π0 = P0,1Σ0,1Q
ᵀ

0,1. Consequently, we may take α0 = P0,1Σ0,1 and β0 = Q0,1. In

turn, the corresponding orthogonal complement versions α0,⊥ ∈Mk×(k−r0) and β0,⊥ ∈
Mk×(k−r0) (both of full rank) can be taken to be α0,⊥ = P0,2 and β0,⊥ = Q0,2, satisfying

αᵀ0,⊥α0 = 0(k−r0)×r0 and βᵀ0,⊥β0 = 0(k−r0)×r0 as required. Finally, define

B0 ≡

[
βᵀ0
αᵀ0,⊥

]
=

[
Qᵀ0,1
P ᵀ0,2

]
.

In applying our inferential framework, we need to construct a matrix estimator Π̂n

that converges weakly and a consistent bootstrap analog. In what follows, let {Yt}nt=0

be a time series sample in Rk that is generated according to (E.3) (with p = 1).

Asymptotic Distributions: For this, we employ the OLS estimator:

Π̂n = (

n∑
t=1

∆YtY
ᵀ

t−1)(
n∑
t=1

Yt−1Y
ᵀ

t−1)−1 . (E.6)

Under standard regularity conditions, Lemma A.2 in Liao and Phillips (2015), together

with the continuous mapping theorem, implies that

{Π̂n −Π0}B−1
0 DnB0

L−→M ≡M1 +M2 , (E.7)

where Dn ≡ diag(
√
n1r0 , n1k−r0), vec(Mᵀ

1) ∼ N(0,Σ0 ⊗ (Q0,1Σ−1
1 Qᵀ0,1)) with Σ1 ≡

Var(Qᵀ0,1Yt), and M2 ∈Mk×k is such that

M2 ∼ Σ
1/2
0

∫ 1

0
dBk(t)Bk(t)

ᵀΣ
1/2
0 P0,2(P ᵀ0,2Σ

1/2
0

∫ 1

0
Bk(t)Bk(t)

ᵀdtΣ
1/2
0 P0,2)−1P ᵀ0,2 (E.8)

with Bk(·) is a k-dimensional standard Brownian motion defined on the unit interval.

Inspecting result (E.7), it seems that Assumption 3.1 is being violated because the

“convergence rate” B−1
0 DnB0 is not a scalar. However, this creates no conceptual dif-
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ficulties if we interpret τn there as linear maps τn : Mm×k → Mm×k – such an insight

has been noted in van der Vaart and Wellner (1996, p.413). In the current setup, we

have τn : Mm×k →Mm×k defined by: for any M ∈Mk×k,

τnM ≡ τn(M) = MB−1
0 DnB0 . (E.9)

Therefore, in order to invoke the Delta method, the only question that remains is: is our

map φr as defined in (13) suitably differentiable with respect to these linear maps? The

answer is affirmative, as shown by Proposition E.1 stated at the end of this subsection.

In particular, if rank(Π0) ≤ r ≡ h, then we have

lim
n→∞

φr(Π0 + τ−1
n Mn)− φr(Π0)

n−2
= φ′′r,Π0

(M) ≡
k−h0∑

j=h−h0+1

σ2
j (P

ᵀ

0,2MQ0,2) , (E.10)

whenever Mn →M as n→∞. By a modification of the Delta method – see Proposition

E.2, we thus obtain from (E.10) and (E.7) that, under H0 in (E.2),

n2φr(Π̂n)
L−→ φ′′r,Π0

(M) ≡
k−h0∑

j=h−h0+1

σ2
j (P

ᵀ

0,2MQ0,2) . (E.11)

The limit in (E.11) shows the importance of acknowledging the generic possibility that

the true cointegration rank h0 may be strictly less than the hypothesized value h.

