
1 Existence of a Concave Consumption Function
To show that (6) defines a sequence of continuously differentiable strictly increasing
concave functions {cT , cT−1, ..., cT−k}, we start with a definition. We will say that a
function n(z) is ‘nice’ if it satisfies

1. n(z) is well-defined iff z > 0

2. n(z) is strictly increasing

3. n(z) is strictly concave

4. n(z) is C3 (its first three derivatives exist)

5. n(z) < 0

6. limz↓0 n(z) = −∞.

(Notice that an implication of niceness is that limz↓0 n′(z) =∞.)
Assume that some vt+1 is nice. Our objective is to show that this implies vt is also

nice; this is sufficient to establish that vt−n is nice by induction for all n > 0 because
vT (m) = u(m) and u(m) = m1−ρ/(1− ρ) is nice by inspection.
Now define an end-of-period value function vt(a) as

vt(a) = β Et
[
Γ1−ρ
t+1 vt+1(Rt+1a+ ξt+1)

]
. (50)

Since there is a positive probability that ξt+1 will attain its minimum of zero and since
Rt+1 > 0, it is clear that lima↓0 vt(a) = −∞ and lima↓0 v

′
t(a) = ∞. So vt(a) is well-

defined iff a > 0; it is similarly straightforward to show the other properties required for
vt(a) to be nice. (See Hiraguchi (2003).)
Next define vt(m, c) as

vt(m, c) = u(c) + vt(m− c) (51)

which is C3 since vt and u are both C3, and note that our problem’s value function
defined in (6) can be written as

vt(m) = max
c

vt(m, c). (52)

vt is well-defined if and only if 0 < c < m. Furthermore, limc↓0 vt(m, c) =

limc↑m vt(m, c) = −∞, ∂2vt(m,c)

∂c2
< 0, limc↓0

∂vt(m,c)

∂c
= +∞, and limc↑m

∂vt(m,c)

∂c
= −∞. It

follows that the ct(m) defined by

ct(m) = arg max
0<c<m

vt(m, c) (53)

exists and is unique, and (6) has an internal solution that satisfies

u′(ct(m)) = v′t(m− ct(m)). (54)

Since both u and vt are strictly concave, both ct(m) and at(m) = m−ct(m) are strictly
increasing. Since both u and vt are three times continuously differentiable, using (54)



we can conclude that ct(m) is continuously differentiable and

c′t(m) =
v′′t (at(m))

u′′(ct(m)) + v′′t (at(m))
. (55)

Similarly we can easily show that ct(m) is twice continuously differentiable (as is at(m))
(See Appendix 2.) This implies that vt(m) is nice, since vt(m) = u(ct(m)) + vt(at(m)).

2 ct(m) is Twice Continuously Differentiable
First we show that ct(m) is C1. Define y as y ≡ m+ dm. Since u′ (ct(y))− u′ (ct(m)) =

v′t(at(y))− v′t(at(m)) and at(y)−at(m)
dm

= 1− ct(y)−ct(m)
dm

,

v′t(at(y))− v′t(at(m))

at(y)− at(m)
=

=

(
u′ (ct(y))− u′ (ct(m))

ct(y)− ct(m)
+

v′t(at(y))− v′t(at(m))

at(y)− at(m)

)
ct(y)− ct(m)

dm

Since ct and at are continuous and increasing, lim
dm→+0

u′(ct(y))−u′(ct(m))
ct(y)−ct(m)

< 0 and

lim
dm→+0

v′t(at(y))−v′t(at(m))

at(y)−at(m)
< 0 are satisfied. Then u′(ct(y))−u′(ct(m))

ct(y)−ct(m)
+

v′t(at(y))−v′t(at(m))

at(y)−at(m)
< 0 for

sufficiently small dm. Hence we obtain a well-defined equation:

ct(y)− ct(m)

dm
=

v′t(at(y))−v′t(at(m))

at(y)−at(m)

u′(ct(y))−u′(ct(m))
ct(y)−ct(m)

+
v′t(at(y))−v′t(at(m))

at(y)−at(m)

.

This implies that the right-derivative, c′+t (m) is well-defined and

c′+t (m) =
v′′t (at(m))

u′′(ct(m)) + v′′t (at(m))
.

