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Appendix A: Classical composite likelihood estimators

Asymptotic properties of composite likelihood estimators In a standard approach one

has a known DGP which produces a parametric density F (yt, ψ) for an m×1 vector of observables

yt, given a q× 1 vector of parameters ψ = (θ, η), where θ is q1× 1 and η is q− q1× 1. When yt is

of high dimensions or contains latent variables, it may be difficult to use F (yt, ψ) for estimation.

The key idea of composite methods is to construct arbitrary sets of low dimensional densities

and to combine them for estimation purposes. This may be viewed as a divide-and-conquer method

of approximating the full likelihood.

Let f(yit ∈ Ai, φi) be sub-densities of F (yt, ψ) obtained by marginalizing (or conditioning on

portions of) F (yt, ψ), where Ai is a set and i = 1, . . . , K. For ease of reading, the integrals and the

conditioning sets are left implicit. Each sub-density defines a sub-model, has an associated vector

of parameters φi = [θ, ηi]
′, where ηi are (nuisance) sub-density specific, and has implications for

a sub-vector yit of length Ti. The elements of yit need not be mutually exclusive across i and Ti

may be different than Tj. Given a vector of fixed weights ωi, the composite likelihood is

CL(θ, η1, . . . , ηK , y1t, . . . , yKT ) = ΠK
i=1 f(yit ∈ Ai, θ, ηi)ωi ≡ ΠK

i=1L(θ, ηi|yit ∈ Ai)ωi (1)

Although CL(φ, y) ≡ CL(θ, η1, . . . , ηK , y1t, . . . , yKT ) is not a likelihood function, if y[1,t] =(y1, . . . , yt)

is an independent sample from F (yt, ψ) and ωi are fixed, θCL, the maximum composite likelihood

estimator satisfies θCL
P→ θ and

√
T (θCL − θ)

D→ N(0, G−1) (2)

for T going to infinity, K fixed (see e.g. Varin, et al., 2011) where

G = HJ−1H Godambe information (3)

J ≡ varθu(φ, y[1,t]|ω) Variability matrix (4)

H ≡ −Eθ[5θu(φ, y[1,t]|ω)] Sensitivity matrix (5)

u(φ, y[1,t]|ω) =
∑
i

ωi5θ li(θ, ηi, y[1,t]) Composite scores (6)

and 5θli(θ, ηi, y[1,t]) are the scores associated with the log of f(yit ∈ Ai, θ, ηi), and H 6= J 1.

Consistency obtains because each sub-model i provides an unbiased estimating function for

θ. Since the ML estimator of each sub-model converges to the true parameter vector as T in-

creases, θCL
P→ θ. Asymptotic normality holds because the sampling distribution of the maximum

likelihood estimator of each i can be approximated quadratically around the same mode. θCL is

1If T is fixed, but K → ∞, and the sub-models are independent, the result still holds. On the other hand,
when {yt}Tt=1 has correlated observations similar results can be proved, see Engle et al. (2008). Note also that a
standard Newey-West correction to J(θ) can be used if y[1,t] is not an independent sample.
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inefficient - G equals Fisher information matrix, I, only if the composite likelihood is the likelihood

of the true model. Careful choices ωi may improve efficiency and optimal weights can be designed

by minimizing the distance between G and I, or by insuring that the composite likelihood ratio

statistics has an asymptotic χ2 distribution, see Pauli et al. (2011).

If consistency is all that one cares about, one could set ωi = 1
K
, ∀i or use a data-based approach,

e.g. select ωi = exp(ζi)

1+
∑K−1

i=1 exp(ζi)
, where ζi are functions of some statistics of past data, ζi= ζ(Yi,[−τ :0]).

If these statistics are updated over time, ωi could also be made time varying. There is a large

forecasting literature (see e.g. Aiolfi et al., 2010) which can be used to select training sample-based

estimates of ωi and to make them time varying.

The asymptotic properties of θ depend on (η1, . . . , ηK). In standard exercises ηi are assumed

to be known, so the dependence disappears. When ηi are unknown, but estimable a two-step

approach is generally implemented: ηi are estimated from each log f(yit ∈ Ai, θ, ηi) and plugged

in the composite likelihood, which is then optimized with respect to θ, see e.g. Pakel et al. (2011).

Consistency of θCL is unaffected as long as ηi are consistently estimated, but standard errors need

to be properly adjusted. A two-step approach is convenient when K or the number of nuisance

parameters is large, since joint estimation of (θ, η1, . . . , ηK) may be demanding.