In positioning our work in the literature, we note that existing tests are mainly based

on the following standardized version of Π̂n (Hubrich et al., 2001; Al-Sadoon, 2017):

Π̂s,n = (

n∑
t=1

∆Yt∆Y
ᵀ

t )−1/2Π̂n(

n∑
t=1

Yt−1Y
ᵀ

t−1)1/2 . (E.12)

For example, the classical trace statistic of Johansen (1991, 1988) is given by

LRn(Π̂s,n) = −n
k∑

j=r+1

log(1− σ2
j (Π̂s,n)) . (E.13)

whose asymptotic distribution under H′0 : h0 = h is: for d0 ≡ k − r0,

tr
( ∫ 1

0
dBd0(t)Bd0(t)ᵀ(

∫ 1

0
Bd0(t)Bd0(t)ᵀdt)−1

∫ 1

0
Bd0(t)dBd0(t)ᵀ

)
. (E.14)

The asymptotic distribution under H0 : h0 ≤ h, however, is different from (E.14) in

general – see Johansen (1995, p.157-8,168). This may adversely affect the trace test

through channels as discussed in the main text, and hence in turn provides an alternative

explanation on why its finite sample performance can be poor, as documented in the

literature (Maddala and Kim, 1998; Johansen, 2002).
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Bootstrap Inference: The limiting distribution in (E.11) is highly nonstandard, and

in particular depends on the true rank h0. In order to apply our bootstrap procedure,

we need to estimate both the “derivative” φ′′r,Π0
and the limit M. Estimation of φ′′r,Π0

is no more special than what we have discussed in Section 3.3. For example, one may

estimate φ′′r,Π0
by (28) with r̂n given by (9). Since

√
n{Π̂n−Π0} converges in distribution

by (E.11), we thus still have r̂n
p−→ r0 = h0 provided κn → 0 and

√
nκn →∞ by Lemma

D.7. Condition (26) in turn follows from Lemma D.6. In fact, one can show along the

lines in the proof of Lemma D.7 that it suffices to have κn → 0 and nκn →∞.

Given an estimator φ̂′′r,n of φ′′r,Π0
, we may thus approximate the law of φ′′r,Π0

(M) in

(E.11) by the conditional law (given the data) of φ̂′′r,n(M̂∗n) as long as M̂∗n is consistent

for M. To this end, we employ a residual-based bootstrap following van Giersbergen

(1996), Swensen (2006) and Cavaliere et al. (2012), who study bootstrap cointegration

tests for H′0 : h0 = h based on error-correction models. Although these rank tests are

potentially subject to the deficiencies illustrated in Sections 2 and C, their work show

that the residual bootstrap procedure produces bootstrap samples that mimic the data

well, a property we exploit directly. Moreover, in order to properly account for the

possibility h0 ≡ rank(Π0) < h, we need a (preliminary) estimator r̂n for h0 that is

consistent under both H0 and H1. For example, in view of Lemma D.7, we may take

r̂n = max{j = 1, . . . , k : σj(Π̂n) ≥ κn} , (E.15)

if the set is nonempty and r̂n = 0 otherwise, where κn → 0 and nκn →∞. The residual

bootstrap now goes as follows.

Step 1: Given an estimator r̂n that is consistent for h0 under both H0 and

H1, calculate the reduced rank estimator Π̃n following the maximum likelihood

approach of Johansen (1988, 1991), and obtain the residuals {ε̂t} as well as

their centered versions {ε̄t}, i.e., ε̄t ≡ ε̂t − n−1
∑n

t=1 ε̂t.

Step 2: Check if |Ik−λ(Π̃n+Ik)| = 0 has roots on or outside the unit circle, and

if P̃ ᵀ2,nQ̃2,n has full rank, where the columns in P̃2,n and Q̃2,n are left and right

singular vectors of Π̃n associated with the smallest k − r̂n singular values. If

so, proceed to the next step – see Remark 1 in Swensen (2006) for discussions.

