Online Appendix

This document contains supplementary material for LINK.

Table of Contents

<table>
<thead>
<tr>
<th>OA-1</th>
<th>Alternative definitions of Kelley’s skewness</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>OA-2</td>
<td>Regression Results by Permanent Income Percentile</td>
<td>4</td>
</tr>
<tr>
<td>OA-2.1</td>
<td>How Dispersion of Residual Log Income Growth Correlates with log growth rate of GDP by Permanent Income Rank</td>
<td>4</td>
</tr>
<tr>
<td>OA-2.2</td>
<td>How Skewness of Residual Log Income Growth Correlates with Log Growth Rate of GDP by Permanent Income Rank</td>
<td>5</td>
</tr>
<tr>
<td>OA-2.3</td>
<td>How Kurtosis of Residual Log Income Growth Correlates with Log Growth Rate of GDP by Permanent Income Rank</td>
<td>6</td>
</tr>
<tr>
<td>OA-3</td>
<td>Life-cycle Inequality Over Cohorts, Disposable Income</td>
<td>7</td>
</tr>
<tr>
<td>OA-4</td>
<td>Results Based on Gross Income</td>
<td>8</td>
</tr>
<tr>
<td>OA-5</td>
<td>Results Based on Household Earnings</td>
<td>10</td>
</tr>
<tr>
<td>OA-6</td>
<td>Results Based on Household Disposable Income</td>
<td>12</td>
</tr>
<tr>
<td>OA-7</td>
<td>Results Based on Earnings, 5-Year Growth Rates</td>
<td>14</td>
</tr>
<tr>
<td>OA-8</td>
<td>Results Based on Disposable Income, 5-Year Growth Rates</td>
<td>16</td>
</tr>
</tbody>
</table>
OA-1 Alternative definitions of Kelley’s skewness

We check how different definitions of Kelley’s skewness impact the results. Instead of considering the standard p90/p10 spread, we look at p95/p5 and p99/p1 for both earnings and disposable income:

\[
p_{95}/p_{5} : \frac{(p_{95} - p_{50}) - (p_{50} - p_{5})}{p_{95} - p_{5}}
\]
\[
p_{99}/p_{1} : \frac{(p_{99} - p_{50}) - (p_{50} - p_{1})}{p_{99} - p_{1}}
\]

Figure 28: Alternative Kelley’s skewness of 1-Year Residual Log Earnings Growth

Notes: Using residual one-year earnings changes, the figure plots the following variables against time: (a) Kelley’s skewness calculated as \((p_{95} - p_{50}) - (p_{50} - p_{5}) / (p_{95} - p_{5})\), (b) Kelley’s skewness calculated as \((p_{99} - p_{50}) - (p_{50} - p_{1}) / (p_{99} - p_{1})\). The shaded areas indicate recessionary periods with GDP growth below 2 percent.
Figure 29: Alternative Kelley’s skewness of 1-Year Residual Log Disposable Income Growth

a Kelley’s skewness \((p_{95}/p_{5})\)

b Kelley’s skewness \((p_{99}/p_{1})\)

Notes: Using residual one-year disposable income changes, the figure plots the following variables against time: (a) Kelley’s skewness calculated as \((p_{95} - p_{50}) - (p_{50} - p_{5})\), (b) Kelley’s skewness calculated as \((p_{99} - p_{50}) - (p_{50} - p_{1})\). The shaded areas indicate recessionary periods with GDP growth below 2 percent.
OA-2 Regression Results by Permanent Income Percentile

OA-2.1 How Dispersion of Residual Log Income Growth Correlates with log growth rate of GDP by Permanent Income Rank

Figure 30: Dispersion, Residual Log Earnings Growth

![Graph showing the dispersion of residual log earnings growth by gender and age groups.](image)

Notes: The figure presents estimates of the slope parameter from a regression of the dispersion of residual log earnings growth on log growth rate of GDP and a linear time trend, cf. equation (1), estimated by selected percentiles in the distribution of earnings for men and women and by age groups. Dispersion is calculated as p90-p10.

