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Specification tests for non-Gaussian maximum likelihood
estimators
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We propose generalized DWH specification tests which simultaneously com-
pare three or more likelihood-based estimators in multivariate conditionally het-
eroskedastic dynamic regression models. Our tests are useful for Garch mod-
els and in many empirically relevant macro and finance applications involving
Vars and multivariate regressions. We determine the rank of the differences be-
tween the estimators’ asymptotic covariance matrices under correct specification,
and take into account that some parameters remain consistently estimated under
distributional misspecification. We provide finite sample results through Monte
Carlo simulations. Finally, we analyze a structural Var proposed to capture the
relationship between macroeconomic and financial uncertainty and the business
cycle.
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1. Introduction

Empirical studies with financial data suggest that returns distributions are leptokurtic
even after controlling for volatility clustering effects. This feature has important prac-
tical consequences for standard risk management measures such as Value at Risk and
recently proposed systemic risk measures such as Conditional Value at Risk or Marginal
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Expected Shortfall (see Adrian and Brunnermeier (2016) and Acharya, Pedersen, Philip-
pon, and Richardson (2017), respectively), which could be severely mismeasured by as-
suming normality. Given that empirical researchers are interested in those risk measures
for several probability levels, they often specify a parametric leptokurtic distribution,
which then they use to estimate their models by maximum likelihood (ML).

A nontrivial by-product of these non-Gaussian ML procedures is that they deliver
more efficient estimators of the mean and variance parameters, especially if the shape
parameters can be fixed to their true values. The downside, though, is that they often
achieve those efficiency gains under correct specification at the risk of returning incon-
sistent parameter estimators under distributional misspecification (see, e.g., Newey and
Steigerwald (1997)). This is in marked contrast with the generally inefficient Gaussian
pseudo-maximum likelihood (PML) estimators advocated by Bollerslev and Wooldridge
(1992) among many others, which remain root-T consistent for the mean and variance
parameters under relatively weak conditions.

If researchers were only interested in those two conditional moments, the semi-
parametric (SP) estimators of Engle and Gonzalez-Rivera (1991) and Gonzalez-Rivera
and Drost (1999) would provide an attractive solution because they are consistent and
also attain full efficiency for a subset of the parameters (see Linton (1993), Drost and
Klaassen (1997), Drost, Klaassen, and Werker (1997), and Sun and Stengos (2006) for
univariate time series examples). Unfortunately, SP estimators suffer from the curse of
dimensionality when the number of series involved, N , is moderately large, which limits
their use. Furthermore, Amengual, Fiorentini, and Sentana (2013) show that nonpara-
metrically estimated conditional quantiles lead to risk measures with much wider confi-
dence intervals than their parametric counterparts even in univariate contexts. Another
possibility would be the spherically symmetric semiparametric (SSP) methods consid-
ered by Hodgson and Vorkink (2003) and Hafner and Rombouts (2007), which are also
partially efficient while retaining univariate rates for their nonparametric part regard-
less of N . However, asymmetries in the true joint distribution will contaminate these
estimators too.

In any event, given that many research economists at central banks, financial institu-
tions, and economic consulting firms continue to rely on the estimators that commer-
cial econometric software packages provide, it would be desirable that they routinely
complemented their empirical results with some formal indication of the validity of the
parametric assumptions they make.

The statistical and econometric literature on model specification is huge. In this pa-
per, our focus is the adequacy of the conditional distribution under the maintained as-
sumption that the rest of the model is correctly specified. Even so, there are various ways
of assessing it. One possibility is to nest the assumed distribution within a more flexible
parametric family in order to conduct a Lagrange Multiplier (LM) test of the nesting re-
strictions. This is the approach in Mencía and Sentana (2012), who use the generalized
hyperbolic family as an instrumental nesting distribution for the multivariate Student t.
In contrast, other specification tests do not consider an explicit alternative hypothesis.
A case in point are consistent tests based on the difference between the theoretical and
empirical cumulative distribution functions of the innovations (Bai (2003) and Bai and
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Zhihong (2008)) or their characteristic functions (Bierens and Wang (2012) and Amen-
gual, Carrasco, and Sentana (2020)). An alternative procedure would be the information
matrix test of White (1982), which compares some or all of the elements of the expected
Hessian and the variance of the score. White (1987) also proposed the application of
Newey’s (1985) conditional moment test to assesses the martingale difference property
of the scores under correct specification. Finally, the general class of moment tests in
Newey (1985) and Tauchen (1985) could also be entertained, as Bontemps and Meddahi
(2012) illustrate.

But when a research economist relies on standard software for calculating some
non-Gaussian estimators of θ and their asymptotic standard errors from real data, a
more natural approach to testing distributional specification would be to compare those
estimators on a pairwise basis using simple Durbin–Wu–Hausman (DWH) tests.1 As is
well known, the traditional version of these tests can refute the correct specification of a
model by exploiting the diverging properties under misspecification of a pair of estima-
tors of the same parameters. Focusing on the model parameters makes sense because if
they are inconsistently estimated, the conditional moments derived from them will be
inconsistently estimated too.

In this paper, we take this idea one step further and propose an extension of the
DWH tests which simultaneously compares three or more estimators. The rationale for
our proposal is given by a novel proposition which shows that if we order the five esti-
mators we mentioned in the preceding paragraphs as restricted and unrestricted non-
Gaussian ML, SSP, SP, and Gaussian PML, each estimator is “efficient” relative to all the
others behind. This “Matryoshka doll” structure for their joint asymptotic covariance
matrix implies that there are four asymptotically independent contiguous comparisons,
and that any other pairwise comparison must be a linear combination of those four. We
exploit these properties in developing the asymptotic distribution of our proposed mul-
tiple comparison tests. We also explore several important issues related to the practical
implementation of DWH tests, including its two score versions, their numerical invari-
ance to reparametrizations, and their application to subsets of parameters.

To design reliable tests, we first need to figure out the rank of the difference between
the asymptotic covariance matrices under the null of correct specification so as to use
the right number of degrees of freedom. We also need to take into account that some pa-
rameters continue to be consistently estimated under the alternative of incorrect distri-
butional specification, thereby avoiding wasting degrees of freedom without providing
any power gains.

In Fiorentini and Sentana (2019), we characterized the mean and variance parame-
ters that distributionally misspecified ML estimators can consistently estimate, and pro-
vided simple closed-form consistent estimators for the rest. One of the most interesting
results that we obtain in this paper is that the parameters that continue to be consis-
tently estimated by the parametric estimators under distributional misspecification are
those which are efficiently estimated by the semiparametric procedures. In contrast, the

1Wu (1973) compared OLS with IV in linear single equation models to assess regressor exogeneity un-
aware that Durbin (1954) had already suggested this. Hausman (1978) provided a procedure with far wider
applicability.



686 Fiorentini and Sentana Quantitative Economics 12 (2021)

remaining parameters, which will be inconsistently estimated by distributionally mis-
specified parametric procedures, the semiparametric procedures can only estimate with
the efficiency of the Gaussian PML estimator. Therefore, we will focus our tests on the
comparison of the estimators of this second group of parameters, for which the usual
efficiency—consistency trade off is of first-order importance.

The inclusion of means and the explicit coverage of multivariate models make our
proposed tests useful not only for Garch models but also for dynamic linear mod-
els such as Vars or multivariate regressions, which remain the workhorse in empiri-
cal macroeconomics and asset pricing contexts. This is particularly relevant in prac-
tice because researchers are increasingly acknowledging the nonnormality of many
macroeconomic variables (see Lanne, Meitz, and Saikkonen (2017) and the references
therein for recent examples of univariate and multivariate time series models with non-
Gaussian innovations). Nevertheless, structural models pose some additional inference
challenges, which we discuss separately. Obviously, our approach also applies in cross-
sectional models with exogenous regressors, as well as in static ones.

