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1 Online Appendix: Bivariate analytic example

In this online Appendix, we provide an analytical example to show the following results: First,
the equivalence between the solutions for an indeterminate LRE model using the methodology of
Lubik and Schorfheide (2004) and our proposed method. Second, there exists a unique mapping
between the alternative representations that can be considered using our augmented representa-
tion: The alternative representations are equivalent up to a transformation of the correlations
between the exogenous shocks and the forecast error included in the auxiliary process.

1.1 Lubik and Schorfheide (2004)

We consider the following simple model

yt =
1

θy
Et(yt+1) +

1

θy
Et(xt+1) + εt (1)

xt =
1

θx
Et(xt+1) (2)

where εt
iid∼ N(0, σ2ε) and the corresponding forecast errors are denoted as

ηy,t ≡ yt − Et−1(yt) (3)

ηx,t ≡ xt − Et−1(xt) (4)
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The LRE model in (1)∼ (4) can be written in the following matrix form

Γ0St = Γ1St−1 + Ψεt + Πηt, (5)

where St ≡ (yt, xt, Et(yt+1), Et(xt+1))
′ and ηt ≡ (ηy,t, ηx,t)

′.

As the matrix Γ0 is non-singular, the LRE model in (5) can be written as

St = Γ∗1St−1 + Ψ∗εt + Π∗ηt, (6)

where
Γ∗1 ≡ Γ−10 Γ1 =

[
04×2 A4×2

]
, Π∗ ≡ Γ−10 Π = A4×2

Ψ∗ ≡ Γ−10 Ψ =


0

0

−θx
0

 , A4×2 =


1 0

0 1

θy −θx
0 θx


Applying the Jordan decomposition, the matrix Γ∗1 can be decomposed as Γ∗1 ≡ JΛJ−1, where
the elements of the diagonal matrix Λ denote the roots of the system

Λ ≡


0 0 0 0

0 0 0 0

0 0 θx 0

0 0 0 θy

 =

[
Λ11 0

0 θy

]
.

Assuming without loss of generality that |θx| ≤ 1 and |θy| > 1, the system in (6) is indetermi-
nate because the number of expectational variables, {Et(yt+1), Et(xt+1)}, exceeds the number of
explosive roots, θy. Defining the vector wt ≡ J−1St, the model can be represented as

wt ≡

[
w1,t

w2,t

]
=

[
Λ11 0

0 θy

][
w1,t−1

w2,t−1

]
+

[
Ψ̃1

Ψ̃2

]
εt +

[
Π̃1

Π̃2

]
ηt, (7)

where the first block denotes the stationary block of the system and the second block is unstable.

The adoption of Sims’ (2002) code, Gensys, to solve this model is not appropriate as it deals with
determinate models. After having obtained the representation in (7), Gensys would construct a
matrix Φ such that premultiplying the system by a matrix [I −Φ] would eliminate the effect of
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non-fundamental shocks. Equivalently, the matrix has to satisfy the condition

[I − Φ]

[
Π̃1

Π̃2

]
= Π̃1 − ΦΠ̃2 = 0. (8)

Under determinacy, the matrix Π̃2 is square and, assuming that it is also non-singular1, it is

possible to solve for Φ = Π̃1

(
Π̃2

)−1
.

The approach in Lubik and Schorfheide (2004) modifies this intuition to account for the inde-
terminacy that characterizes the model in (7). Under indeterminacy, the matrix Π̃2 is a vector
with more columns than rows, implying that it is not possible to obtain a matrix Φ that satisfies
the above condition in (8). Nevertheless, Lubik and Schorfheide (2004) apply a singular value
decomposition (SVD) to the matrix Π̃2 to obtain

Π̃2 ≡ UDV ′ =
[
U.1 U.2

] [D11 0

0 0

][
V ′.1
V ′.2

]
= U.1D11V

′
.1, (9)

where D11 is a diagonal matrix and U and V are orthonormal matrices. In this particular
example, the matrix to decompose is Π̃2 =

[
a b

]
, where a ≡ −θy and b ≡ −θxθy/(θx− θy), and

the resulting SVD is

Π̃2 ≡ UDV ′ = 1
[
d 0

] [a
d

b
d

b
d −a

d

]
, (10)

where d ≡
√
a2 + b2. Lubik and Schorfheide (2004) then proceed by defining the matrix Φ as