Asymptotic properties of composite estimators under misspecification When f(yit ∈
A, θ, ηi) are not marginal or conditional representations of F (yt, ψ), the previous conclusions need

to be modified. Let y[1,t] be a sample from F (yt, ψ) with respect to some σ-measure µ. Suppose

model i with density fi(y[1,t], φi), where φi ∈ Φ ⊂ Rm is a vector of parameters, is used in

the analysis and let its log-likelihood be li(φi) =
∑

t log fi(yt, φi) and let φi,ML = supφili(φi).

Since T−1li(φi)→ E(log fi(y[1,t], φi)), by the uniform law of large numbers, φi,ML is consistent for

φi,0 = argmaxφi E log fi(y[1,t], φi), where the expectations are taken with respect to F . If F is

absolutely continuous with respect to fi:

E log fi(y[1,t], φi)− E logF (y[1,t], ψ) = −
∫
F (y[1,t], ψ) log

F (y[1,t], ψ)

fi(y[1,t], φi)
dµ(y[1,t]) = −KLi(φi) (7)

Hence, φi,0 is also the minimizer of KLi, the Kullback-Liebler divergence between F and fi.

Let sit(φi) = 5φi ln fi(yt, φi) be the score of observation t and let hit(φi) = 5φis
i
t(φi). If

the maximum is in the interior of Φ,
∑

t s
i
t(φi) = 0. First order expanding we have 0 ≈

T−0.5
∑

t s
i
t(φi,0) + T 0.5V −1

1 (φi,ML − φi,0) where V1 = −E(hit(φi,0)) = 52
φKLi(φi)φi=φi,0 . By the

central limit theorem for uncorrelated observations T−0.5(φi,ML − φi,0) ∼ N(0, V1V2V
′

1), where

V2 = E(sit(φi)s
i
t(φi)

′)φi=φi,0 , with the standard correction for V2, when y[1,t] are correlated.

In typical applications sit(φi) are computed with the Kalman filter and are function of martin-

gale difference processes (the shocks of the model). Thus,
∑

t s
i
t(φi) = 0 holds. Further regularity
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conditions are needed for the arguments to hold precisely (see, e.g. Mueller, 2013).

The composite likelihood geometrically averages different fi(yt, φi), each of which is misspeci-

fied. Thus, the composite model is, in general, misspecified with density g(y1t, . . . , yKt, θ, η1, . . . ηK)

≡ g(yt, φ) =
∏

i fi(yit, φi)
ωi . Repeating the argument of the previous paragraph, and under regu-

larity conditions discussed in Xu and Reid (2011), when ωi are fixed, φCL, the composite likelihood

estimator, is consistent for φ0,CL, the minimizer of the KL divergence between the g and F . Fur-

thermore, the scaled difference between φCL and φCL,0 has an asymptotic normal distribution

with zero mean and covariance matrix VCL = VCL,1VCL,2V
′
CL,1 where VCL,2 = E(sCL,t(φ)sCL,t(φ)′),

VCL,1 = −E[5φsCL,t(φ)] and sCL,t(φ) = 5φ ln g(yt, φ), all evaluated at φ = φCL. When the

sub-models have different sample size, one needs to let minTi →∞.

When the weights are random, the asymptotic distribution of φi depends on (ω1, . . . , ωK). If

the estimators of ω1, . . . ωK converge to a fixed KL pseudo value ω10, . . . , ωK0, and no ωi0 is on

the boundary of the parameter space, asymptotic normality still holds but the standard errors

for φCL need to be adjusted for the randomness in ωi. As long as the Godambe matrix is block

diagonal in (φ, ω), one can ignore this extra uncertainty for inferential purposes.

Appendix B: Issues in quasi-posterior estimation

Drawing ωi in MCMC algorithm There are various ways to draw candidate weights ωi,

i = 1, ..., K. If K is small, an independent Dirichlet proposal works well. If K is large, one

could first logistically transform the weights and use a random walk proposal for the transformed

weights. This approach has the disadvantage that the proposal is no longer a multivariate random

walk (in particular, it is no longer symmetric). Furthermore, one needs to compute the Jacobian

of the mapping, which may be tedious to code and may lead to numerical instabilities because of

non-linearities.

Our preferred approach is to use a proposal density which directly operates on the weights.