The rest of the paper is as follows. In Section 2, we provide a quick revision of DWH
tests and derive several new results which we use in our subsequent analysis. Then, in
Section 3 we formally present the five different likelihood-based estimators that we have
mentioned, and derive our proposed specification tests, paying particular attention to
their degrees of freedom and power. A Monte Carlo evaluation of our tests can be found
in Section 4, followed by an empirical analysis of the relationship between uncertainty
and the business cycle using a structural Var. Finally, we present our conclusions in
Section 6. Proofs and auxiliary results are gathered in Appendices.

2. Durbin–Wu–Hausman tests

2.1 Wald and score versions

Let θ̂T and θ̃T denote two GMM estimators of θ based on the average influence func-
tions m̄T (θ) and n̄T (θ) and weighting matrices S̃mT and S̃nT , respectively. When both
sets of moment conditions hold, then under standard regularity conditions (see, e.g.,
Newey and McFadden (1994)), the estimators will be jointly root-T consistent and
asymptotically Gaussian, so

√
T(θ̃T − θ̂T ) d→ N(0�Δ) and

T(θ̃T − θ̂T )′Δ−(θ̃T − θ̂T ) d→ χ2
r � (1)

where r = rank(Δ) and − denotes a generalized inverse. Consider now a sequence of
local alternatives such that

√
T(θ̃T − θ̂T ) ∼ N(θm − θn�Δ)� (2)

In this case, the asymptotic distribution of the DWH statistics (1) will become a non-
central chi-square with noncentrality parameter (θm − θn)′Δ−(θm − θn) and the same
number of degrees freedom (see, e.g., Hausman (1978) or Holly (1987)). Therefore, the
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local power of a DWH test will be increasing in the limiting discrepancy between the two
estimators, and decreasing in both the number and magnitude of the nonzero eigenval-
ues of Δ.

Knowing the right number of degrees of freedom is particularly important for em-
ploying the correct distribution under the null. Unfortunately, some obvious consistent
estimators ofΔmight lead to inconsistent estimators ofΔ−.2 In fact, they might not even
be positive semidefinite in finite samples. We will revisit these issues in Sections 3.4 and
3.6, respectively.

The calculation of the DWH test statistic (1) requires the prior computation of θ̂T
and θ̃T . In a likelihood context, however, Theorem 5.2 of White (1982) implies that an
asymptotically equivalent test can be obtained by evaluating the scores of the restricted
model at the inefficient but consistent parameter estimator (see also Reiss (1983) and
Ruud (1984), as well as Davidson and MacKinnon (1989)). Theorem 2.5 in Newey (1985)
shows that the same equivalence holds in situations in which the estimators are defined
by moment conditions. In fact, it is possible to derive not just one but two asymptotically
equivalent score versions of the DWH test by evaluating the influence functions that give
rise to each of the estimators at the other estimator, as explained in Section 10.3 of White
(1994). The following proposition, which we include for completeness, spells out those
equivalences:

Proposition 1. Assume that the moment conditions mt (θ) and nt (θ) are correctly spec-
ified. Then, under standard regularity conditions,

T(θ̃T − θ̂T )′Δ−(θ̃T − θ̂T )− Tm̄′
T (θ̃T )SmJm(θ0)Λ

−
mJ ′

m(θ0)Smm̄T (θ̃T ) = op(1) and (3)

T(θ̃T − θ̂T )′Δ−(θ̃T − θ̂T )− T n̄′
T (θ̂T )SnJn(θ0)Λ

−
n J ′

n(θ0)Snn̄T (θ̂T ) = op(1)� (4)

where Λm and Λn are, respectively, the limiting variances of J ′
m(θ0)Sm

√
Tm̄T (θ̃T ) and

J ′
n(θ0)Sn

√
T n̄T (θ̂T ), which are such that

Δ= [
J ′
m(θ0)SmJm(θ0)

]−1
Λm

[
J ′
m(θ0)SmJm(θ0)

]−1

= [
J ′
n(θ0)SnJn(θ0)

]−1
Λn
[
J ′
n(θ0)SnJn(θ0)

]−1

with Jm(θ) = plimT→∞ ∂m̄T (θ)/∂θ
′, Jn(θ) = plimT→∞ ∂n̄T (θ)/∂θ

′, Sm = plimT→∞ S̃mT ,
Sn = plimT→∞ S̃nT and rank[J ′

m(θ0)SmJm(θ0)] = rank[J ′
n(θ0)SnJn(θ0)] = p = dim(θ), so

that rank(Λm) = rank(Λn) = rank(Δ).

An intuitive way of reinterpreting the asymptotic equivalence between the orig-
inal DWH test in (1) and the two alternative score versions on the right-hand sides
of (3) and (4) is to think of the latter as original DWH tests based on two conve-
nient reparametrizations of θ obtained through the population version of the first or-
der conditions that give rise to each estimator, namely πm(θ) = J ′

m(θ)SmE[mt (θ)] and

2A trivial nonrandom example of discontinuities is the sequence 1/T , which converges to 0 while its
generalized inverse (1/T)− = T diverges. Theorem 1 in Andrews (1987) provides conditions under which a
quadratic form based on a generalized inverse of a weighting matrix converges to a chi-square distribution.
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πn(θ) = J ′
n(θ)SnE[nt (θ)]. While these new parameters are equal to 0 when evaluated

at the pseudo-true values of θ implicitly defined by the exactly identified moment con-
ditions J ′

m(θm)SmE[mt(θm)] = 0 and J ′
n(θn)SnE[nt(θn)] = 0, respectively, πm(θn) and

πn(θm) are not necessarily so, unless the correct specification condition θm = θn = θ0

holds.3 The same arguments also allow us to loosely interpret the score versions of the
DWH tests as distance metric tests of those moment conditions, as they compare the
values of the GMM criteria at the estimator which sets those exactly identified moments
to 0 with their values at the alternative estimator. We will discuss more formal links to the
classical Wald, Likelihood Ratio (LR) and LM tests in a likelihood context in Section 3.4.

Proposition 1 implies the choice between the three versions of the DWH test must
be based on either computational ease, numerical invariance or finite sample reliability.
While computational ease is model specific, we will revisit the last two issues in Sec-
tions 2.2 and 4, respectively.

2.2 Numerical invariance to reparametrizations

Suppose we decide to work with an alternative parametrization of the model for con-
venience or ease of interpretation. For example, we might decide to compare the logs
of the estimators of a variance parameter rather than their levels. We can then state the
following result.

Proposition 2. Consider a homeomorphic, continuously differentiable transforma-
tion π(·) from θ to a new set of parameters π, with rank[∂π ′(θ)/∂θ] = p = dim(θ)

when evaluated at θ0, θ̂T , and θ̃T . Let π̂T = arg minπ∈Π m̄′
T (π)S̃mT m̄T (π) and π̃T =

arg minπ∈Π n̄′
T (π)S̃nT n̄T (π), where mt (π) = mt[θ(π)] and nt (π)= nt[θ(π)] are the influ-

ence functions written in terms of π, with θ(π) denoting the inverse mapping such that
π[θ(π)] =π. Then:

1. The Wald versions of the DWH tests based on θ̃T − θ̂T and π̃T − π̂T are numeri-
cally identical if the mapping is affine, so that π = Aθ+ b, with A and b known and
|A| �= 0.