Step 3: Construct a bootstrap sample {Y ∗t }nt=1 recursively from

∆Y ∗t = Π̃nY
∗
t−1 + ε∗t ,

with the initial value Y0 and ε∗t being generated from {ε̄t}nt=1 by the nonpara-
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metric bootstrap. Calculate the bootstrap least square estimator

Π̂∗n =

n∑
t=1

∆Y ∗t Y
∗ᵀ
t−1(

n∑
t=1

Y ∗t−1Y
∗ᵀ
t−1)−1 . (E.16)

Let B̂n be the analog of B0 based on Π̃n, and D̂n the analog of Dn based on r̂n. Following

the proof of Lemma A.2 of Liao and Phillips (2015), we have: almost surely,

M̂∗n ≡ {Π̂∗n − Π̃n}B̂−1
n D̂nB̂n

L∗→M . (E.17)

Given an estimator φ̂′′r,n satisfying (26) and the bootstrap estimator M̂∗n as in (E.17),

we may finally estimate the limit in (E.11) by the conditional law (given the data) of

φ̂′′r,n(M̂∗n) ≡ φ̂′′r,n({Π̂∗n − Π̃n}B̂−1
n D̂nB̂n) . (E.18)

Let ĉn,1−α be the conditional (1 − α)-quantile of φ̂′′r,n(M̂∗n) given the data. Then our

test for (E.2) that rejects H0 if n2φr(Π̂n) > ĉn,1−α has asymptotic size control and is

consistent, along the lines in Theorem 3.2.

To conclude, we present results that establish weak convergence of our statistic.

Proposition E.1. Let φr : Mk×k → R be defined as in (13) with m = k and Π0 ∈Mk×k

satisfy φr(Π0) = 0. Then, for r0 ≡ rank(Π0) and Tn ≡ diag(tn1r0 , t
2
n1k−r0) with tn > 0,

lim
n→∞

φr(Π0 +MnTnB0)

t4n
=

k−r0∑
j=r−r0+1

σ2
j (P

ᵀ

0,2MQ0,2) ,

whenever tn ↓ 0 and {Mn} ⊂Mk×k satisfies MnB0 →M ∈Mm×k as n→∞.

Proof: Let {Mn} ⊂Mk×k be such that MnB0 → M and tn ↓ 0 as n → ∞. Thus we

may write Mn = [Mn,1,Mn,2] and M = M1 +M2 such that Mn,1 ∈Mk×r0 and

Mn,1Q
ᵀ

0,1 →M1 , Mn,2P
ᵀ

0,2 →M2 . (E.19)

Clearly, M1U = 0 for all U ∈ Ψ(Π0). For ε > 0, let Ψ(Π0)ε and Ψ(Π0)ε1 be given in the

proof of Proposition 3.1. In what follows we consider the nontrivial case when Π0 6= 0

and M2 6= 0. Let d = k− r. Then Ψ(Π0) $ Sk×d and hence Ψ(Π0)ε1 6= ∅ for ε sufficiently

small. Let σ+
min(Π0) be the smallest positive singular value of Π0, which exists since

Π0 6= 0. Let ∆ ≡ 5
√

2[σ+
min(Π0)]−1(maxU∈Sk×d ‖M2U‖+ maxU∈Sk×d ‖M1U‖) > 0, which
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holds since M2 6= 0. Then it follows that, for all n sufficiently large,

min
U∈Ψ(Π0)tn∆

1

‖(Π0 +MnTnB0)U‖ ≥ min
U∈Ψ(Π0)tn∆

1

‖Π0U‖ − max
U∈Sk×d

‖MnTnB0U‖

≥
√

2

2
tnσ

+
min(Π0)∆− tn max

U∈Sk×d
‖Mn,1Q

ᵀ

0,1U‖ − t
2
n max
U∈Sk×d

‖Mn,2P
ᵀ

0,2U‖

> t2n max
U∈Sk×d

‖Mn,2P
ᵀ

0,2U‖ ≥ min
U∈Ψ(Π0)

‖(Π0 +MnTnB0)U‖

≥
√
φr(Π0 +MnTnB0) , (E.20)

where the first inequality follows by the Lipschitz continuity of the min operator, the

triangle inequality and the fact that Ψ(Π0)tn∆
1 ⊂ Sk×d, the second inequality follows by

Lemma D.1 and the triangle inequality, the third inequality follows by the definition

of ∆, tn ↓ 0, Mn,1Q
ᵀ

0,1 → M1, Mn,2P
ᵀ

0,2 → M2 as n → ∞ and the simple fact that

2a − an > 0 for all n large if an → a > 0, the fourth inequality holds by the facts that

Π0U = 0 and Qᵀ0,1U = 0 for U ∈ Ψ(Π0), and the last by Lemma 3.1.