Φ = Π̃1

(
V.1d

−1U ′.1
)

=

0 0

0 0

0 θx

[adb
d

]
1

d
=

0 0

0 0

0 θx
b
d2

 ,
and premultiply the system in (7) by the following matrices[

I −Φ

0 1

][
w1,t

w2,t

]
=

[
I −Φ

0 0

][
Λ11 0

0 θy

][
w1,t−1

w2,t−1

]
+

+

[
I −Φ

0 0

][
Ψ̃1

Ψ̃2

]
εt +

[
I −Φ

0 0

][
Π̃1

Π̃2

]
︸ ︷︷ ︸

6=0

ηt, (11)

1Note that Gensys obtains the matrix Φ even when the matrix Π̃2 is singular by applying a singular value
decomposition.
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where the second block represents the constraint that guarantees the boundedness of the solution,

w2,t = 0⇐⇒ Et(yt+1) = − b
a
Et(xt+1). (12)

Importantly, given that the model is indeterminate, the last term in equation (11) differs from
zero and therefore non-fundamental disturbances affect the model dynamics. Solving (11) for the
endogenous variables, St, the system takes the form

St = Γ̃∗1St−1 + Ψ̃∗εt + Π̃∗ηt, (13)

where

Γ̃∗1 ≡
[
04×2 B4×2

]
, Ψ̃∗ ≡

(a
d

)2


1

b/a

−θx(b/a)2

θxb/a

 ,

Π̃∗ ≡ B4×2 =


(
b2/d2

)
− b
a(1− b2/d2)

−ab/d2 (1− b2/d2)
θx
(
b2/d2

)
−θx ba(1− b2/d2)

−θxab/d2 θx(1− b2/d2)

 .
The last step that Lubik and Schorfheide (2004) implement is to express the forecast errors as a
function of the fundamental shock, εt, and a sunspot shock, ζt, as

ηt = −V.1D−111 U
′
.1Ψ̃2εt + V.2

(
v
Mεt +Mζζt

)
, (14)

where V ′.2 =
[
b
d −a

d

]
. Combining (13) with (14) and normalizing Mζ = 1, the solution to the

LRE model is2

St = Γ̃∗1St−1 + Ψ̃∗εt + Π̃∗V.2

(
v
Mεt + ζt

)
. (15)

This solution can be equivalently written in a form that explicitly includes the boundedness
condition in (12) for which w2,t = 0 and therefore Et(yt+1) = − b

aEt(xt+1). Recalling that
St = (yt, xt, Et(yt+1), Et(xt+1))

′, the dynamics of the solution in (15) are now expressed as a
function of only one state variable,

2Note that the term −Π̃∗
(
V.1D

−1
11 U ′.1

v
Ψ2

)
εt always equals to zero since

(
Π̃∗V.1

)
= 0 by the properties of the

orthonormal matrix V.
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St =


−b/a

1

−θxb/a
θx

Et−1(xt) + Ψ̃∗εt + Π̃∗V.2

(
v
Mεt + ζt

)

=


θx

(θy−θx)

1
θ2x

(θy−θx)

θx

Et−1(xt) +
θ2y
d2


1
θx

(θx−θy)

− θ3x
(θx−θy)2
θ2x

(θx−θy)

 εt +
θy
d


θx

(θy−θx)

1
θ2x

(θy−θx)

θx


(

v
Mεt + ζt

)
, (16)

where d =
√
θ2y + (θxθy)

2 /(θx − θy)2.

1.2 Our proposed methodology

We now provide the derivation of the solution for the LRE model in (5) and reported below in
equation (17) using the methodology proposed in this paper

Γ0St = Γ1St−1 + Ψεt + Πηt. (17)

The methodology consists of appending the following equation to the original LRE model

ωt =
1

α
ωt−1 + νx,t − ηx,t,

where vt denotes a newly defined sunspot shock and without loss of generality α ≡ |θx|. Denoting
the newly defined vector of endogenous variables Ŝt ≡ (St, ωt)

′ = (yt, xt, Et(yt+1), Et(xt+1), ωt)
′,

and the newly defined vector of exogenous shocks ε̂xt ≡ (εt, νx,t)
′, the augmented representation

of the LRE model is

Γ̂0Ŝt = Γ̂1Ŝt−1 + Ψ̂ε̂xt + Π̂ηt. (18)