We call it ’random-walk Dirichlet’, since the expected value of the proposal is the last accepted

draw. Denote by ωa the last accepted vector of weights, by ωp a proposal draw, and by λ > 0

a scalar regulating the variance of the proposal. The proposal density is Dirichlet, denoted by

pD(ωp|ωa, λ), with parameter λωa. Its mean is independent of λ and equal to ωa. The variance

of any element of ωp is a decreasing function of λ. In an initial adaptive phase, where draws

are discarded before computing posterior quantities, we adjust λ so as to achieve a reasonable

acceptance probability (20-30%). This proposal density is not symmetric, and thus the acceptance

probability needs to be properly modified.

paragraphAsymptotic properties of MCMC estimators Let χCL be the maximum composite
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likelihood estimator of χ = (θ, η1, . . . , ηK , ω1, . . . , ωK) and let χp be the mode of the prior p(χ).

Let both χCL and χp be in the interior of the parameter space. Let h(χCL) = −O2
χ logCL(χCL|yt)

and h(χp) = −O2
χ log p(χp). Expanding quadratically the composite posterior pCL(χ|yt) we have

∝ exp{logCL(χCL|yt)− 0.5(χ− χCL)Th(χCL)(χ− χCL) + log p(χp)− 0.5(χ− χp)Th(χp)(χ− χp)}

≈ N(χ̂, h(χCL, χp)
−1) (8)

where χ̂ = h(χCL, χp)
−1(h(χCL)χCL + h(χp)χp) and h(χCL, χp) = h(χCL) + h(χp).

Under regularity conditions, p(χ) vanishes as T →∞. Then, almost surely, the strong law of

large number implies that

T−1h(χCL, χp) → −E(O2 logCL(χ̂0|yt)) ≡ H(χ̂0) (9)

χ̂ = (T−1h(χCL, χp))
−1(T−1h(χCL)χCL + T−1h(χp)χp)→ χ̂0 (10)

Thus as T →∞ pCL(χ|yt) ≈ N(χ̂0, T
−1H(χ̂0)−1). Sufficient conditions that insure the above are,

for example, in Deblasi and Walker (2013). Rubio and Villaverde (2004) provide conditions which

are somewhat easier to verify in practice.

When χCL is not in the interior of the parameter space, for example, because ωi → 0, for

some i, ηi may become non-identifiable from the composite likelihood and the above may not

hold. If we let p(ηi) = p(ηi|y0t), where y0t is a training sample of size T̄ , letting both T an

T̄ go to infinity, we will have that (9)-(10) hold for identified parameters while for those ηi for

which ωi → 0, pCL(ηi|yt, y0t) ≈ N(η̂i0, T̄
−1H(η̂i0)−1), where η̂i0 is, e.g., ML estimator for ηi in the

training sample.

When weak identification problems are present, care must be exercised since, the properties

of ωi may deviate from the standard ones stated in the text.

Appendix C: Tilting vs composite predictors

We look for a predictive density p(z|y) solving:

p̂ = argmin
p
KL(p(z|y), f(z, φ)) (11)

where z is any future sequence of y and φ a vector of parameters, subject to the constraint

Ep{log
f(z|yt, φ)

f(z, φ)
} = EZ|Y=y{log

f(z|yt, φ)

f(z, φ)
} t = 1, . . . , T (12)

and the normalization Ep(1) = 1, where Ep is the expectation with respect to the density p(z|y),

and f(z, φ) is any preliminary density of z, for example, its marginal. In words, we seek for the
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predictive density which is closest in the KL sense to any preliminary density f(z, φ) and repro-

duces the same conditional expectation as the true density f(z|y, φ) on functions log f(z|yt,ψ)
f(z,φ)

. Note

that when f(z) is disregarded, the problem becomes one of maximizing the entropy -Ep[log p(z|y)],

subject to the constraints (12). The solution is p̂(z|y) = f(z, φ) exp{
∑

t ξt log f(z|yt,φ)
f(z,φ)

}−κ(yt, φ, ξ)}
where κ(yt, φ, ξ) is a normalizing constant, ξt are the Lagrange multipliers on the constraints (12).

p̂(z|y) has an exponential tilting format: we tilt f(z, φ) in the directions spanned by log f(z|yi,φ)
f(z,φ)

.