Next, let Γ∆ and the correspondence ϕ : R� Sk×d × Γ∆ be given as in the proof of

Proposition 3.1 for ∆ > 0. Then it follows that

max
U∈Ψ(Π0)tn∆

‖MnTnB0U‖ ≤ tn max
(U,V )∈ϕ(tn)

‖(Mn,1Q
ᵀ

0,1)(U + tnV )‖+ t2n max
U∈Sk×d

‖Mn,2P
ᵀ

0,2U‖

≤ t2n max
V ∈Γ∆

‖Mn,1Q
ᵀ

0,1V ‖+ t2n max
U∈Sk×d

‖Mn,2P
ᵀ

0,2U‖ , (E.21)

where the first inequality follows by the triangle inequality, Mn = [Mn,1,Mn,2] and

Ψ(Π0)tn∆ ⊂ Sk×d, and the second inequality follows from Qᵀ0,1U = 0 for U ∈ Ψ(Π0) and

ϕ(tn) ⊂ Ψ(Π0)× Γ∆. By analogous arguments as in (E.20), we have, for all n large,

min

U∈Ψ(Π0)
t
3/2
n ∆

1 ∩Ψ(Π0)tn∆

‖(Π0 +MnTnB0)U‖ ≥ min

U∈Ψ(Π0)
t
3/2
n ∆

1

‖Π0U‖ − max
U∈Ψ(Π0)tn∆

‖MnTnB0U‖

≥
√

2

2
t3/2n σ+

min(Π0)∆− t2n max
V ∈Γ∆

‖Mn,1Q
ᵀ

0,1V ‖ − t
2
n max
U∈Sk×d

‖Mn,2P
ᵀ

0,2U‖

>t2n max
U∈Sk×d

‖Mn,2P
ᵀ

0,2U‖ ≥ min
U∈Ψ(Π0)

‖(Π0 +MnTnB0)U‖

≥
√
φr(Π0 +MnTnB0) , (E.22)

where the first inequality follows by the Lipschitz continuity of the min operator, the

triangle inequality, Ψ(Π0)t
3/2
n ∆

1 ∩Ψ(Π0)tn∆ ⊂ Ψ(Π0)t
3/2
n ∆

1 and Ψ(Π0)t
3/2
n ∆

1 ∩Ψ(Π0)tn∆ ⊂
Ψ(Π0)tn∆, the second inequality follows by (E.21) and Lemma D.1, the third inequality

follows by the definition of ∆ and Γ∆, tn ↓ 0, Mn,1Q
ᵀ

0,1 → M1 and Mn,2P
ᵀ

0,2 → M2

as n → ∞, the fourth inequality holds by the facts that Π0U = 0 and Qᵀ0,1U = 0 for
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U ∈ Ψ(Π0). In turn, by analogous arguments, we have, for all n sufficiently large,

min
U∈Ψ(Π0)

t2n∆
1 ∩Ψ(Π0)t

3/2
n ∆

‖(Π0 +MnTnB0)U‖ >
√
φr(Π0 +MnTnB0) . (E.23)

Combining (E.20), (E.22), (E.23) and Lemma 3.1, we thus obtain that, for all n large,

φr(Π0 +MnTnB0) = min
U∈Ψ(Π0)t

2
n∆

‖(Π0 +MnTnB0)U‖2 . (E.24)