2. The score versions of the tests based on m̄T (θ̃T ) and m̄T (π̃T ) are numerically identi-
cal if

Λ∼
mT =

[
∂θ(π̃T )

∂π ′
]−1

Λ∼
mt

[
∂θ′(π̃T )

∂π

]−1
�

whereΛ∼
mT andΛ∼

mT , are consistent estimators of the generalized inverses of the lim-
iting variances of J ′

m(θ0)Sm

√
Tm̄T (θ̃T ) and J ′

m(θ0)Sm

√
T m̄T (π̃T ), respectively.

3. An analogous result applies to the score versions based on n̄T (θ̂T ) and n̄T (π̂T ).

3A related analogy arises in indirect estimation, in which the asymptotic equivalence between the score-
based methods proposed by Gallant and Tauchen (1996) and the parameter-based methods in Gouriéroux,
Monfort, and Renault (1993) can be intuitively understood if we regard the expected values of the scores of
the auxiliary model as a new set of auxiliary parameters that summarizes all the information in the original
parameters (see Calzolari, Fiorentini, and Sentana (2004) for further details and a generalization).
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These numerical invariance results, which extend those in Sections 17.4 and 22.1 of
Ruud (2000), suggest that the score-based tests might be better behaved in finite sam-
ples than their “Wald” counterpart. We will provide some simulation evidence on this
conjecture in Section 4.

2.3 Subsets of parameters

In some examples, generalized inverses can be avoided by working with a parameter
subvector. In particular, if the (scaled) difference between two estimators of the last p2
elements of θ, θ̂2T , and θ̃2T , converge in probability to 0, then comparing θ̂1T and θ̃1T is
analogous to using a generalized inverse with the entire parameter vector (see Holly and
Monfort (1986) for further details).

But one may also want to focus on a subset if the means of the asymptotic distribu-
tions of θ̂2T and θ̃2T coincide both under the null and the alternative, so that a DWH test
involving these parameters will result in a waste of degrees of freedom, and thereby a
loss of power.

The following result provides a useful interpretation of the two score versions
asymptotically equivalent to a Wald-style DWH test that compares θ̂1T and θ̃1T .

Proposition 3. Define

m̄⊥
1T (θ�Sn) = J ′

1m(θ)Smm̄T (θ)

−J ′
1m(θ)SmJ2m(θ)

[
J ′

2m(θ)SmJ2m(θ)
]−1J ′

2m(θ)Smm̄T (θ)�

n̄⊥
1T (θ�Sn) = J ′

1n(θ)Snn̄T (θ)−J ′
1n(θ)SnJ2n(θ)

[
J ′

2n(θ)SnJ2n(θ)
]−1J ′

2n(θ)Snn̄T (θ)

as two sets of p1 transformed sample moment conditions, where

Jm(θ) =
[
J1m(θ) J2m(θ)

]
=
[

plim
T→∞

∂m̄T (θ)/∂θ
′
1 plim

T→∞
∂m̄T (θ)/∂θ

′
2
]
�

Jn(θ) =
[
J1n(θ) J2n(θ)

]
=
[

plim
T→∞

∂n̄T (θ)/∂θ
′
1 plim

T→∞
∂n̄T (θ)/∂θ

′
2
]
�

If mt (θ) and nt (θ) are correctly specified, then under standard regularity conditions,

T(θ̃T − θ̂T )′Δ−
11(θ̃T − θ̂T )− Tm̄⊥′

T (θ̃T )Λ
−
m⊥

1
m̄⊥′

T (θ̃T ) = op(1) and

T(θ̃1T − θ̂1T )
′Δ−

11(θ̃1T − θ̂1T )− T n̄⊥′
1T (θ̂T )Λ

−
n⊥

1
n̄⊥

1T (θ̂T ) = op(1)�

where Δ11, Λm⊥
1

and Λn⊥
1

are the limiting variances of
√
T(θ̃1T − θ̂1T ),

√
Tm̄⊥

1T (θ̃T �Sm)

and
√
T n̄⊥

1T (θ̂T �Sn), respectively, which are such that

Δ11 = [
J ′
m(θ0)SmJm(θ0)

]11
Λm⊥

1

[
J ′
m(θ0)SmJm(θ0)

]11

= [
J ′
n(θ0)SnJn(θ0)

]11
Λn⊥

1

[
J ′
n(θ0)SnJn(θ0)

]11
�

with 11 denoting the diagonal block of the relevant inverse corresponding to θ1.
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Intuitively, we can understand m̄⊥
1T (θ�Sn) and n̄⊥

1T (θ�Sn) as moment conditions that
exactly identify θ1, but with the peculiarity that

plim
T→∞

∂m̄⊥
1T (θ�Sn)

∂θ′
2

= plim
T→∞

∂n̄⊥
1T (θ�Sn)

∂θ′
2

= 0�

which makes them asymptotically immune to the sample variability in the estimators
of θ2.

When J ′
1m(θ)SmJ2m(θ) = J ′

1n(θ)SnJ2n(θ) = 0, the above moment tests will be
asymptotically equivalent to tests based on J ′

1m(θ)Sm

√
Tm̄T (θ̃T ) and J ′

1n(θ)Sn

√
T ×

n̄T (θ̂T ), respectively, but in general this will not be the case.

2.4 Multiple simultaneous comparisons

All applications of DWH tests we are aware of compare two estimators of the same
underlying parameters. However, as we shall see in Section 3.2, there are situations in
which three or more estimators are available. In those circumstances, it might not be
entirely clear which pair of estimators researchers should focus on.

Ruud (1984) highlighted a special factorization structure of the likelihood such that
different pairwise comparisons give rise to asymptotically equivalent tests. He illus-
trated his result with three classical examples: (i) full sample versus first subsample
versus second subsample in Chow tests; (ii) GLS versus within-groups versus between-
groups in panel data; and (iii) Tobit versus probit versus truncated regressions. Unfortu-
nately, Ruud’s (1984) factorization structure does not apply in our case.

In general, the best pairwise comparison, in the sense of having maximum power
against a given sequence of local alternatives, would be the one with the highest non-
centrality parameter among those tests with the same number of degrees of freedom.4

But in practice, a researcher might not be able to make the required calculations with-
out knowing the nature of the departure from the null. In those circumstances, a sensi-
ble solution would be to simultaneously compare all the alternative estimators. Such a
generalization of the DWH test is conceptually straightforward, but it requires the joint
asymptotic distribution of the different estimators involved. There is one special case in
which this simultaneous test takes a particularly simple form.

Proposition 4. Let θ̂
j
T , j = 1� � � � � J denote an ordered sequence of asymptotically Gaus-

sian estimators of θwhose joint asymptotic covariance matrix adopts the following form:⎡
⎢⎢⎢⎢⎢⎢⎣

Ω1 Ω1 � � � Ω1 Ω1

Ω1 Ω2 � � � Ω2 Ω2
���

���
� � �

���
���

Ω1 Ω2 � � � ΩJ−1 ΩJ−1

Ω1 Ω2 � � � ΩJ−1 ΩJ

⎤
⎥⎥⎥⎥⎥⎥⎦
� (5)

4Ranking tests with different degrees of freedom is also straightforward but more elaborate (see Holly
(1987)).
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The DWH test comparing all J estimators, T
∑J

i=2(θ̂
j
T − θ̂j−1

T )′(Ωj −Ωj−1)
+(θ̂jT − θ̂j−1

T ),
is the sum of J − 1 consecutive pairwise DWH tests that are asymptotically mutually inde-
pendent under the null of correct specification and sequences of local alternatives.

Hence, the asymptotic distribution of the simultaneous DWH test will be a noncen-
tral χ2 with degrees of freedom and noncentrality parameters equal to the sum of the de-
grees of freedom and noncentrality parameters of the consecutive pairwise DWH tests.
Moreover, the asymptotic independence of the tests implies that in large samples, the
probability that at least one pairwise test will reject under the null will be 1 − (1 −α)J−1,
where α is the common significance level.