Figure 31: Dispersion, Residual Log Disposable Income Growth

![Graph showing the dispersion of residual log disposable income growth by gender and age groups.](image)

Notes: The figure presents estimates of the slope parameter from a regression of the dispersion of residual log disposable income growth on log growth rate of GDP and a linear time trend, cf. equation (1), estimated by selected percentiles in the distribution of disposable income for men and women and by age groups. Dispersion is calculated as p90-p10.
OA-2.2 How Skewness of Residual Log Income Growth Correlates with Log Growth Rate of GDP by Permanent Income Rank

Figure 32: Skewness, Residual Log Earnings Growth Rate

Notes: The figure presents estimates of the slope parameter from a regression of skewness of the distribution of residual log earnings growth rates on log growth rate of GDP and a linear time trend, cf. equation (1), estimated by selected percentiles in the distribution of earnings for men and women and by age groups. Kelley's skewness is calculated as \(\frac{(p_{90} - p_{50}) - (p_{50} - p_{10})}{p_{90} - p_{10}} \).

Figure 33: Skewness, Residual Log Disposable Income Growth Rate

Notes: The figure presents estimates of the slope parameter from a regression of skewness of the distribution of residual log disposable income growth rates on log growth rate of GDP and a linear time trend, cf. equation (1), estimated by selected percentiles in the distribution of disposable income for men and women and by age groups. Kelley’s skewness is calculated as \(\frac{(p_{90} - p_{50}) - (p_{50} - p_{10})}{p_{90} - p_{10}} \).
How Kurtosis of Residual Log Income Growth Correlates with Log Growth Rate of GDP by Permanent Income Rank

Figure 34: Kurtosis, Residual Log Earnings Growth Rate

Note: The figure presents estimates of the slope parameter from a regression of kurtosis of the distribution of residual log earnings growth rates on log growth rate of GDP and a linear time trend, cf. equation (1), estimated by selected percentiles in the distribution of earnings for men and women and by age groups. Excess Crow-Siddiqui kurtosis is calculated as $p_{97.5} - p_{2.5}/p_{75} - p_{25} - 2.91$.

Figure 35: Kurtosis, Residual Log Disposable Income Growth Rate

Note: The figure presents estimates of the slope parameter from a regression of kurtosis of the distribution of residual log disposable income growth rates on log growth rate of GDP and a linear time trend, cf. equation (1), estimated by selected percentiles in the distribution of disposable income for men and women and by age groups. Excess Crow-Siddiqui kurtosis is calculated as $p_{97.5} - p_{2.5}/p_{75} - p_{25} - 2.91$.
OA-3 Life-cycle Inequality Over Cohorts, Disposable Income

Figure 36: LIFE-CYCLE INEQUALITY OVER COHORTS, DISPOSABLE INCOME

OA-4 Results Based on Gross Income

Note: In 1994, multiple transfers changed status from tax-exempt income to taxable income, with a subsequent rise in level. This was done to ease comparability between earned income and transfers. In the figures below, this shows up as a spike in 1993 (since g_{1t} is forward looking).

Figure 37: Dispersion of Distribution of 1-Year Residual Log Gross Income Growth Rates

![Dispersion of Distribution of 1-Year Residual Log Gross Income Growth Rates](image)

Notes: Dispersion of distribution of 1-year residual log gross income growth rates, $g_{1t} = \varepsilon_{t+1} - \varepsilon_t$. LS sample. The figure plots the following variables against time: p90-p50 (blue), p50-p10 (red), and p90-p10 (grey) for men in panel a, and for women in panel b. The shaded areas indicate recessionary periods with GDP growth below 2 percent.

Figure 38: Skewness and Kurtosis of Distribution of 1-Year Residual Log Gross Income Growth Rates

![Skewness and Kurtosis of Distribution of 1-Year Residual Log Gross Income Growth Rates](image)