Now, for the right hand side of (E.24), we have

∣∣ min
U∈Ψ(Π0)t

2
n∆

‖(Π0 +MnTnB0)U‖2 − min
U∈Ψ(Π0)t

2
n∆

‖(Π0 + tnM1 + t2nM2)U‖2
∣∣

≤ (O(t2n) +O(t2n)) max
U∈Ψ(Π0)t

2
n∆

‖(tn(M1,nQ
ᵀ

0,1 −M1) + t2n(M2,nP
ᵀ

0,2 −M2))U‖ , (E.25)

where the inequality follows by the formula a2−b2 = (a+b)(a−b), the Lipschitz inequal-

ity of the min operator, the triangle inequality, and the facts that min
U∈Ψ(Π0)t

2
n∆ ‖(Π0 +

MnTnB0)U‖ = O(t2n) and min
U∈Ψ(Π0)t

2
n∆ ‖(Π0 + MTnB0)U‖ = O(t2n). For the second

term on the right hand side of (E.25), we have

max
U∈Ψ(Π0)t

2
n∆

‖(tn(M1,nQ
ᵀ

0,1 −M1) + t2n(M2,nP
ᵀ

0,2 −M2))U‖

≤ tn max
(U,V )∈ϕ(t2n)

‖(Mn,1Q
ᵀ

0,1 −M1)(U + t2nV )‖+ t2n max
U∈Ψ(Π0)t

2
n∆

‖(Mn,2P
ᵀ

0,2 −M2)U‖

≤ max
V ∈Γ∆

t3n‖(Mn,1Q
ᵀ

0,1 −M1)V ‖+ t2n max
U∈Ψ(Π0)t

2
n∆

‖(Mn,2P
ᵀ

0,2 −M2)U‖ = o(t2n) , (E.26)

where the first inequality follows by the triangle inequality and the definition of ϕ(t2n),

the second inequality follows by the fact that Qᵀ0,1U = 0 and M1U = 0 for U ∈ Ψ(Π0)

and ϕ(t2n) ⊂ Ψ(Π0)× Γ∆, and the equality follows by applying the sub-multiplicativity

of Frobenius norm and the facts that Mn,1Q
ᵀ

0,1 → M1 and Mn,2P
ᵀ

0,2 → M2 as n → ∞.

Combining results (E.24), (E.25) and (E.26), we then obtain

φr(Π0 +MnTnB0) = min
U∈Ψ(Π0)t

2
n∆

‖(Π0 + tnM1 + t2nM2)U‖2 + o(t4n) . (E.27)

Next, the first term on the right hand side of (E.27) can be written as

min
U∈Ψ(Π0)t

2
n∆

‖(Π0 + tnM1 + t2nM2)U‖2 = min
(U,V )∈ϕ(t2n)

‖(Π0 + tnM1 + t2nM2)(U + t2nV )‖2

= t4n min
(U,V )∈ϕ(t2n)

‖Π0V +MU‖2 + o(t4n) , (E.28)

where the second equality follows by the facts that Π0U = 0 and M1U = 0 for U ∈

9



Ψ(Π0), and ‖V ‖ ≤ ∆ for all V ∈ Γ∆. By analogous arguments in (A.15), we have

min
(U,V )∈ϕ(t2n)

‖Π0V +MU‖2 = min
U∈Ψ(Π0)

min
V ∈Mk×d

‖Π0V +MU‖2 + o(1) . (E.29)

Combining (E.27), (E.28) and (E.29), we may conclude that

lim
n→∞

φr(Π0 +MnTnB0)

t4n
= min

U∈Ψ(Π0)
min

V ∈Mk×d
‖Π0V +MU‖

=

k−r0∑
j=r−r0+1

σ2
j (P

ᵀ

0,2MQ2) , (E.30)

where the second equality follows by Lemma D.4, as desired. �

Proposition E.2. Suppose that there is an estimator Π̂n : {Xi}ni=1 →Mk×k for Π0 ∈
Mk×k such that {Π̂n − Π0}B−1

0 DnB0
L→ M for some τn ↑ ∞ and random matrix

M∈Mk×k, where Dn ≡ diag(τn1r0 , τ
2
n1k−r0). If rank(Π0) ≤ r, then we have

τ4
nφr(Π̂n)

L−→
k−r0∑

j=r−r0+1

σ2
j (P

ᵀ

0,2MQ0,2) .

