0.1 Convergence of v; in Euclidian Space

Boyd’s theorem shows that T defines a contraction mapping in a f -bounded space. We
now show that T also defines a contraction mapping in Euclidian space.
Since v*(m) = Tv*(m),

Vr—ner = vl < @™ lve = vl (50)
On the other hand, vp —v* € C; (A, B) and k = ||vy — v*||, < oo because vy and v*
are in C; (A, B). It follows that
Vrons1(m) = vi(m)] < ka7 |F (m)]. (51)
Then we obtain
JLH;OVT_HH(m) = v*(m). (52)
Since vp(m) = ";:)p, vr_1(m) < % < vr(m). On the other hand, vy_; <

vy means Jvy_; < JTvp, in other words, vy_s(m) < vp_1(m). Inductively one gets
vr_n(m) > vy_n,_1(m). This means that {vy_,41(m)} ~, is a decreasing sequence,
bounded below by v*.

0.2 Convergence of c¢;

Given the proof that the value functions converge, we now show the pointwise conver-
gence of consumption functions {cr_,+1(m)} — ;.
We start by showing that
c(m) = ar[g maX] {u(cy) + BE [T {v(ms1)] } (53)
ctE|lkMm,Kkm
is uniquely determined. We show this by contradiction. Suppose there exist ¢; and ¢y
that both attain the supremum for some m, with mean ¢ = (¢; + ¢3)/2. ¢; satisfies
Tv(m) = u(c;) + BE, [Ty {v(mes(m, c:))] (54)
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where myy1(m, ¢;) = (m —¢;)Riy1 + &1 and ¢ = 1,2, Tv is concave for concave v. Since
the space of continuous and concave functions is closed, v is also concave and satisfies

1 _ _ ~
5 0 B itvimea(m, )] < B[O fv(me(m, )] (55)
i=1,2
On the other hand, § {u(c1) + u(c2)} < u(é). Then one gets
Tv(m) < (@) + BE; [ {v(myp (m, 8))] . (56)
Since ¢ is a feasible choice for ¢;, the LHS of this equation cannot be a maximum,
which contradicts the definition.
Using uniqueness of ¢(m) we can now show

lim cp_pi1(m) = c(m). (57)

n—o0



Suppose this does not hold for some m = m*. In this case, {cr_n41(m*)} ~, has a sub-
sequence {CT_n(Z') (m*)}zl that satisfies lim; oo cr_p(i)(m*) = ¢* and ¢* # c(m*). Now
define ¢j_, . = cr_p1(m*). c* > 0 because lim;_,oo Vr_n(i)+1(m*) < limy_e0 u(c*T_n(i)).
Because a(m*) > 0 and 1 € [, ] there exist {m?,m7 } satisfying 0 < m?} < m’ and
Mr_ny1(M*, Cp_, 1) € [mi,mi]. It follows that lim,, o Vr_pi1(m) = v(m) and the
convergence is uniform on m € [r_ni, mﬂ . (Uniform convergence is obtained from Dini’s
theorem.") Hence for any 6 > 0, there exists an n; such that

BEr—w [T7 1 [Vonir (Mr—nia (m*, &5 h)) = V(mr—na(m™ c )] <06
for all n > ny. It follows that if we define
w(m®, 2) = u(z) + BEr_n [[75 V(mr_nia(m*, 2))] (58)
then vp_, (m*) satisfies

Tim [y (m') = wim' )| =0, (59)

On the other hand, there exists an 7; € N such that

[V(mr—p (m*, Cr—n(i))) — V(M _pn@ (m*, )| < 6 for all i > 4 (60)
because v is uniformly continuous on [m?, m4]. lim; o |cr—n@(m*) — ¢*| = 0 and
* td * * R * %
‘mT*n(i) (M*, er_p(iy) — Mr—p(@y(m*, )| < o Cron@) — € (61)
This implies
B [, 0) = )| = (62
From (59) and (62), we obtain lim; o vr_nu)(m*) = w(m*,c¢*) and this implies

w(m*, ¢*) = v(m*). This implies that c¢(m) is not uniquely determined, which is a
contradiction.
Thus, the consumption functions must converge.

![Dini’s theorem] For a monotone sequence of continuous functions {v,,(m)},-; which is defined
on a compact space and satisfies lim,,_, o v,(m) = v(m) where v(m) is continuous, convergence is
uniform.
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