Notes: Skewness and kurtosis of distribution of 1-year residual log gross income growth rates, $g_{1t} = \varepsilon_{t+1} - \varepsilon_t$. LS sample. The figure plots the following variables against time: (a) Men and Women: Kelley’s skewness calculated as $(p90-p50)-(p50-p10)$, $p90-p10$, (b) Men and Women: Excess Crow-Siddiqui kurtosis calculated as $\frac{(p97.5-p2.5) - (p25-p75)}{p25-p2.5} - 2.91$ where the first term is the Crow-Siddiqui measure of kurtosis and 2.91, corresponds to the value of this measure for a normal distribution. The shaded areas indicate recessionary periods with GDP growth below 2 percent.
Notes: Dispersion, skewness, and kurtosis of 1-year residual log gross income growth, $g_{it}^1 = \epsilon_{it+1} - \epsilon_{it}$. H sample in the period 1997-2016. Permanent Income is based on three years of income, $t-2$, $t-1$, t. The figure plots the following variables against permanent income quantile groups for the 3 age groups (denoted by color): (a) Men: p90-p10, (b) Women: p90-p10, (c) Men: Kelley’s skewness, (d) Women: Kelley’s skewness, (e) Men: Excess Crow-Siddiqui kurtosis, (f) Women: Excess Crow-Siddiqui kurtosis. Kelley’s skewness is calculated as $(p_{90} - p_{50}) - (p_{50} - p_{10})$. Excess Crow-Siddiqui kurtosis is calculated as $\frac{p_{97.5} - p_{2.5}}{p_{75} - p_{25}} - 2.91$, where the first term is the Crow-Siddiqui measure of kurtosis, and 2.91 corresponds to the value of this measure for a normal distribution.
OA-5 Results Based on Household Earnings

Figure 40: Dispersion of Distribution of 1-Year Residual Log Earnings Growth Rates, Households

- **Men**
 - Dispersion of distribution of 1-year residual household log earnings growth rates, $g_{it}^1 = \varepsilon_{i,t+1} - \varepsilon_{it}$. LS sample. The figure plots the following variables against time: p90-p50 (blue), p50-p10 (red), and p90-p10 (grey) for men.
 - The shaded areas indicate recessionary periods with GDP growth below 2 percent.

- **Women**
 - Dispersion of distribution of 1-year residual household log earnings growth rates, $g_{it}^1 = \varepsilon_{i,t+1} - \varepsilon_{it}$. LS sample. The figure plots the following variables against time: p90-p50 (blue), p50-p10 (red), and p90-p10 (grey) for women.
 - The shaded areas indicate recessionary periods with GDP growth below 2 percent.

Notes: Dispersion of distribution of 1-year residual household log earnings growth rates, $g_{it}^1 = \varepsilon_{i,t+1} - \varepsilon_{it}$. LS sample. The figure plots the following variables against time: p90-p50 (blue), p50-p10 (red), and p90-p10 (grey) for men in panel a, and for women in panel b. The shaded areas indicate recessionary periods with GDP growth below 2 percent.

Figure 41: Skewness and Kurtosis of Distribution of 1-Year Residual Log Earnings Growth Rates, Households

- **Kelley’s skewness**
 - Kelley’s skewness calculated as $(p90 - p50) - (p50 - p10)$ for pandemic years.
 - Kelley’s skewness calculated as $(p90 - p50) - (p50 - p10)$ for men.

- **Excess Crow-Siddiqui kurtosis**
 - Excess Crow-Siddiqui kurtosis calculated as $p97.5 - p2.5 - 2p75 - p25 - 2.91$ where the first term is the Crow-Siddiqui measure of kurtosis and 2.91, corresponds to the value of this measure for a normal distribution.

Notes: Skewness and kurtosis of distribution of 1-year residual household log earnings growth rates, $g_{it}^1 = \varepsilon_{i,t+1} - \varepsilon_{it}$. LS sample. The figure plots the following variables against time: (a) Men and Women: Kelley’s skewness calculated as $(p90-p50) - (p50-p10)$, (b) Men and Women: Excess Crow-Siddiqui kurtosis calculated as $p97.5 - p2.5 - 2p75 - p25 - 2.91$ where the first term is the Crow-Siddiqui measure of kurtosis and 2.91, corresponds to the value of this measure for a normal distribution. The shaded areas indicate recessionary periods with GDP growth below 2 percent.
Figure 42: Dispersion, Skewness and Kurtosis of the Distribution of 1-Year Residual Log Earnings Growth Rates, Households

Notes: Dispersion, skewness, and kurtosis of distribution of 1-year residual household log earnings growth rates, $g_{it}^{1} = \varepsilon_{it+1} - \varepsilon_{it}$. H sample in the period 1997-2016. Permanent Income is based on three years of income, $t-2$, $t-1$, t. The figure plots the following variables against permanent income quantile groups for the 3 age groups (denoted by color): (a) Men: p_{90}-p_{10}, (b) Women: p_{90}-p_{10}, (c) Men: Kelley’s skewness, (d) Women: Kelley’s skewness, (e) Men: Excess Crow-Siddiqui kurtosis, (f) Women: Excess Crow-Siddiqui kurtosis. Kelley’s skewness is calculated as $(p_{90} - p_{50}) - (p_{50} - p_{10}) / (p_{90} - p_{10})$. Excess Crow-Siddiqui kurtosis is calculated as $(p_{97.5} - p_{2.5}) / (p_{75} - p_{25}) - 2.91$, where the first term is the Crow-Siddiqui measure of kurtosis, and 2.91 corresponds to the value of this measure for a normal distribution.
OA-6 Results Based on Household Disposable Income