Proof: For each n ∈ N, define gn : Mk×k → R by

gn(M) ≡ τ4
nφr(Π0 +MD−1

n B0) . (E.31)

By Proposition E.1, gn(Mn) →
∑k−r0

j=r−r0+1 σ
2
j (P

ᵀ

0,2MQ0,2) whenever MnB0 → M as

n → ∞. In turn, since τ4
nφr(Π̂n) = gn((Π̂n − Π0)B−1

0 Dn), the proposition follows by

Theorem 1.11.1(i) in van der Vaart and Wellner (1996). �

E.2 Additional Examples

Our first example in this section arises in finite mixture models of dynamic discrete

choices where a problem of both theoretical and practical importance is inference on the

number of types (McLachlan and Peel, 2004; Kasahara and Shimotsu, 2009). It is also

related to incomplete information games with multiple equiliria studied in Xiao (2018).

Example E.1 (Finite Mixtures, Discrete Choices and Multiple Equilibria). Consider an

individual with characteristic Zt ∈ Z ≡ {z1, . . . , zd} who makes a choice St ∈ S ≡ {0, 1}
depending on his/her unknown (to econometricians) type, at time t = 1, 2. Suppose

that there are γ0 (finite) types. Under regularity conditions, Kasahara and Shimotsu

10



(2009) establish a lower bound for γ0, i.e., γ0 ≥ rank(Π0) with

Π0 =


1 p̃X2(1, z1) · · · p̃X2(1, zd)

p̃X1(1, z1) p̃X1,X2(1, z1; 1, z1) · · · p̃X1,X2(1, z1; 1, zd)
...

...
. . .

...

p̃X1(1, zd) p̃X1,X2(1, zd; 1, z1) · · · p̃X1,X2(1, zd; 1, zd)

 , (E.32)

where Xt ≡ (Zt, St) ∈ X ≡ Z × S for t = 1, 2, p̃X1(1, z) ≡
∑

x2∈X p̃X1,X2(1, z;x2),

p̃X2(1, z) ≡
∑

x1∈X p̃X1,X2(x1; 1, z), and, for any x = (z, s) and x′ = (z′, s′) in X ,

p̃X1,X2(z, s; z′, s′) ≡
pX1,X2(z, s; z′, s′)

pZ2|X1
(z′; z, s)

with pX1,X2 the probability mass function (pmf) of (X1, X2) and pZ2|X1
the conditional

pmf of Z2 given X1. Under additional conditions, Kasahara and Shimotsu (2009) show

in fact γ0 = rank(Π0). We focus on discrete variables and two periods for ease of expo-

sition, but the results extend to more general cases by Remark 2(iv) and Propositions 3

and 8 in Kasahara and Shimotsu (2009). The number of types is crucial for the specifi-

cation of mixture distributions, and yet inference on γ0 without parametric assumptions

on the component distributions has been understood to be challenging (Kasahara and

Shimotsu, 2009, 2014; Bonhomme et al., 2016). By further restricting each component

distribution to have independent marginals, Kasahara and Shimotsu (2014) and Bon-

homme et al. (2016) accomplish nonparametric estimation of γ0 based on the rank test of

Kleibergen and Paap (2006). Interestingly, Xiao (2018) derives a similar nonparametric

identification result for the number of equilibria in incomplete information games and

obtains a consistent estimator based on the rank test of Robin and Smith (2000). �

Our second example pertains to the existence of general common features (Engle

and Kozicki, 1993), which conceptually includes cointegration as a special case.