Positive semidefiniteness of the covariance structure in (5) implies that one can rank
(in the usual positive semidefinite sense) the asymptotic variance of the J estimators as

ΩJ ≥ΩJ−1 ≥ · · · ≥Ω2 ≥Ω1�

so that the sequence of estimators follows a decreasing efficiency order. Nevertheless,
(5) goes beyond this ordering because it effectively implies that the estimators behave
like Matryoshka dolls, with each one being “efficient” relative to all the others below.
Therefore, Proposition 4 provides the natural multiple comparison generalization of
Lemma 2.1 in Hausman (1978).

An example of the covariance structure (5) arises in the context of sequential, gen-
eral to specific tests of nested parametric restrictions (see Holly (1987) and Section 22.6
of Ruud (2000)). More importantly for our purposes, the same structure also arises natu-
rally in the comparison of parametric and semiparametric likelihood-based estimators
of multivariate, conditionally heteroskedastic, dynamic regression models, to which we
turn next.

3. Application to non-Gaussian likelihood estimators

3.1 Model specification

In a multivariate dynamic regression model with time-varying variances and covari-
ances, the vector of N observed variables, yt , is typically assumed to be generated as

yt =μt (θ)+Σ1/2
t (θ)ε∗

t �

where μt (θ) = μ(It−1;θ), Σt (θ) =Σ(It−1;θ), μ(·), and vech[Σ(·)] are N × 1 and N(N +
1)/2 × 1 vector functions describing the conditional mean vector and covariance matrix
known up to the p × 1 vector of parameters θ, It−1 denotes the information set avail-
able at t − 1, which contains past values of yt and possibly some contemporaneous

conditioning variables, and Σ1/2
t (θ) is some particular “square root” matrix such that

Σ
1/2
t (θ)Σ

1/2′
t (θ) = Σt (θ). Throughout the paper, we maintain the assumption that the

conditional mean and variance are correctly specified, in the sense that there is a true
value of θ, say θ0, such that E(yt |It−1) = μt (θ0) and V (yt |It−1) =Σt (θ0). We also main-
tain the high level regularity conditions in Bollerslev and Wooldridge (1992) because we
want to leave unspecified the conditional mean vector and covariance matrix in order
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to achieve full generality. Primitive conditions for specific multivariate models can be
found, for example, in Ling and McAleer (2003).

To complete the model, a researcher needs to specify the conditional distribution
of ε∗

t . In Supplemental Appendix D (Fiorentini and Sentana (2021)), we study the gen-
eral case. In view of the options that the dominant commercially available econometric
software companies offer to their clients, though, in the main text we study the situa-
tion in which a researcher makes the assumption that, conditional on It−1, the distribu-
tion of ε∗

t is independent and identically distributed as some particular member of the
spherical family with a well-defined density, or ε∗

t |It−1;θ�η∼ i�i�d� s(0� IN�η) for short,
where η denotes q additional shape parameters which effectively characterize the distri-
bution of ςt = ε∗′

t ε
∗
t (see Supplemental Appendix C for a brief introduction to spherically

symmetric distributions).5 The most prominent example is the standard multivariate
normal, which we denote by η = 0 without loss of generality. Another important ex-
ample favored by empirical researchers is the standardized multivariate Student t with
ν degrees of freedom, or i�i�d� t(0� IN�ν) for short. As is well known, the multivariate t

approaches the multivariate normal as ν → ∞, but has generally fatter tails and allows
for cross-sectional dependence beyond correlation. For tractability, we define η as 1/ν,
which will always remain in the finite range [0�1/2) under our assumptions.6 Obviously,
in the univariate case, any symmetric distribution, including the GED (also known as
the Generalized Gaussian distribution), is spherically symmetric, too.7

3.2 Likelihood-based estimators

Let LT (φ) denote the pseudo log-likelihood function of a sample of size T for the general
model discussed in Section 3.1, where φ= (θ′�η′)′ are the p+ q parameters of interest,
which we assume variation-free. We consider up to five different estimators of θ.

1. Restricted ML (RML): θ̂T (η̄), which is such that θ̂T (η̄) = arg maxθ∈ΘLT (θ� η̄). Its
efficiency can be characterized by the θ, θ block of the information matrix, Iθθ(φ0), pro-
vided that η̄= η0. Thus, we can interpret Iθθ(φ0) as the restricted parametric efficiency
bound.

2. Joint or unrestricted ML (UML): θ̂T , obtained as (θ̂T � η̂T ) = arg maxφ∈ΦLT (θ�η).
In this case, P(φ0) = Iθθ(φ0) − Iθη(φ0)I−1

ηη(φ0)I ′
θη(φ0) is the feasible parametric effi-

ciency bound.
3. Spherically symmetric semiparametric (SSP): θ̊T , which restricts ε∗

t to have an i�i�d�

s(0� IN�η) conditional distribution, but does not impose any additional structure on the
distribution of ςt = ε∗′

t ε
∗
t . This estimator is usually computed by means of one BHHH

iteration of the spherically symmetric efficient score starting from a consistent estimator

5Nevertheless, Propositions 10, 13, C2, D1, D2, and D3 already deal explicitly with the general case, while
Propositions 5, 6, 7, 8, and 9 continue to be valid without sphericity.

6A Student t with 1 < ν ≤ 2 implies an infinite variance, which is incompatible with the correct specifica-
tion of Σt , while the conditional mean will not even be properly defined if ν ≤ 1.

7See McDonald and Newey (1988) for a univariate generalized t distribution, which nests both GED and
Student t, and Gillier (2005) for a spherically symmetric multivariate version of the GED.
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(see Supplemental Appendix C.5 for further computational details).8 Associated to it we
have the spherically symmetric semiparametric efficiency bound S̊(φ0).

4. Unrestricted semiparametric (SP): θ̈T , which only assumes that the conditional
distribution of ε∗

t is i�i�d� (0� IN). It is also computed with one BHHH iteration of the
efficient score starting from a consistent estimator (see Supplemental Appendix D.3 for
further computational details). Associated to it we have the usual semiparametric effi-
ciency bound S̈(φ0).

5. Gaussian pseudo ML (PML): θ̃T = θ̂T (0), which imposes η = 0 even though the
true conditional distribution of ε∗

t might be neither normal nor spherical. As is well
known, C−1(φ0) = A(φ0)B−1(φ0)A(φ0) gives the efficiency bound for this estimator,
where A(φ0) is the expected Gaussian Hessian and B(φ0) the variance of the Gaussian
score.

Propositions C1–C3 in Supplemental Appendix C and Proposition D3 in Supplemen-
tal Appendix D contain detailed expressions for all these efficiency bounds.