Figure 43: Dispersion of the Distribution of 1-Year Residual Log Disposable Income Growth Rates, Households

a) Men

b) Women

Notes: Dispersion of distribution of 1-year residual household log disposable growth rates, $g_{it} = \varepsilon_{it+1} - \varepsilon_{it}$. LS sample. The figure plots the following variables against time: p90-p50 (blue), p50-p10 (red), and p90-p10 (grey) for men in panel a, and for women in panel b. The shaded areas indicate recessionary periods with GDP growth below 2 percent.

Figure 44: Skewness and Kurtosis of the Distribution of 1-Year Residual Log Disposable Income Growth Rates, Households

a) Kelley’s skewness

b) Excess Crow-Siddiqui Kurtosis

Notes: Skewness and kurtosis of distribution of 1-year residual household log disposable growth rates, $g_{it} = \varepsilon_{it+1} - \varepsilon_{it}$. LS sample. The figure plots the following variables against time: (a) Men and Women: Kelley’s skewness calculated as $(p90 - p50) - (p50 - p10) / p90 - p10$, (b) Men and Women: Excess Crow-Siddiqui kurtosis calculated as $(p97.5 - p2.5) / p75 - p25$, where the first term is the Crow-Siddiqui measure of kurtosis and 2.91, corresponds to the value of this measure for a normal distribution. The shaded areas indicate recessionary periods with GDP growth below 2 percent.
Figure 45: Dispersion, Skewness and Kurtosis of the Distribution of 1-Year Residual Log Disposable Income Growth Rates, Households

Notes: Dispersion, skewness, and kurtosis of distribution of 1-year residual household log disposable growth rates, $g_{it}^1 = \varepsilon_{it+1} - \varepsilon_{it}$. H sample in the period 1997-2016. Permanent Income is based on three years of income, $t-2$, $t-1$, t. The figure plots the following variables against permanent income quantile groups for the 3 age groups (denoted by color): (a) Men: p90-p10, (b) Women: p90-p10, (c) Men: Kelley’s skewness, (d) Women: Kelley’s skewness, (e) Men: Excess Crow-Siddiqui kurtosis, (f) Women: Excess Crow-Siddiqui kurtosis. Kelley’s skewness is calculated as $(p_{90} - p_{50}) - (p_{50} - p_{10}) / (p_{90} - p_{10})$. Excess Crow-Siddiqui kurtosis is calculated as $\frac{p_{75.5} - p_{2.5}}{p_{75} - p_{25}} - 2.91$, where the first term is the Crow-Siddiqui measure of kurtosis, and 2.91 corresponds to the value of this measure for a normal distribution.
OA-7 Results Based on Earnings, 5-Year Growth Rates

Figure 46: Dispersion of the Distribution of 5-Year Residual Log Earnings Growth Rates

<table>
<thead>
<tr>
<th></th>
<th>Men</th>
<th>Women</th>
</tr>
</thead>
</table>
| a | ![Dispersion of g
5it](p90-p50 blue), ![p50-p10 red](red), ![p90-p10 grey](grey) for men in panel a, and for women in panel b. |

Notes: Dispersion of distribution of 5-year residual log earnings growth rates, \(g_{it}^5 = \varepsilon_{it+3} - \varepsilon_{it-2} \). LS sample. The figure plots the following variables against time: p90-p50 (blue), p50-p10 (red), and p90-p10 (grey) for men in panel a, and for women in panel b.