Example E.2 (Common Features). Let {Yt} be a k × 1 time series. According to

Engle and Kozicki (1993), a feature that is present in each component of Yt is said to

be common to Yt if there exists a nonzero linear combination of Yt that fails to have the

feature. To fix ideas, suppose that {Yt} is generated according to

Yt = Γᵀ0Zt + Ξᵀ0Wt + ut , (E.33)

where Wt can be thought of as control variables, and Zt is an m × 1 vector reflecting

the feature under consideration with m ≥ k. For example, testing for the existence of

common serial correlation would set Zt to be lags of Yt, and testing for the existence of

common conditionally heteroskedastic factors would set Zt to be relevant factors. We

refer to Engle and Kozicki (1993), Engle and Susmel (1993) and Dovonon and Renault

(2013) for details of these and other examples. By the specification of (E.33), existence
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of common features means that Γ0 is not of full rank. Thus, testing for the existence of

common features reduces to examining the hypotheses in (1) with

Π0 = Γ0 and r = k − 1 . (E.34)

Since the number of common features is generally unknown a priori, the assumption

rank(Π0) ≥ k − 1 that underlies the hypotheses in (2) may again be unrealistic. �

Our next example involves estimation of the rank of demand systems, a notion

developed by Gorman (1981) for exactly aggregable demand systems and generalized by

Lewbel (1991) to all demand systems.

Example E.3 (Consumer Demand). An Engel curve is the function describing the

allocation of an individual’s consumption expenditures with the prices of all goods fixed,

and the rank of a demand system is the dimension of the space spanned by the Engel

curves of the system (Lewbel, 1991). Suppose that there are k goods in the system and

that the Engel curve is given by

Y = Γ0G(Z) + u , (E.35)

where Y is a k × 1 vector of budget shares on the k goods, Z is the total expenditure,

G(·) is a r0 × 1 vector of unknown function with r0 ≤ k, and u is an error term. The

rank of the demand system ie precisely r0, and in fact also equal to the rank of

Π0 = E[Q(Z)Y ᵀ] , (E.36)

where Q(·) is an m×1 vector of known functions with m ≥ k, under suitable conditions.

Estimation of the rank of the demand system is important because it provides evidence

on consistency of consumer behaviors with utility maximization, and has implications

for welfare comparisons and aggregation across goods and across consumers (Lewbel,

1991, 2006; Barnett and Serletis, 2008). �

Our fourth example shows the importance of rank estimation in identifying the

number of factors in factor models (Anderson, 2003; Lam and Yao, 2012).

Example E.4 (Factor Analysis). Let Y ∈ Rd be generated by the following model

Y = µ0 + Λ0F + u , (E.37)

where F is a r0× 1 vector of unobserved common factors with r0 ≤ d, and u is an error

term. Partition Y = [Y ᵀ

1 , Y
ᵀ

2 , Y
ᵀ

3 ]ᵀ for Y1 ∈ Rm and Y2 ∈ Rk with some r0 ≤ k ≤ m < d

and m+k ≤ d, and also Λ0 = [Λᵀ0,1,Λ
ᵀ

0,2,Λ
ᵀ

0,3]ᵀ with Λ0,1 and Λ0,2 having m and k rows.
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Then under appropriate restrictions, the rank of Var(F ) is equal to the rank of

Π0 = Cov(Y1, Y2) . (E.38)

Thus, determining the number r0 of the common factors reduces to estimation of the

rank of Π0. Such a problem also arises in the interbattery factor analysis (Gill and

Lewbel, 1992), the dynamic analysis of time series (Lam and Yao, 2012), and finance

and macroeconomics (Bai and Ng, 2002, 2007). �

Our final example is taken from Gill and Lewbel (1992), and manifests how matrix

rank determination is useful in model selection in time series models.

Example E.5 (Model Selection). Let {Yt} be a p × 1 weakly stationary time series,

which has the following state space representation:

Yt = Γ0Zt + ut , Zt = Λ0Zt−1 + εt , (E.39)

where Zt is a r0× 1 vector of state variables, and ut and εt are error terms. It turns out

that the number r0 of state variables is equal to the rank of the Hankel matrix

Π0 = E(


Yt+1

...