3.3 Covariance relationships

The next proposition provides the asymptotic covariance matrices of the different esti-
mators presented in the previous section, and of the scores on which they are based:

Proposition 5. If ε∗
t |It−1;φ0 is i�i�d� s(0� IN�η0) with bounded fourth moments, then

lim
T→∞

V

⎡
⎢⎢⎢⎢⎢⎣

√
T

T

T∑
t=1

⎛
⎜⎜⎜⎜⎜⎝

sθt (φ0)

sθ|ηt (φ0)

s̊θt (φ0)

s̈θt (φ0)

sθt (θ0�0)

⎞
⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎦=

⎡
⎢⎢⎢⎢⎢⎣

Iθθ(φ0) P(φ0) S̊(φ0) S̈(φ0) A(φ0)

P(φ0) P(φ0) S̊(φ0) S̈(φ0) A(φ0)

S̊(φ0) S̊(φ0) S̊(φ0) S̈(φ0) A(φ0)

S̈(φ0) S̈(φ0) S̈(φ0) S̈(φ0) A(φ0)

A(φ0) A(φ0) A(φ0) A(φ0) B(φ0)

⎤
⎥⎥⎥⎥⎥⎦ (6)

and

lim
T→∞

V

⎡
⎢⎢⎢⎢⎢⎣

√
T

⎛
⎜⎜⎜⎜⎜⎝

θ̂T (η0)− θ0

θ̂T − θ0

θ̊T − θ0

θ̈T − θ0

θ̃T − θ0

⎞
⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

I−1
θθ (φ0) I−1

θθ (φ0) I−1
θθ (φ0) I−1

θθ (φ0) I−1
θθ (φ0)

I−1
θθ (φ0) P−1(φ0) P−1(φ0) P−1(φ0) P−1(φ0)

I−1
θθ (φ0) P−1(φ0) S̊−1(φ0) S̊−1(φ0) S̊−1(φ0)

I−1
θθ (φ0) P−1(φ0) S̊−1(φ0) S̈−1(φ0) S̈−1(φ0)

I−1
θθ (φ0) P−1(φ0) S̊−1(φ0) S̈−1(φ0) C(φ0)

⎤
⎥⎥⎥⎥⎥⎦ � (7)

8Hodgson, Linton, and Vorkink (2002) also consider alternative estimators that iterate the semiparamet-
ric adjustment until it becomes negligible. However, since they have the same first-order asymptotic distri-
bution, we shall not discuss them separately.
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Therefore, the five estimators have the Matryoshka doll covariance structure in (5),
with each estimator being “efficient” relative to all the others below. A trivial implica-
tion of this result is that one can unsurprisingly rank (in the usual positive semidefinite
sense) the “information matrices” of those five estimators as follows:

Iθθ(φ0) ≥ P(φ0) ≥ S̊(φ0) ≥ S̈(φ0) ≥ C−1(φ0)� (8)

Proposition 5 remains valid when the distribution of ε∗
t conditional on It−1 is not

assumed spherical, provided that we cross out the terms corresponding to the SSP esti-
mator θ̊T (see Supplemental Appendix D for further details). Therefore, the approach we
develop in the next section can be straightforwardly extended to test the correct specifi-
cation of any maximum likelihood estimator of multivariate conditionally heteroskedas-
tic dynamic regression models. Such an extension would be important in practice be-
cause while the assumption of sphericity might be realistic for foreign exchange returns,
it seems less plausible for stock returns.

3.4 Multiple simultaneous comparisons

Five estimators allow up to ten different possible pairwise comparisons, and it is not ob-
vious which one researchers should focus on. If they only paid attention to the asymp-
totic covariance matrices of the differences between those ten combinations of estima-
tors, expression (8) suggests that they should focus on adjacent estimators. However, the
number of degrees of freedom and the diverging behavior of the estimators also play a
very important role.

Nevertheless, we also saw in Section 2.4 that there is no reason why researchers
should choose just one such pair, especially if they are agnostic about the alternative.
In fact, the covariance structure in Proposition 5 combined with Proposition 4 im-
plies that DWH tests of multiple simultaneous comparisons are extremely simple be-
cause nonoverlapping pairwise comparisons give rise to asymptotically independent
test statistics. Importantly, this result, combined with the fact that any of the ten pos-
sible pairwise comparisons can be obtained as the sum of the intermediate contiguous
comparisons, implies that at the end of the day there are only four asymptotically in-
dependent pairwise comparisons. For example, the difference between the spherically
symmetric estimator θ̊T and the Gaussian estimator θ̃T is numerically equal to the sum
of the differences between each of those estimators and the general semiparametric es-
timator θ̈T , so the limiting mean and covariance matrix of

√
T(θ̊T − θ̃T ) will be the sum

of the limiting means and covariance matrices of
√
T(θ̊T − θ̈T ) and

√
T(θ̈T − θ̃T ). As a

result, we can compute the noncentrality parameters of the DWH test based on θ̊T − θ̃T
from the same ingredients as the noncentrality parameters of the DWH tests that com-
pare θ̊T − θ̈T and θ̈T − θ̃T . This result also implies that the differences between adjacent
asymptotic covariance matrices will often will be of reduced rank, a topic we will revisit
in Section 3.6.

Still, researchers may disregard θ̈T − θ̃T because the semiparametric estimator and
the Gaussian estimator are consistent for θ0 regardless of the conditional distribution, at
least as long as the i�i�d� assumption holds. For the same reason, they will also disregard
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θ̊T − θ̈T if they maintain the assumption of sphericity. In practice, the main factor for de-
ciding which estimators to compare is likely to be computational ease. For that reason,
many empirical researchers might prefer to compare only the three parametric estima-
tors included in standard software packages even though increases in power might be
obtained under the maintained assumption of i�i�d� innovations by comparing θ̂T to θ̊T
or θ̈T instead of θ̃T . The next proposition provides detailed expressions for the neces-
sary ingredients of the three DWH test statistics in (1), (3), and (4) when we compare the
unrestricted ML estimator of θ with its Gaussian PML counterpart.

Proposition 6. If the regularity conditions A.1 in Bollerslev and Wooldridge (1992) are
satisfied, then under the null of correct specification of the conditional distribution of yt

lim
T→∞

V
[√

T(θ̃T − θ̂T )
] = C(φ0)−P−1(φ0)�

lim
T→∞

V
[√

T s̄′
θ|ηT (θ̃T �η0)

] = P(φ0)C(φ0)P(φ0)−P(φ0) and

lim
T→∞

V
[√

T s̄′
θT (θ̂T �0)

] = B(φ0)−A(φ0)P−1(φ0)A(φ0)�

where s̄θ|ηT (θ̃T �η0) is the sample average of the unrestricted parametric efficient score for
θ evaluated at the Gaussian PML estimator θ̃T , while s̄θT (θ̂T �0) is the sample average of
the Gaussian PML score evaluated at the unrestricted parametric ML estimator θ̂T .

The next proposition provides the analogous expressions for the three DWH test
statistics in (1), (3), and (4) when we compare the restricted ML estimator of θ which
fixes η to η̄ with its unrestricted counterpart, which simultaneously estimates these pa-
rameters.

Proposition 7. If the regularity conditions in Crowder (1976) are satisfied, then under
the null of correct specification of the conditional distribution of yt

lim
T→∞

V
{√

T
[
θ̂T − θ̂T (η̄)

]}= P−1(φ0)− I−1
θθ (φ0)

= I−1
θθ (φ0)Iθη(φ0)Iηη(φ0)I ′

θη(φ0)I−1
θθ (φ0)�

lim
T→∞

V
[√

T s̄θT (θ̂T � η̄)
]= Iθθ(φ0)P−1(φ0)Iθθ(φ0)− Iθθ(φ0)

= Iθη(φ0)Iηη(φ0)I ′
θη(φ0) and

lim
T→∞

V
{√

T s̄′
θ|ηT

[
θ̂T (η̄)� η̄

]}= P(φ0)−P(φ0)I−1
θθ (φ0)P(φ0)