Pre-multiplying the system in (18) by Γ̂−10 , we obtain

Ŝt = Γ̂∗1Ŝt−1 + Ψ̂∗ε̂xt + Π̂∗ηt, (19)
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where

Γ̂∗1 ≡

 Γ∗1 04×1

01×4
1
α

 , Ψ̂∗ ≡

Ψ∗ 04×1

0 −1

 , Π̂∗ ≡

 Π∗4×2

0 1

 .
and the matrices {Γ∗1,Ψ∗,Π∗} are the same as those found in (6). Applying the Jordan decom-
position, the matrix Γ̂∗1 can be decomposed as Γ̂∗1 ≡ ĴΛ̂Ĵ−1, where the elements of the diagonal
matrix Λ̂ denote the roots of the system

Λ̂ ≡

[
Λ 0

0 1
α

]
=


0 0 0 0 0

0 0 0 0 0

0 0 θx 0 0

0 0 0 θy 0

0 0 0 0 1
α

 =

[
Λ11 0

0 Λ22

]
.

Assuming as in the previous section that |θx| ≤ 1 and |θy| > 1, then 1/α = 1/ |θx| > 1 and

the diagonal elements of the matrix Λ22 =

[
θy 0

0 1/α

]
correspond to the explosive roots of the

system. While the original system in (17) is indeterminate, the augmented representation in (18)
is determinate as the number of expectational variables, {Et(yt+1), Et(xt+1)}, equals the number
of explosive roots, {θy, 1/α}. Defining the vector ŵt ≡ Ĵ−1Ŝt, the model can be represented as

ŵt ≡

[
ŵ1,t

ŵ2,t

]
=

[
Λ11 0

0 Λ22

][
ŵ1,t−1

ŵ2,t−1

]
+

[
Ψ̂∗∗1
Ψ̂∗∗2

]
ε̂xt +

[
Π̂∗∗1
Π̂∗∗2,x

]
ηt, (20)

where the first block is stationary. Given that the second block is unstable, the following two
conditions have to be imposed to guarantee the boundedness of the solution. First, the linear
combination of the endogenous variables, ŵ2,t, is set to zero,

ŵ2,t = 0 ⇐⇒

{
Et(yt+1) = − b

aEt(xt+1)

ωt = 0
(21)

Second, the linear combination of fundamental and non-fundamental shocks also has to equal
zero. Therefore, the non-fundamental shocks, ηt, become a function of the augmented vector of
exogenous shocks, ε̂xt ,

ηt = −
(

Π̂∗∗2,x

)−1
Ψ̂∗∗2 ε̂

x
t ⇐⇒ ηt =

[
1 − θx

θx−θy
0 1

][
εt

νx,t

]
(22)
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Considering equation (20), it is relevant to point out that the matrix Π̂∗∗2,x differs from the cor-
responding matrix for the representation in which we incorporate the forecast error, ηy,t, defined
as Π̂∗∗2,y,

Π̂∗∗2,x ≡

[
θy

θxθy
θx−θy

0 −1

]
Π̂∗∗2,y ≡

[
θy

θxθy
θx−θy

−1 0

]
.

Therefore, when the auxiliary process is written as a function of the non-fundamental shock, ηy,t,
the restriction imposed on ηt to guarantee the boundedness of the solution also differs from the
one found in (22)

ηt = −
(

Π̂∗∗2,y

)−1
Ψ̂∗∗2 ε̂

y
t ⇐⇒ ηt =

[
0 1

θx−θy
θx

− θx−θy
θx

][
εt

νy,t

]
(23)

Importantly, from equations (22) and (23) it is possible to establish a relationship that links the
two non-fundamental disturbances {νx,t, νy,t} and the exogenous shock εt,

νx,t =
θx − θy
θx

εt −
θx − θy
θx

νy,t. (24)

We show below that equations (21) and (24) are crucial for the equivalence between the augmented
representations that include different non-fundamental shocks in the auxiliary processes that our
methodology proposes.