Yt+b

[Y ᵀ

t · · · Y ᵀ

t−b+1

]
) , (E.40)

for b sufficiently large (Aoki, 1990, p.52). Consequently, determining the number of state

variables r0 to model Yt reduces to determining the rank of Π0. When Yt is a scalar

and follows an ARMA(p1, p2) model, then Yt has a state space representation with the

number r0 of state variables equal to max(p1, p2) (Aoki, 1990). Thus, determining the

rank of the Hankel matrix is crucial for model specification in these contexts. �

For simplicity, we verify the main assumptions only for Example E.1. Let {Xit}ni=1

be a sample generated by the mixture model with Xit = (Zit, Sit) for t = 1, 2. Then we

estimate Π0 by its empirical analog:

Π̂n =


1 p̃X2,n(1, z1) · · · p̃X2,n(1, zd)

p̃X1,n(1, z1) p̃X1,X2,n(1, z1; 1, z1) · · · p̃X1,X2,n(1, z1; 1, zd)
...

...
. . .

...

p̃X1,n(1, zd) p̃X1,X2,n(1, zd; 1, z1) · · · p̃X1,X2,n(1, zd; 1, zd)

 , (E.41)

where p̃X1,n(1, z) ≡
∑

x2∈X p̃X1,X2,n(1, z;x2), p̃X2,n(1, z) ≡
∑

x1∈X p̃X1,X2,n(x1; 1, z),

and, for any x = (z, s) and x′ = (z′, s′) in X ,

p̃X1,X2,n(z, s; z′, s′) ≡
p̂X1,X2,n(z, s; z′, s′)

p̂Z2|X1,n(z′; z, s)
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with p̂X1,X2,n the empirical pmf of {(Xi1, Xi2)}ni=1 and p̂Z2|X1,n(· ; z, s) the empirical

conditional pmf of {Zi2} given X1 = (z, s). Since sums and ratios are differentiable

maps (at nonzero denominators as assumed in Kasahara and Shimotsu (2009)), a simple

application of the Delta method shows that Π̂n satisfies Assumption 3.1 with τn =
√
n

and M some centered Gaussian matrix, under standard regularity conditions.

Next, suppose that {(Xi1, Xi2)}ni=1 are i.i.d. across i for ease of exposition. Let

{(X∗i1, X∗i2)}ni=1 be an i.i.d. sample drawn with replacement from {(Xi1, Xi2)}ni=1. Then

we propose the bootstrap estimator Π̂∗n as follows:

Π̂∗n =


1 p̃∗X2,n

(1, z1) · · · p̃∗X2,n
(1, zd)

p̃∗X1,n
(1, z1) p̃∗X1,X2,n

(1, z1; 1, z1) · · · p̃∗X1,X2,n
(1, z1; 1, zd)

...
...

. . .
...

p̃∗X1,n
(1, zd) p̃∗X1,X2,n

(1, zd; 1, z1) · · · p̃∗X1,X2,n
(1, zd; 1, zd)

 , (E.42)

where p̃∗X1,n
(1, z) ≡

∑
x2∈X p̃

∗
X1,X2,n

(1, z;x2), p̃∗X2,n
(1, z) ≡

∑
x1∈X p̃

∗
X1,X2,n

(x1; 1, z),

and, for any x = (z, s) and x′ = (z′, s′) in X ,

p̃∗X1,X2,n(z, s; z′, s′) ≡
p̂∗X1,X2,n

(z, s; z′, s′)

p̂∗Z2|X1,n
(z′; z, s)

with p̂∗X1,X2,n
and p̂∗Z2|X1,n

(· ; z, s) the bootstrap analogs of p̂X1,X2,n and p̂Z2|X1,n(· ; z, s)
respectively based on {(X∗i1, X∗i2)}ni=1. Assumption 3.2 now follows from the Delta

method for bootstrap, as a result of the same differentiability mentioned previously

– see, for example, Theorem 23.5 in van der Vaart (1998).
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