= Iθη(φ0)I−1
ηη(φ0)I ′

θη(φ0)I−1
θθ (φ0)Iθη(φ0)I−1

ηη(φ0)I ′
θη(φ0)�

where Iηη(φ0) = [Iηη(φ0) − I ′
θη(φ0)I−1

θθ (φ0)Iθη(φ0)]−1, s̄θT (θ̂T � η̄) is the sample aver-
age of the restricted parametric score evaluated at the unrestricted parametric ML estima-
tor θ̂T and s̄θ|ηT (θ̃T � η̄) is the sample average of the unrestricted parametric efficient score
for θ evaluated at the restricted parametric ML estimator θ̂T (η̄).
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The comparison between the unrestricted and restricted parametric estimators of
θ can be regarded as a test of H0 : η = η̄. However, it is not necessarily asymptotically
equivalent to the Wald, LR, and LM of the same hypothesis. In fact, a straightforward
application of the results in Holly (1982) implies that these four tests will be equivalent if
and only if rank [Iθη(φ0)] = q = dim(η), in which case we can show that the LM test and
the s̄θ|ηT [θ̂T (η̄)� η̄] version of our DWH test numerically coincide. But Proposition C1
in Supplemental Appendix C implies that in the spherically symmetric case Iθη(φ0) =
Ws(φ0)msr(η0), where Ws(φ0) in (C28) is p×1 and msr(η0) in (C18) is 1×q, which in turn
implies that rank [Iθη(φ0)] is one at most. Intuitively, the reason is that the dependence
between the conditional mean and variance parameters θ and the shape parameters η
effectively hinges on a single parameter in the spherically symmetric case, as explained
in Amengual, Fiorentini, and Sentana (2013). Therefore, this pairwise DWH test will be
asymptotically equivalent to the classical tests of H0 : η= η̄ when q = 1 and msr(η0) �= 0
only, the Student t with finite degrees of freedom constituting an important example.

More generally, the asymptotic distribution of the DWH test under a sequences
of local alternatives for which η0T = η̄ + 
η/√T will be a noncentral chi-square with
rank [Iθη(φ0)] degrees of freedom and noncentrality parameter


η′I ′
θη(φ0)I−1

θθ (φ0)
[
I−1
θθ (φ0)Iθη(φ0)Iηη(φ0)Iθη(φ0)I−1

θθ (φ0)
]−I−1

θθ (φ0)Iθη(φ0)
η� (9)

while the asymptotic distribution of the trinity of classical tests will be a noncentral dis-
tribution with q degrees of freedom and noncentrality parameter


η′[Iηη(φ0)− I ′
θη(φ0)I−1

θθ (φ0)Iθη(φ0)
]−1 
η�

Therefore, the DWH test will have power equal to size in those directions in which
Iθη(φ0)
η= 0 but more power than the classical tests in some others (see Hausman and
Taylor (1981), Holly (1982) and Davidson and MacKinnon (1989) for further discussion).
For analogous reasons, it will be consistent for fixed alternatives Hf : η = η̄ + 
η with
Iθη(φ0)
η �= 0.

3.5 Subsets of parameters

As in Section 2.3, we may be interested in focusing on a parameter subset either to avoid
generalized inverses or to increase power. In fact, we show in Sections 3.6 and 3.7 that
both motivations apply in our context. The next proposition provides detailed expres-
sions for the different ingredients of the DWH test statistics in Proposition 3 when we
compare the unrestricted ML estimator of a subset of the parameter vector with its Gaus-
sian PML counterpart.

Proposition 8. If the regularity conditions A.1 in Bollerslev and Wooldridge (1992) are
satisfied, then under the null of correct specification of the conditional distribution of yt ,

lim
T→∞

V
[√

T(θ̃1T − θ̂1T )
]= Cθ1θ1(φ0)−Pθ1θ1(φ0)�
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lim
T→∞

V
[√

T s̄θ1|θ2ηT (θ̃T �η0)
]

= [
Pθ1θ1(φ0)

]−1Cθ1θ1(φ0)
[
Pθ1θ1(φ0)

]−1 − [
Pθ1θ1(φ0)

]−1
and

lim
T→∞

V
[√

T s̄θ1|θ2T (θ̂T �0)
]

= [
Aθ1θ1(φ0)

]−1[Cθ1θ1(φ0)−Pθ1θ1(φ0)
][
Aθ1θ1(φ0)

]−1
� where

s̄θ1|θ2ηT (θ�η)

= s̄θ1T (θ�η)−
[
Iθ1θ2(φ0) Iθ1η(φ0)

][Iθ2θ2(φ0) Iθ2η(φ0)

I ′
θ2η

(φ0) Iηη(φ0)

]−1 [
s̄θ2T (θ�η)

s̄ηT (θ�η)

]
� (10)

Pθ1θ1(φ0)

=
⎧⎨
⎩Iθ1θ1(φ0)−

[
Iθ1θ2(φ0) Iθ1η(φ0)

][Iθ2θ2(φ0) Iθ2η(φ0)

I ′
θ2η

(φ0) Iηη(φ0)

]−1 [
I ′
θ1θ2

(φ0)

I ′
θ1η

(φ0)

]⎫⎬
⎭

−1

�

while

s̄θ1|θ2T (θ�0) = s̄θ1T (θ�0)−Aθ1θ2(φ0)A−1
θ2θ2

(φ0)s̄θ2T (θ�0)� and

Aθ1θ1(φ0)= [
Aθ1θ1(φ0)−Aθ1θ2(φ0)A−1

θ2θ2
(φ0)A′

θ1θ2
(φ0)

]−1
�

The analogous result for the comparison between the unrestricted and restricted ML
estimator of a subset of the parameter vector is as follows.

Proposition 9. If the regularity conditions in Crowder (1976) are satisfied, then under
the null of correct specification of the conditional distribution of yt ,

lim
T→∞

V
{√

T
[
θ̂1T − θ̂1T (η̄)

]} = Pθ1θ1(φ0)− Iθ1θ1(φ0)�

lim
T→∞

V
[√

T s̄θ1|θ2T (θ̂T � η̄)
] = [

Iθ1θ1(φ0)
]−1Pθ1θ1(φ0)

[
Iθ1θ1(φ0)

]−1 − [
Iθ1θ1(φ0)

]−1

and

lim
T→∞

V
{√

T s̄′
θ1|θ2ηT

[
θ̂T (η̄)� η̄

]}= [
Pθ1θ1(φ0)

]−1 − [Pθ1θ1(φ0)
]−1Iθ1θ1(φ0)

[
Pθ1θ1(φ0)

]−1
�

where s̄θ1|θ2ηT (θ�η) is defined in (10),

s̄θ1|θ2T (θ� η̄) = s̄θ1T (θ� η̄)− Iθ1θ2(φ0)I−1
θ2θ2

(φ0)s̄θ2T (θ� η̄)� and

Iθ1θ1(φ0) = [
Iθ1θ1(φ0)− Iθ1θ2(φ0)I−1

θ2θ2
(φ0)I ′

θ1θ2
(φ0)

]−1
�

In practice, we must replace A(φ0), B(φ0) and I(φ0) by consistent estimators to
make all the above tests operational. To guarantee the positive semidefiniteness of their
weighting matrices, we shall follow Ruud’s (1984) suggestion and estimate all those
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matrices as sample averages of the corresponding conditional expressions in Propo-
sitions C1 and C2 in Supplemental Appendix C evaluated at a common estimator of
φ, such as the restricted MLE [θ̂T (η̄)� η̄], its unrestricted counterpart φ̂T , or the Gaus-
sian PML θ̃T coupled with the sequential ML or method of moments estimators of η
in Amengual, Fiorentini, and Sentana (2013), the latter being such that B(θ�η) remains
bounded.9 In addition, in computing the three versions of the tests we exploit the the-
oretical relationships between the relevant asymptotic covariance matrices in Proposi-
tions 8 and 9 so that the required generalized inverses are internally coherent.

In what follows, we will simplify the presentation by concentrating on Wald version
of DWH tests in (1), but all our results can be readily applied to their two asymptotically
equivalent score versions in (3) and (4) by virtue of Proposition 1, and the same applies
to subsets of parameters thanks to Proposition 3.