If ξt ≥ 0,
∑

t ξt ≤ 1, then p̂(z|y) is the scaled version of the composite predictive density derived

in section 4.5 with ωt = ξt, t = 1, . . . , T and ω0 = 1 −
∑

t ξt, where ω0 is the weight on f(z, φ).

Note that in this setup, ωt satisfies the following (score) equation:

∂Ez|Y=y log fp(Z|y, φ, ωt)
∂ωt

= 0, t = 1, . . . , T (13)

Thus, it can be chosen to maximize the conditional expected logarithmic score (13).

Appendix D: The models of section 5.1

1) Basic model with quadratic preferences, constant interest rate, exogenous per-

manent and transitory income process. Let G = 1 + g be the growth rate of permanent

income. Let c̃t = ct
yPt

; ãt = at
yPt
, yt = yTt y

P
t . The log linearized conditions are

ˆ̃ct = ê2t+1 + ˆ̃ct+1 (14)

ˆ̃at =
1

ā/G+ ȳT − c̄
(ā/Gˆ̃at−1 − ā/Gê2t + ȳŷTt − c̄ˆ̃ct) (15)

ŷPt = ŷPt−1 + ê2t (16)

ŷTt = ρŷTt−1 + ê1t (17)

ĉt = ˆ̃ct + ŷPt (18)

ât = ˆ̃at + ŷPt (19)

where ct is consumption, at are savings, yt is income,ρ the persistence of transitory income, (1+r)

the gross real rate of interest (1 + r)β = 1, σi, i = 1, 2 the standard deviation of the transitory

and permanent income, and variables with a bar indicate steady state quantities.

2) Model with exponential utility, constant interest rate, exogenous permanent and

transitory income process. The instantaneous utility function is u(c) = −1
θ

exp(−θct), where

θ > 0 is the coefficient of risk aversion. The log linearized equations are:
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−ĉt = −ĉt+1 +
1

θc̄
(σ̂t + ê2t) (20)

ˆ̃at =
1

ā
G∗σ̄ + ȳT − ¯̃c

(
ā

Gσ̄
ˆ̃at−1 −

ā

Gσ̄
ê2t −

ā

G
σ̂t + ȳT ŷTt − c̄ˆ̃ct) (21)

ŷPt = ŷPt−1 + σ̂t + ê2t (22)

ŷTt = ρ1ŷ
T
t−1 + σ̂t + ê1t (23)

σ̂t = ρ2σ̂t−1 + ê3t (24)

ĉt = ˆ̃ct + ŷPt (25)

ât = ˆ̃at + ŷPt (26)

where σt is the standard deviation of the permanent and transitory income shock, and ρ2 the

persistence of the volatility process.

3) RBC model with separable CRRA preferences, labor supply decisions, capital

accumulation, endogenous interest rate, permanent and transitory technology shocks.

Letting α be the share of capital in production, γ the risk aversion coefficient, δ the capital

depreciation rate, η the inverse of the Frish elasticity of labor supply, and assuming that log e2t

has zero mean, the log-linearized conditions are

γ ˆ̃ct + ηN̂t = ˆ̃Yt − N̂t (27)

−γ ˆ̃ct = (1− γ)ê2t+1 − γ ˆ̃ct+1 +
r

1 + r
r̂t+1 (28)

r̂t =
α

1 + r
( ˆ̃Yt − ˆ̃Kt−1) (29)

ˆ̃Yt = α( ˆ̃Kt−1) + (1− α)(N̂t + ζ̂Tt ) (30)

ˆ̃Yt =
c̄

Ȳ
ˆ̃ct +

K̄

Ȳ
ˆ̃Kt +

(1− δ)
G

K̄

Ȳ
ˆ̃Kt−1 −

(1− δ)
G

K̄

Ȳ
ê2t+1 (31)

ζ̂Pt = G+ ζ̂Pt−1 + ê2t (32)

ζ̂Tt = ρ ˆζTt−1 + ê1t (33)

ĉt = ˆ̃ct + ŷPt (34)

k̂t = ˆ̃kt + ŷPt (35)

ŷt = ˆ̃yt + ŷPt (36)

where kt is the capital stock and Nt is hours, ζt the technology disturbance and ρ the persistence

of its transitory component.
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4) Model with two types of agents optimizers and Rule of thumb (ROT) consumers,

constant interest rate, permanent and transitory income components. Let 1 − ω be

the share of ROT consumers. The log linearized conditions are:

−γ ˆ̃c1t = (1− γ)ê2t+1 − γ ˆ̃c1t+1 (37)

ˆ̃cROTt = ŷTt (38)

ˆ̃at =
1

ā/G+ ȳT − c̄
(ā/Gˆ̃at−1 − ā/Gê2t + ȳŷTt − c̄1

ˆ̃c1t) (39)

ŷPt = G+ ŷPt−1 + ê2t (40)

ŷTt = ρŷTt−1 + ê1t (41)

ĉ1t = ˆ̃c1t + ŷPt (42)

ĉROTt = ˆ̃cROTt + ŷPT (43)

ĉt = ωĉ1t + (1− ω)ĉROTt (44)

ât = ˆ̃at + ŷPt (45)

where γ is the coefficient of relative risk aversion and the superscript ROT indicate the variables

of the agents which do not save. We calibrate ω = 0.2, (1 + r) = 1.01.

5) Model with two types of optimizing agents, liquidity and non-liquidity constrained,

constant interest rate, permanent and transitory income components. Utility de-

pends on durable and non-durable consumption, relative price of non-durable is ex-

ogenous. The log-linear conditions are:

ˆ̃c1t − ˆ̃d1t =
1

ζ1

(p̂t −
1− δ
1 + r

p̂t+1) (46)

ˆ̃a1t − ˆ̃d1t − p̂t = 0 (47)

p̄d̄1δ(p̂t + ˆ̃d1t) + c̄1
ˆ̃c1t + ā1

ˆ̃a1t =

(1 + r)ā1
ˆ̃a1t−1 + ŷTt − [(1 + r)ā1 − (1− δ)p̄d̄1)]ê2t (48)

ˆ̃c2t − ˆ̃d2t =
1

ζ2

(p̂t(1 + ψ(β2(1 + r)− 1))− β2(1− δ)p̂t+1 +

(γ − 1)β2[ψ(1 + r)− (1− δ)](c̄2
ˆ̃c2t+1 − c̄2

ˆ̃c2t − d̄2
ˆ̃d2t+1 + d̄2

ˆ̃d2t+1)) (49)

p̄d̄2δ(p̂t + ˆ̃d2t) + c̄2
ˆ̃c2t + ā2

ˆ̃a2t =

(1 + r)ā2
ˆ̃a2t−1 + ŷTt − [(1 + r)ā2 − (1− δ)p̄d̄2)]ê2t (50)

ā2

B
ˆ̃a2t +

1− ā2

B
(p̂t + ˆ̃d2t) = 0 (51)
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These equations have six unknowns (ˆ̃c1t, ˆ̃c2t,
ˆ̃d1t,

ˆ̃d2t, ˆ̃a1t, ˆ̃a2t), given yTt , y
P
t , pt. The remaining equa-

tions are:

(γ − 1)(c̄2
ˆ̃c2t − d̄2

ˆ̃d2t) +
1

β2(1 + r)− 1
(β2(1 + r)(γ − 1)(c̄2

ˆ̃c2t+1 − c̄2
ˆ̃c2t − d̄2

ˆ̃d2t+1 + d̄2
ˆ̃d2t)) = µ̂t (52)

ˆ̃cit + ŷPt = ĉit (53)

ˆ̃ait + ŷPt = âit (54)

ˆ̃dit + ŷPt = d̂it (55)

ŷPt−1 + ê2t = ŷPt (56)

ρ1ŷ
T
t−1 + ê1t = ŷTt (57)

ρ2p̂t−1 + ê3t = p̂t (58)

ŷPt + ŷTt = ŷt (59)

ωĉ1t + (1− ω)ĉ2t = ĉt (60)

ωâ1t + (1− ω)â2t = ât (61)

ωd̂1t + (1− ω)d̂2t = d̂t (62)

where i=1,2, 1−ω is the share of liquidity constrained consumers and γ the Cobb-Douglass share

of non-durable good dit in the utility. ζ1 = (1 − 1−δ
1+r

), ζ2 = (1 − β2((1 − δ) − ψ(1 + r)) − 1), ψ

is the share of durable financiable with assets, β2 > β1 and µ̂ is the Lagrange multiplier on the

liquidity constraint (in percentage deviation from steady states). We set ω = 0.2, ψ = 0.95, B =

0.05, (1 + r) = 1.01.