The augmented model in (20) is determinate as the second block has two explosive roots to match
the two expectational variables of the model. It is therefore possible to apply the approach in
Sims’(2002) to construct a matrix Φ̂x such that premultiplying the system by a matrix [I −Φ̂x]

would eliminate the effect of non-fundamental shocks. Equivalently, the matrix has to satisfy the
condition

[I − Φ̂x]

[
Π̂∗∗1
Π̂∗∗2,x

]
= Π̂∗∗1 − Φ̂xΠ̂∗∗2,x = 0. (25)

Importantly, the matrix Π̂∗∗2,x is square under determinacy and, assuming that it is also non-

singular3, it is possible to solve for Φ̂x = Π̂∗∗1

(
Π̂∗∗2,x

)−1
.

3Note that Gensys obtains the matrix Φ̂ even when the matrix Π̂∗∗2 is singular by applying a singular value
decomposition.
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To solve the model, the system in (20) is then premultiplied by the following matrices[
I −Φ̂x

0 I

][
ŵ1,t

ŵ2,t

]
=

[
I −Φ̂x

0 0

][
Λ11 0

0 Λ22

][
ŵ1,t−1

ŵ2,t−1

]
+

+

[
I −Φ̂x

0 0

][
Ψ̂∗∗1
Ψ̂∗∗2

]
ε̂xt +

[
I −Φ̂x

0 0

][
Π̂∗∗1
Π̂∗∗2,x

]
︸ ︷︷ ︸

=0

ηt, (26)

where the second block represents the constraint that guarantees the boundedness of the solution,
ŵ2,t = 0. Importantly, the augmented representation is determinate, and the last term of the
system in (26) equals zero. Nevertheless, the non-fundamental disturbance, νx,t, affects the
dynamics of the original model through vector of exogenous shocks, ε̂xt ≡ (εt, νx,t)

′. Solving (25)
for the endogenous variables, the system takes the form

yt

xt

Et(yt+1)

Et(xt+1)

 =


θx

(θy−θx)

1
θ2x

(θy−θx)

θx

Et−1(xt) +


1

0

0

0

 εt +


θx

(θy−θx)

1
θ2x

(θy−θx)

θx

 νx,t. (27)

1.3 Equivalence of alternative representations under our proposed method

We now show that there exists a unique mapping between the alternative representations that can
be considered using our augmented representation: These representations are equivalent up to a
transformation of the correlations between the exogenous shocks and the forecast error included
in the auxiliary process. In particular, to rewrite the reduced-form solution for the augmented
representation that includes the non-fundamental shock, ηy,t, in the auxiliary process, we recall
equations (21) and (24) that we report below in equations (28) and (29)

ŵ2,t = 0 ⇐⇒

{
Et(yt+1) = − θx

θx−θyEt(xt+1)

ωt = 0
(28)

νx,t =
θx − θy
θx

εt −
θx − θy
θx

νy,t (29)

Using the above equations, we can rewrite the system in (27) as a function of νy,t, rather than
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νx,t, 
yt

xt

Et(yt+1)

Et(xt+1)

 =


1

θy−θx
θx

θx

θy − θx

Et−1(yt) +


0

θx−θy
θx

−θx
θx − θy

 εt +


1

− θx−θy
θx

θx

−(θx − θy)

 νy,t. (30)

1.4 Equivalence of methodologies: Lubik and Schorfheide (2004) and our
proposed method

In this section, we show the equivalence of the representations obtained using the two method-
ologies. In equation (31) below, we report the solution for the endogenous variables, St =

(yt, xt, Et(yt+1), Et(xt+1))
′, using the methodology of Lubik and Schorfheide (2004),


yt

xt

Et(yt+1)

Et(xt+1)

 =


θx

(θy−θx)

1
θ2x

(θy−θx)

θx

Et−1(xt) +
θ2y
d2


1
θx

(θx−θy)

− θ3x
(θx−θy)2
θ2x

(θx−θy)

 εt +
θy
d


θx

(θy−θx)

1
θ2x

(θy−θx)

θx


(

v
Mεt + ζt

)
, (31)

where d =
√
θ2y + (θxθy)

2 /(θx − θy)2. We now report in equation (32) below the solution using
our methodology when we include the forecast error, ηx,t, in the auxiliary process


yt

xt

Et(yt+1)

Et(xt+1)

 =


θx

(θy−θx)

1
θ2x

(θy−θx)

θx

Et−1(xt) +


1

0

0

0

 εt +


θx

(θy−θx)

1
θ2x

(θy−θx)

θx

 νx,t. (32)

To show the equivalence between the two representations, we need to recall the restrictions that
each methodology imposed on the forecast errors, ηt, as a function of the exogenous shock, εt ,
and the additional sunspot shock. Following Lubik and Schorfheide (2004), we derived that