Figure 47: Skewness and Kurtosis of the Distribution of 5-Year Residual Log Earnings Growth Rates

<table>
<thead>
<tr>
<th></th>
<th>Kelley’s skewness</th>
<th>Excess Crow-Siddiqui kurtosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>![Kelley’s skewness](Men red, Women blue)</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>![Excess Crow-Siddiqui kurtosis](Men red, Women blue)</td>
<td></td>
</tr>
</tbody>
</table>

Notes: Skewness and kurtosis of distribution of 5-year residual log earnings growth rates, \(g_{it}^5 = \varepsilon_{it+3} - \varepsilon_{it-2} \). LS sample. The figure plots the following variables against time: (a) Men and Women: Kelley’s skewness calculated as \((p90-p50) - (p50-p10) \) \(p90-p10 \), (b) Men and Women: Excess Crow-Siddiqui kurtosis calculated as \(p97.5 - p2.5 \) \(p75-p25 \) - 2.91 where the first term is the Crow-Siddiqui measure of kurtosis and 2.91, corresponds to the value of this measure for a normal distribution.
Figure 48: Dispersion, Skewness and Kurtosis of the Distribution of 5-Year Residual Log Earnings Growth Rates

Notes: Dispersion, skewness, and kurtosis of distribution of 5-year residual log earnings growth rates, $g_{it}^5 = \epsilon_{it+} - \epsilon_{it-2}$. H sample in the period 1997-2016. Permanent Income is based on three years of income, $t-4$, $t-3$, $t-2$. The figure plots the following variables against permanent income quantile groups for the 3 age groups (denoted by color): (a) Men: p90-p10, (b) Women: p90-p10, (c) Men: Kelley’s skewness, (d) Women: Kelley’s skewness, (e) Men: Excess Crow-Siddiqui kurtosis, (f) Women: Excess Crow-Siddiqui kurtosis. Kelley’s skewness is calculated as $(p_{90} - p_{50}) - (p_{50} - p_{10})$. Excess Crow-Siddiqui kurtosis is calculated as $\frac{p_{97.5} - p_{2.5}}{p_{75} - p_{25}} - 2.91$, where the first term is the Crow-Siddiqui measure of kurtosis, and 2.91 corresponds to the value of this measure for a normal distribution.
OA-8 Results Based on Disposable Income, 5-Year Growth Rates

Figure 49: Dispersion of the Distribution of 5-Year Residual Log Disposable Income Growth Rates

Notes: Dispersion of distribution of 5-year residual log disposable income growth rates, $g_{it}^5 = \varepsilon_{it+3} - \varepsilon_{it-2}$. LS sample. The figure plots the following variables against time: p90-p50 (blue), p50-p10 (red), and p90-p10 (grey) for men in panel a, and for women in panel b.

Figure 50: Skewness and Kurtosis of the Distribution of 5-Year Residual Log Disposable Income Growth Rates

Notes: Skewness and kurtosis of distribution of 5-year residual log disposable income growth rates, $g_{it}^5 = \varepsilon_{it+3} - \varepsilon_{it-2}$. LS sample. The figure plots the following variables against time: (a) Men and Women: Kelley’s skewness calculated as $(p90-p50) - (p50-p10) / p90-p10$, (b) Men and Women: Excess Crow-Siddiqui kurtosis calculated as $\frac{p97.5-p2.5}{p90-p10} - 2.91$ where the first term is the Crow-Siddiqui measure of kurtosis and 2.91, corresponds to the value of this measure for a normal distribution.
Figure 51: Dispersion, Skewness and Kurtosis of the Distribution of 5-Year Residual Log Disposable Income Growth Rates

Notes: Dispersion, skewness, and kurtosis of distribution of 5-year residual log disposable income growth rates, $g_{it}^5 = \varepsilon_{it-1} - \varepsilon_{it-2}$. H sample in the period 1997-2016. Permanent Income is based on three years of income, $t-4$, $t-3$, $t-2$. The figure plots the following variables against permanent income quantile groups for the 3 age groups (denoted by color): (a) Men: $p_{90}-p_{10}$, (b) Women: $p_{90}-p_{10}$, (c) Men: Kelley’s skewness, (d) Women: Kelley’s skewness, (e) Men: Excess Crow-Siddiqui kurtosis, (f) Women: Excess Crow-Siddiqui kurtosis. Kelley’s skewness is calculated as $\frac{p_{90} - p_{50}}{p_{90} - p_{10}} - \frac{p_{50} - p_{10}}{2}$. Excess Crow-Siddiqui kurtosis is calculated as $\frac{p_{75} - p_{25} - 2.91}{p_{75} - p_{25}}$, where the first term is the Crow-Siddiqui measure of kurtosis, and 2.91 corresponds to the value of this measure for a normal distribution.