Similarly we can show that c′+t (m) = c′−t (m), which means c′t(m) exists. Since vt is
C3, c′t(m) exists and is continuous. c′t(m) is differentiable because v′′t is C1, ct(m) is C1

and u′′(ct(m)) + v′′t (at(m)) < 0. c′′t (m) is given by

c′′t (m) =
a′t(m)v′′′t (at) [u′′(ct) + v′′t (at)]− v′′t (at) [c′tu

′′′(ct) + a′tv
′′′
t (at)]

[u′′(ct) + v′′t (at)]
2 . (56)

Since v′′t (at(m)) is continuous, c′′t (m) is also continuous.

3 Proof that T Is a Contraction Mapping
We must show that our operator T satisfies all of Boyd’s conditions.
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Boyd’s operator T maps from Cz(A,B) to C(A,B). A preliminary requirement is
therefore that {Tz} be continuous for any z−bounded z, {Tz} ∈ C(R++,R). This is
not difficult to show; see Hiraguchi (2003).

Consider condition (1). For this problem,

{Tx}(mt)is max
ct∈[κmt,κ̄mt]

{
u(ct) + β Et

[
Γ1−ρ
t+1 x (mt+1)

]}
{Ty}(mt)is max

ct∈[κmt,κ̄mt]

{
u(ct) + β Et

[
Γ1−ρ
t+1 y (mt+1)

]}
,

so x(•) ≤ y(•) implies {Tx}(mt) ≤ {Ty}(mt) by inspection.1
Condition (2) requires that {T0} ∈ Cz (A,B). By definition,

{T0}(mt) = max
ct∈[κmt,κ̄mt]

{(
c1−ρ
t

1− ρ

)
+ β0

}
the solution to which is patently u(κ̄mt). Thus, condition (2) will hold if (κ̄mt)

1−ρ is
z-bounded. We use the bounding function

z(m) = η +m1−ρ, (57)

for some real scalar η > 0 whose value will be determined in the course of the proof.
Under this definition of z, {T0}(mt) = u(κ̄mt) is clearly z-bounded.
Finally, we turn to condition (3), {T(z + ζz)}(mt) ≤ {Tz}(mt) + ζαz(mt). The proof

will be more compact if we define c̆ and ă as the consumption and assets functions2

associated with Tz and ĉ and â as the functions associated with T(z + ζz); using this
notation, condition (3) can be rewritten

u(ĉ) + β{E(z + ζz)}(â) ≤ u(c̆) + β{Ez}(ă) + ζαz.

Now note that if we force the ^ consumer to consume the amount that is optimal for
the ∧ consumer, value for the ^ consumer must decline (at least weakly). That is,

u(ĉ) + β{Ez}(â) ≤ u(c̆) + β{Ez}(ă).

Thus, condition (3) will certainly hold under the stronger condition

u(ĉ) + β{E(z + ζz)}(â) ≤ u(ĉ) + β{Ez}(â) + ζαz
β{E(z + ζz)}(â) ≤ β{Ez}(â) + ζαz

βζ{Ez}(â) ≤ ζαz
β{Ez}(â) ≤ αz
β{Ez}(â) < z.

where the last line follows because 0 < α < 1 by assumption.3

1For a fixed mt, recall that mt+1 is just a function of ct and the stochastic shocks.
2Section 2.7 proves existence of a continuously differentiable consumption function, which implies

the existence of a corresponding continuously differentiable assets function.
3The remainder of the proof could be reformulated using the second-to-last line at a small cost to

intuition.
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Using z(m) = η +m1−ρ and defining ât = â(mt), this condition is

β Et[Γ1−ρ
t+1 (âtRt+1 + ξt+1)1−ρ]−m1−ρ

t < η(1− β Et Γ1−ρ
t+1︸ ︷︷ ︸

=i

)

which by imposing PF-FVAC (equation (25), which says i < 1) can be rewritten as:

η >
β Et

[
Γ1−ρ
t+1 (âtRt+1 + ξt+1)1−ρ]−m1−ρ

t

1− i
. (58)

But since η is an arbitrary constant that we can pick, the proof thus reduces to showing
that the numerator of (58) is bounded from above:

(1− ℘)β Et
[
Γ1−ρ
t+1 (âtRt+1 + θt+1/(1− ℘))1−ρ]+ ℘β Et

[
Γ1−ρ
t+1 (âtRt+1)1−ρ]−m1−ρ

t

≤(1− ℘)β Et
[
Γ1−ρ
t+1 ((1− κ̄)mtRt+1 + θt+1/(1− ℘))1−ρ]+ ℘βR1−ρ((1− κ̄)mt)

1−ρ −m1−ρ
t

=(1− ℘)β Et
[
Γ1−ρ
t+1 ((1− κ̄)mtRt+1 + θt+1/(1− ℘))1−ρ]+m1−ρ

t

(
℘βR1−ρ

(
℘1/ρ (Rβ)1/ρ

R

)1−ρ

− 1

)

=(1− ℘)β Et
[
Γ1−ρ
t+1 ((1− κ̄)mtRt+1 + θt+1/(1− ℘))1−ρ]+m1−ρ

t

℘1/ρ (Rβ)1/ρ

R︸ ︷︷ ︸
<1 by WRIC

−1


(59)

<(1− ℘)β Et
[
Γ1−ρ
t+1 (θ/(1− ℘))1−ρ] = i(1− ℘)ρθ1−ρ.

We can thus conclude that equation (58) will certainly hold for any:

η > η =
i(1− ℘)ρθ1−ρ

1− i
(60)

which is a positive finite number under our assumptions.
The proof that T defines a contraction mapping under the conditions (34) and (30) is

now complete.

3.1 T and v

In defining our operator T we made the restriction κmt ≤ ct ≤ κ̄mt. However, in the
discussion of the consumption function bounds, we showed only (in (35)) that κtmt ≤
ct(mt) ≤ κ̄tmt. (The difference is in the presence or absence of time subscripts on the
MPC’s.) We have therefore not proven (yet) that the sequence of value functions (6)
defines a contraction mapping.
Fortunately, the proof of that proposition is identical to the proof above, except that

we must replace κ̄ with κ̄T−1 and the WRIC must be replaced by a slightly stronger
(but still quite weak) condition. The place where these conditions have force is in the
step at (59). Consideration of the prior two equations reveals that a sufficient stronger
condition is

℘β(R(1− κ̄T−1))1−ρ < 1
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(℘β)1/(1−ρ)(1− κ̄T−1) > 1

(℘β)1/(1−ρ)(1− (1 + ℘1/ρÞÞÞR)−1) > 1

where we have used (33) for κ̄T−1 (and in the second step the reversal of the inequality
occurs because we have assumed ρ > 1 so that we are exponentiating both sides by the
negative number 1− ρ). To see that this is a weak condition, note that for small values
of ℘ this expression can be further simplified using (1 +℘1/ρÞÞÞR)−1 ≈ 1−℘1/ρÞÞÞR so that
it becomes

(℘β)1/(1−ρ)℘1/ρÞÞÞR > 1

(℘β)℘(1−ρ)/ρÞÞÞ1−ρ
R < 1

β℘1/ρÞÞÞ1−ρ
R < 1.

Calling the weak return impatience factor ÞÞÞ℘
R = ℘1/ρÞÞÞR and recalling that the

WRIC was ÞÞÞ℘
R < 1, the expression on the LHS above is βÞÞÞ−ρR times the WRIF. Since we

usually assume β not far below 1 and parameter values such that ÞÞÞR ≈ 1, this condition
is clearly not very different from the WRIC.
The upshot is that under these slightly stronger conditions the value functions for

the original problem define a contraction mapping with a unique v(m). But since
limn→∞ κT−n = κ and limn→∞ κ̄T−n = κ̄, it must be the case that the v(m) toward which
these vT−n’s are converging is the same v(m) that was the endpoint of the contraction
defined by our operator T. Thus, under our slightly stronger (but still quite weak)
conditions, not only do the value functions defined by (6) converge, they converge to the
same unique v defined by T.4
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4It seems likely that convergence of the value functions for the original problem could be proven
even if only the WRIC were imposed; but that proof is not an essential part of the enterprise of this
paper and is therefore left for future work.

5


	Existence of a Concave Consumption Function
	ct(m) is Twice Continuously Differentiable
	Proof that T Is a Contraction Mapping
	T and v