3.6 Choosing the correct number of degrees of freedom

Propositions 6 and 7 establish the asymptotic variances involved in the calculation of
simultaneous DWH tests, but they do not determine the correct number of degrees of
freedom that researchers should use. In fact, there are cases in which two or more esti-
mators are equally efficient for all the parameters, and one instance in which this is true
for all five estimators:10

Proposition 10. 1. If ε∗
t |It−1;φ0 is i�i�d� N(0� IN), then

It (θ0�0) = V
[
st(θ0�0)|It−1;θ0�0

]=
[
V
[
sθt (θ0�0)|It−1;θ0�0

]
0

0′ Mrr(0)

]
�

where

V
[
sθt (θ0�0)|It−1;θ0�0

]= −E
[
hθθt (θ0�0)|It−1;θ0�0

]= At (θ0�0) = Bt(θ0�0)�

2. If ε∗
t |It−1;φ0 is i�i�d� s(0� IN�η0) with κ0 = E(ς2

t )/[N(N + 2)] − 1 < ∞, and Zl(φ0) =
E[Zlt(θ0)|φ0] �= 0, where Zlt (θ0) is defined in (C6), then S̈(φ0) = Iθθ(φ0) only if
η0 = 0.

The first part of this proposition, which generalizes Proposition 2 in Fiorentini, Sen-
tana, and Calzolari (2003), implies that θ̂T suffers no asymptotic efficiency loss from
simultaneously estimating η when η0 = 0. In turn, the second part, which generalizes
Result 2 in Gonzalez-Rivera and Drost (1999) and Proposition 6 in Hafner and Rombouts
(2007), implies that normality is the only such instance within the spherical family.

For practical purposes, this result implies that a researcher who assumes multivari-
ate normality cannot use DWH tests to assess distributional misspecification. But it also

9Unfortunately, DWH tests that involve the Gaussian PMLE will not work properly with unbounded
fourth moments, which violates one of the assumptions of Proposition C2 in Supplemental Appendix C.

10As we mentioned before, the restricted ML estimator θ̂T (η̄) is efficient provided that η̄= η0, which in
this case requires that the researcher must correctly impose normality.
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indicates that if she has specified instead a non-Gaussian distribution that nest the mul-
tivariate normal, she should not use those tests either if she suspects the true distribu-
tion may be Gaussian because the asymptotic distribution of the statistics will not be
uniform. Unfortunately, one cannot always detect this problem by looking at η̂T . For
example, Fiorentini, Sentana, and Calzolari (2003) prove that under normality, the ML
estimator of the reciprocal of degrees of freedom of a multivariate Student t will be 0
approximately half the time only. In many empirical applications, though, normality is
unlikely to be a practical concern.

There are other distributions for which some but not all of the differences will be 0.

Proposition 11. 1. If ε∗
t |It−1;φ0 is i�i�d� s(0� IN�η0) with −2/(N + 2) < κ0 < ∞, and

Ws(φ0) �= 0, then S̊(φ0) = Iθθ(φ0) only if ςt |It−1;φ0 is i�i�d� Gamma with mean N

and variance N[(N + 2)κ0 + 2].
2. If ε∗

t |It−1;φ0 is i�i�d� s(0� IN�η0) and Ws(φ0) �= 0, P(φ0) = Iθθ(φ0) only if
msr(η0) = 0.

The first part of this proposition, which generalizes the univariate results in
Gonzalez-Rivera (1997), implies that the SSP estimator θ̊T can be fully efficient only
if ε∗

t has a conditional Kotz distribution (see Kotz (1975)). This distribution nests the
multivariate normal for κ = 0, but it can also be either platykurtic (κ < 0) or leptokurtic
(κ > 0). Although such a nesting provides an analytically convenient generalization of
the multivariate normal that gives rise to some interesting theoretical results,11 the den-
sity of a leptokurtic Kotz distribution has a pole at 0, which is a potential drawback from
an empirical point of view.

In turn, the second part provides the necessary and sufficient condition for the in-
formation matrix to be block diagonal between the mean and variance parameters θ
on the one hand and the shape parameters η on the other. Although the lack of unifor-
mity that we mentioned after Proposition 10 applies to this proposition too, its practical
consequences would only become a real problem in the unlikely event that a researcher
used a parametric spherical distribution for which mrs �= 0 in general, but which is such
that mrs = 0 in some special case. We are not aware of any non-Gaussian elliptical distri-
bution with this property, although it might exist.12

There are also other more subtle but far more pervasive situations in which some,
but not all elements of θ can be estimated as efficiently as if η0 were known (see also
Lange, Little, and Taylor (1989)), a fact that would be described in the semiparametric
literature as partial adaptivity. Effectively, this requires that some elements of sθt (φ0) be
orthogonal to the relevant tangent set after partialing out the effects of the remaining
elements of sθt (φ0) by regressing the former on the latter. Partial adaptivity, though,

11For example, we show in the proof of Proposition 10 that Iθθ(φ) = S̈(φ) in univariate models with Kotz
innovations in which the conditional mean is correctly specified to be 0. In turn, Francq and Zakoïan (2010)
showed that I−1

θθ (φ) = C(φ) in those models under exactly the same assumptions.
12Fiorentini and Sentana (2019) provided a very different reason for the DWH test considered in Propo-

sition 6 to be degenerate. Specifically, Proposition 5 in that paper implies that if one uses a Student t log-
likelihood function for estimating θ but the true distribution is such that κ < 0, then

√
T(θ̃T − θ̂T ) = op(1).
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often depends on the model parametrization. The following reparametrization provides
a general sufficient condition in multivariate dynamic models under sphericity:

Reparametrisation 1. A homeomorphic transformation rs(·) = [r′
sc(·)� rsi(·)]′ of the

mean-variance parameters θ into an alternative set ϑ = (ϑ ′
c�ϑi)

′, where ϑi is a posi-
tive scalar, and rs(θ) is twice continuously differentiable with rank[∂r′

s(θ)/∂θ] = p in a
neighborhood of θ0, such that

μt (θ)=μt (ϑc)�

Σt (θ)= ϑiΣ
◦
t (ϑc)

}
∀t� (11)

Expression (11) simply requires that one can construct pseudo-standardized residu-
als

ε◦
t (ϑc) =Σ◦−1/2

t (ϑc)
[
yt −μ◦

t (ϑc)
]

which are i�i�d� s(0�ϑiIN�η), where ϑi is a global scale parameter, a condition satisfied
by most static and dynamic models.

The next proposition generalizes and extends earlier results by Bickel (1982), Linton
(1993), Drost, Klaassen, and Werker (1997) and Hodgson and Vorkink (2003).

Proposition 12. 1. If ε∗
t |It−1;φ is i�i�d� s(0� IN�η) and (11) holds, then:

(a) the spherically symmetric semiparametric estimator of ϑc is ϑi-adaptive,

(b) If ϑ̊T denotes the iterated spherically symmetric semiparametric estimator of ϑ ,
then ϑ̊iT = ϑiT (ϑ̊cT ), where

ϑiT (ϑc) = (NT)−1
T∑
t=1

ς◦
t (ϑc)� (12)

ς◦
t (ϑc) = [

yt −μt (ϑc)
]′
Σ◦−1

t (ϑc)
[
yt −μt (ϑc)

]
� (13)

(c) rank [S̊(φ0)− C−1(φ0)] ≤ dim(ϑc) = p− 1.

2. If in addition E[ln |Σ◦
t (ϑc)||φ0] = k ∀ϑc holds, then:

(a) Iϑϑ(φ0), P(φ0), S̊(φ0), S̈(φ0) and C(φ0) are block-diagonal between ϑc

and ϑi.

