
0.1 Convergence of vt in Euclidian Space
Boyd’s theorem shows that T defines a contraction mapping in a z-bounded space. We
now show that T also defines a contraction mapping in Euclidian space.

Since v∗(m) = Tv∗(m),

‖vT−n+1 − v∗‖z ≤ αn−1 ‖vT − v∗‖z . (50)

On the other hand, vT − v∗ ∈ Cz (A,B) and κ = ‖vT − v∗‖z < ∞ because vT and v∗

are in Cz (A,B). It follows that

|vT−n+1(m)− v∗(m)| ≤ καn−1 |z(m)| . (51)

Then we obtain

lim
n→∞

vT−n+1(m) = v∗(m). (52)

Since vT (m) = m1−ρ

1−ρ , vT−1(m) ≤ (κ̄m)1−ρ

1−ρ < vT (m). On the other hand, vT−1 ≤
vT means TvT−1 ≤ TvT , in other words, vT−2(m) ≤ vT−1(m). Inductively one gets
vT−n(m) ≥ vT−n−1(m). This means that {vT−n+1(m)}∞n=1 is a decreasing sequence,
bounded below by v∗.

0.2 Convergence of ct

Given the proof that the value functions converge, we now show the pointwise conver-
gence of consumption functions {cT−n+1(m)}∞n=1.
We start by showing that

c(m) = arg max
ct∈[κm,κ̄m]

{
u(ct) + β Et

[
Γ1−ρ
t+1 v(mt+1)

]}
(53)

is uniquely determined. We show this by contradiction. Suppose there exist c1 and c2

that both attain the supremum for some m, with mean c̃ = (c1 + c2)/2. ci satisfies

Tv(m) = u(ci) + β Et
[
Γ1−ρ
t+1 v(mt+1(m, ci))

]︸ ︷︷ ︸
≡v

(54)

where mt+1(m, ci) = (m− ci)Rt+1 + ξt+1 and i = 1, 2. Tv is concave for concave v. Since
the space of continuous and concave functions is closed, v is also concave and satisfies

1

2

∑
i=1,2

Et
[
Γ1−ρ
t+1 v(mt+1(m, ci))

]
≤ Et

[
Γ1−ρ
t+1 v(mt+1(m, c̃))

]
. (55)

On the other hand, 1
2
{u(c1) + u(c2)} < u(c̃). Then one gets

Tv(m) < u(c̃) + β Et
[
Γ1−ρ
t+1 v(mt+1(m, c̃))

]
. (56)

Since c̃ is a feasible choice for ci, the LHS of this equation cannot be a maximum,
which contradicts the definition.

Using uniqueness of c(m) we can now show

lim
n→∞

cT−n+1(m) = c(m). (57)



Suppose this does not hold for some m = m∗. In this case, {cT−n+1(m∗)}∞n=1 has a sub-
sequence

{
cT−n(i)(m

∗)
}∞
i=1

that satisfies limi→∞ cT−n(i)(m
∗) = c∗ and c∗ 6= c(m∗). Now

define c∗T−n+1 = cT−n+1(m∗). c∗ > 0 because limi→∞ vT−n(i)+1(m∗) ≤ limi→∞ u(c∗T−n(i)).
Because a(m∗) > 0 and ψ ∈ [ψ, ψ̄] there exist {m∗+, m̄∗+} satisfying 0 < m∗+ < m̄∗+ and
mT−n+1(m∗, c∗T−n+1) ∈

[
m∗+, m̄

∗
+

]
. It follows that limn→∞ vT−n+1(m) = v(m) and the

convergence is uniform on m ∈
[
m∗+, m̄

∗
+

]
. (Uniform convergence is obtained from Dini’s

theorem.1) Hence for any δ > 0, there exists an n1 such that

β ET−n
[
Γ1−ρ
T−n+1

∣∣vT−n+1(mT−n+1(m∗, c∗T−n+1))− v(mT−n+1(m∗, c∗T−n+1))
∣∣] < δ

for all n ≥ n1. It follows that if we define

w(m∗, z) = u(z) + β ET−n
[
Γ1−ρ
T−n+1v(mT−n+1(m∗, z))

]
(58)

then vT−n(m∗) satisfies

lim
n→∞

∣∣vT−n(m∗)− w(m∗, c∗T−n+1)
∣∣ = 0. (59)

On the other hand, there exists an i1 ∈ N such that∣∣v(mT−n(i)(m
∗, c∗T−n(i)))− v(mT−n(i)(m

∗, c∗))
∣∣ ≤ δ for all i ≥ i1 (60)

because v is uniformly continuous on [m∗+, m̄
∗
+]. limi→∞

∣∣cT−n(i)(m
∗)− c∗

∣∣ = 0 and

∣∣mT−n(i)(m
∗, c∗T−n(i))−mT−n(i)(m

∗, c∗)
∣∣ ≤ R

Γψ

∣∣c∗T−n(i) − c∗
∣∣ . (61)

This implies

lim
i→∞

∣∣w(m∗, c∗T−n(i)+1)− w(m∗, c∗)
∣∣ = 0. (62)

From (59) and (62), we obtain limi→∞ vT−n(i)(m
∗) = w(m∗, c∗) and this implies

w(m∗, c∗) = v(m∗). This implies that c(m) is not uniquely determined, which is a
contradiction.

Thus, the consumption functions must converge.

1[Dini’s theorem] For a monotone sequence of continuous functions {vn(m)}∞n=1 which is defined
on a compact space and satisfies limn→∞ vn(m) = v(m) where v(m) is continuous, convergence is
uniform.
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