ηt = −V.1D−111 U
′
.1Ψ̃2εt + V.2

(
v
Mεt +Mζζt

)
,

where we know that V ′ =

[
V ′.1
V ′.2

]
=

[
a
d

b
d

b
d −a

d

]
, D11 = d =

√
a2 + b2 , U1 = 1, Ψ̃2 = −a = θy and
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b = −θxθy/(θx − θy). Therefore, normalizing Mζ = 1, we obtain

ηt =

[
a
d
b
d

]
a

d
εt +

[
b
d

−a
d

](
v
Mεt + ζt

)

=

{
θ2y
d2

[
1
θx

(θx−θy)

]
+
θy
d

[
− θx

(θx−θy)

1

]
v
M

}
εt +

θy
d

[
− θx

(θx−θy)

1

]
ζt. (33)

Similarly, from the derivation using our methodology, we know that

ηt = −
(

Π̂∗∗2,x

)−1
Ψ̂∗∗2 ε̂

x
t ⇐⇒ ηt =

[
1 − θx

θx−θy
0 1

][
εt

νx,t

]
(34)

Comparing equations (33) and (34), we also point out that the sunspot shock introduced in
our representation, νx,t, has a clear interpretation: It is always equivalent to the forecast error
that is included in the auxiliary process. On the contrary, the sunspot shock, ζt, in Lubik and
Schorfheide (2003) has a more complex interpretation and the authors provide a formal argument
to consider it as a trigger of belief shocks that lead to a revision of the forecasts.

We then combine equations (33) and (34) to establish the following relationship

νx,t =

[
θ2y
d2

θx
(θx − θy)

+
θy
d

v
M

]
εt +

θy
d
ζt. (35)

Plugging this relationship in the solution in equation (32) obtained using our methodology, we
derive the solution in (31) derived using the methodology of Lubik and Schorfheide (2004). This
result shows that any parametrization in Lubik and Schorfheide (2004) has a unique mapping to

our representation. In particular, we now consider the parametrization
v
M = M∗(θ) +M , where

M is centered at 0 and M∗(θ) is found by minimizing the distance between the impulse response
functions under determinacy and indeterminacy at the boundary of the determinacy region. We
can therefore write equation (35) as

νx,t = γε(M
∗(θ))εt + γζζt, (36)

where γε(M∗(θ)) ≡
[
θ2y
d2

θx
(θx−θy) +

θy
d M

∗(θ)
]
and γζ ≡

θy
d . Given a parametrization {M∗(θ), σζ}

and the normalization E [εtζt] = 0 in Lubik and Schorfheide (2004), we derive the corresponding
variance and covariance terms of the non-fundamental shock, νx,t, introduced in our approach as

σ2νx(M∗(θ)) = γ2ε(M
∗(θ))σ2ε + γ2ζσ

2
ζ (37)
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σε,νx(M∗(θ)) = γε(M
∗(θ))σ2ε (38)

The variance-covariance matrix of the shocks ε̂xt = {εt, νx,t}′ can be written as

Ωε̂x(M∗(θ)) ≡

[
σ2ε σε,νx(M∗(θ))

σε,νx(M∗(θ)) σ2νx(M∗(θ))

]
. (39)

Implementing a Cholesky decomposition, the shocks ε̂xt = {εt, vxt }′ can be written as

ε̂xt =

[
εt

νx,t

]
= L(M∗(θ))ut ≡

 σε 0

σε,νx (M
∗(θ))

σε

√
σ2νx(M∗(θ))−

(
σε,νx (M

∗(θ))
σε

)2
[u1,t

u2,t

]
, (40)

where V ar(ut) = I and E(ut) = 0. Finally, the parametrization in Lubik and Schorfheide (2004)
can be mapped to the solution we obtained in equation (32) as

yt

xt

Et(yt+1)

Et(xt+1)

 =


θx

(θy−θx)

1
θ2x

(θy−θx)

θx

Et−1(xt)+


1 θx
(θy−θx)

0 1

0 θ2x
(θy−θx)

0 θx


 σε 0

σε,νx (M
∗(θ))

σε

√
σ2νx(M∗(θ))−

(
σε,νx (M

∗(θ))
σε

)2
[u1,t

u2,t

]
.

(41)
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