6) Ad-hoc model: CRRA preferences, permanent and transitory income, habit in

consumption ( δ=habit parameter), an additional shock to the asset accumulation

equation (Mt) and three measurement errors in the observation equations .
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The log linear conditions are

− γ

1− δ/G
(ˆ̃ct − δ/Gˆ̃ct−1 + δ/Gê2t) = (1− γ)ê2t+1 −

γ

1− δ/G
(ˆ̃ct+1 − δ/Gˆ̃ct + δ/Gê2t+1) (63)

āˆ̃at = (
(1 + r)ā

G
(ˆ̃at−1 − ā/Gê2t) + (1 + r)(ȳŷTt − c̄ˆ̃ct) + e3t)

(64)

ŷPt = G+ ŷPt−1 + ê2t (65)

ŷTt = ρŷTt−1 + ê1t (66)

M̂t = ŷPt + ê3t (67)

ĉt = ˆ̃ct + ŷPt (68)

ât = ˆ̃at + ŷPt (69)

The measurement equations are:

c̃t = ĉt + u1t (70)

ỹt = ŷt + u2t (71)

ãt = ât + u3t (72)

whereujt are iid measurement errors with variance σ2
j , j = 1, 2, 3.

Appendix E: The models of section 5.2

1) Herbst and Schorfheide (2015) model

yt = Et(yt+1)− 1

τ
(Rt − Et(πt+1)− Et(zt+1)) + gt − Et(gt+1) (73)

πt = βEt(πt+1) + κ(yt − gt) (74)

Rt = ρRRt−1 + (1− ρR)(φ1πt + φ2(yt − gt)) + εR,t (75)

zt = ρzzt−1 + εz,t (76)

gt = ρggt−1 + εg,t (77)

where yt is output, πt inflation, Rt the nominal rate, zt a technology shock, gt a demand shock

and eR,t a monetary policy shock.
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2) Justiniano, Primiceri and Tambalotti (2010) model

ŷt =
y + F

y

[
αk̂t + (1− α) L̂t

]
(78)

ρ̂t = ŵt + L̂t − k̂t (79)

ŝt = αρ̂t + (1− α) ŵt (80)

π̂t = γfEtπ̂t+1 + γbπ̂t−1 + κŝt + κλ̂p,t (81)

λ̂t =
hβeγ

(eγ − hβ) (eγ − h)
Etĉt+1 −

e2γ + h2β

(eγ − hβ) (eγ − h)
ĉt +

heγ

(eγ − hβ) (eγ − h)
ĉt−1 (82)

+
hβeγρz − heγ

(eγ − hβ) (eγ − h)
ẑt +

eγ − hβρb
eγ − hβ

b̂t (83)

λ̂t = R̂t + Et

(
λ̂t+1 − ẑt+1 − π̂t+1

)
(84)

ρ̂t = χût (85)

φ̂t = (1− δ) βe−γEt
(
φ̂t+1 − ẑt+1

)
+
(
1− (1− δ) βe−γ

)
Et

[
λ̂t+1 − ẑt+1 + ρ̂t+1

]
(86)

λ̂t = φ̂t + ût − e2γS ′′ (ι̂t − ι̂t−1 + ẑt) + βe2γS ′′Et

[
ι̂t+1 − ι̂t + ẑt+1

]
(87)

k̂t = ût + ˆ̄kt−1 − ẑt (88)

ˆ̄kt = (1− δ) e−γ
(

ˆ̄kt−1 − ẑt
)

+
(
1− (1− δ) e−γ

)
(ût + ι̂t) (89)

ŵt =
1

1 + β
ŵt−1 +

β

1 + β
Etŵt+1 − κwĝw,t + (90)

+
ιw

1 + β
π̂t−1 +

1 + βιw
1 + β

πt +
β

1 + β
Etπ̂t+1 + (91)

+
ιw

1 + β
zt−1 −

1 + βιw − ρzβ
1 + β

zt + κwλ̂w,t (92)

ĝw,t = ŵt −
(
νL̂t + b̂t − λ̂t

)
(93)

R̂t = ρRR̂t−1 + (1− ρR) [φππ̂t + φX (x̂t − x̂∗t )] + φdX [(x̂t − x̂t−1)−
(
x̂∗t − x̂∗t−1

)
] + η̂mp,t(94)

x̂t = ŷt −
ρk

y
ût (95)

1

g
ŷt =

1

g
ĝt +

c

y
ĉt +

i

y
ι̂t +

ρk

y
ût (96)
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