(b)
√
T(ϑ̊iT −ϑ̃iT ) = op(1), where ϑ̃

′
T = (ϑ̃

′
cT � ϑ̃iT ) is the Gaussian PMLE ofϑ , with

ϑ̃iT =ϑiT (ϑ̃cT ).

This proposition provides a saddle point characterization of the asymptotic effi-
ciency of the SSP estimator of ϑ , in the sense that in principle it can estimate p − 1
parameters as efficiently as if we fully knew the true conditional distribution of the data,
including its shape parameters, while for the remaining scalar parameter it only achieves
the efficiency of the Gaussian PMLE.
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The main implication of Proposition 12 for our proposed tests is that while the maxi-
mum rank of the asymptotic variance of

√
T(ϑ̃T − ϑ̊T ) will be p−1, the asymptotic vari-

ances of
√
T [ϑ̂T − ϑ̂T (η̄)],

√
T(ϑ̊T − ϑ̂T ) and indeed

√
T [ϑ̊T − ϑ̂T (η̄)] will have rank one

at most. In fact, we can show that once we exploit the rank deficiency of the relevant ma-
trices in the calculation of generalized inverses, the DWH tests based on

√
T(ϑ̃cT − ϑ̊cT ),√

T [ϑ̂iT − ϑ̂iT (η̄)],
√
T(ϑ̊iT − ϑ̂iT ) and

√
T [ϑ̊iT − ϑ̂iT (η̄)] coincide with the analogous

tests for the entire vector ϑ , which in turn are asymptotically equivalent to tests that
look at the original parameters θ.

It is also possible to find an analogous result for the SP estimator, but at the cost
of restricting further the set of parameters that can be estimated in a partially adaptive
manner.

Reparametrisation 2. A homeomorphic transformation rg(·) = [r′
gc(·)� r′

gim(·)� r′
gic(·)]′

of the mean-variance parameters θ into an alternative set ϕ = (ϕ′
c�ϕ

′
im�ϕ

′
ic)

′, where
ϕim is N × 1, ϕic = vech(Φic), Φic is an unrestricted positive definite symmetric matrix
of order N and rg(θ) is twice continuously differentiable in a neighborhood of θ0 with
rank[∂r′

g(θ0)/∂θ] = p, such that

μt (θ) =μ�
t (ϕc)+Σ�1/2

t (ϕc)ϕim

Σt (θ)=Σ�1/2
t (ϕc)ΦicΣ

�1/2′
t (ϕc)

⎫⎬
⎭ ∀t� (14)

This parametrizations simply requires the pseudo-standardized residuals

ε�
t (ϕc)=Σ�−1/2

t (ϕc)
[
yt −μ�

t (ϕc)
]

(15)

to be i�i�d� with mean vector ϕim and covariance matrixΦic .
The next proposition generalizes and extends Theorems 3.1 in Drost and Klaassen

(1997) and 3.2 in Sun and Stengos (2006).

Proposition 13. 1. If ε∗
t |It−1;θ, � is i�i�d� D(0� IN��), and (14) holds, then:

(a) the semiparametric estimator of ϕc , ϕ̈cT , is ϕi-adaptive, where ϕi = (ϕ′
im�ϕ

′
ic)

′.

(b) If ϕ̈T denotes the iterated semiparametric estimator ofϕ, then ϕ̈imT =ϕimT (ϕ̈cT )

and ϕ̈icT =ϕicT (ϕ̈cT ), where

ϕimT (ϕc) = T−1
T∑
t=1

ε�
t (ϕc)� (16)

ϕicT (ϕc) = T−1
T∑
t=1

vech
{[
ε�
t (ϕc)−ϕimT (ϕc)

][
ε�
t (ϕc)−ϕimT (ϕc)

]′}
� (17)

(c) rank [S̈(φ0)− C−1(φ0)] ≤ dim(ϕc)= p−N(N + 3)/2.

2. If in addition E[∂μ�′
t (ϕc0)/∂ϕc ·Σ�−1/2

t (ϕc0)|φ0] = 0 and E{∂ vec[Σ�1/2
t (ϕc0)]/∂ϕc ·

[IN ⊗Σ�−1/2′
t (ϕc0)]|φ0} = 0, then
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(a) Iϕϕ(φ0), P(φ0), S̈(φ0) and C(φ0) are block diagonal between ϕc and ϕi.

(b)
√
T(ϕ̃iT − ϕ̈iT ) = op(1), where ϕ̃′

T = (ϕ̃′
cT � ϕ̃

′
iT ) is the Gaussian PMLE ofϕ, with

ϕ̃imT =ϕimT (ϕ̃
′
cT ) and ϕ̃icT =ϕicT (ϕ̃

′
cT ).

This proposition provides a saddle point characterization of the asymptotic effi-
ciency of the semiparametric estimator of θ, in the sense that in principle it can estimate
p − N(N + 3)/2 parameters as efficiently as if we fully knew the true conditional distri-
bution of the data, while for the remaining parameters it only achieves the efficiency of
the Gaussian PMLE.

The main implication of Proposition 13 for our purposes is that while the DWH
test based on

√
T(ϕ̃T − ϕ̈T ) will have a maximum of p − N(N + 3)/2 degrees of free-

dom, those based on
√
T [ϕ̃T − ϕ̃T (η̄)],

√
T(ϕ̈T − ϕ̃T ) and

√
T [ϕ̈T − ϕ̃T (η̄)] will have

N(N + 3)/2 at most. As before, we can show that once we exploit the rank deficiency
of the relevant matrices in the calculation of generalized inverses, DWH tests based on√
T(ϕ̃cT − ϕ̈cT ),

√
T [ϕ̃iT − ϕ̃iT (η̄)],

√
T(ϕ̈iT − ϕ̃iT ) and

√
T [ϕ̈iT − ϕ̃iT (η̄)] are identical

to the analogous tests based on the entire vector ϕ̃, which in turn are asymptotically
equivalent to tests that look at the original parameters θ.

3.7 Maximizing power

As we discussed in Section 2.1, the local power of a pairwise DWH test depends on the
difference in the pseudo-true values of the parameters under misspecification relative
to the difference between the covariance matrices under the null. But Proposition 1 in
Fiorentini and Sentana (2019) states that in the situation discussed in Proposition 12,ϑc

will be consistently estimated when the true distribution of the innovations is spherical
but different from the one assumed for estimation purposes, while ϑi will be inconsis-
tently estimated. Therefore, rather than losing power by disregarding all the elements
of ϑc , we will in fact maximize power if we base our DWH tests on the overall scale pa-
rameter ϑi exclusively. Similarly, Proposition 3 in Fiorentini and Sentana (2019) states
that in the context of Proposition 13, ϕc will be consistently estimated when the true
distribution of the innovations is i�i�d� but different from the one assumed for estima-
tion purposes, while ϕim and ϕic will be inconsistently estimated. Consequently, we will
maximize power in that case if we base our DWH tests on the mean and covariance pa-
rameters of the pseudo standardized residuals ε�

t (ϕc) in (15).

3.8 Extensions to structural models

So far we have considered multivariate dynamic location scale models which di-
rectly parametrize the conditional first and second moment functions. However, non-
Gaussian innovations have also become increasing popular in dynamic structural mod-
els, whose focus differs from those conditional moments. Two important examples are
noncausal univariate Arma models (see Supplemental Appendix E.2) and structural vec-
tor autoregressions (Svars), like the one we consider in the empirical section. These
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models introduce some novel inference issues that we illustrate in this section by study-
ing the following N-variate Svar process of order p:

yt = τ +
p∑

j=1

Ajyt−j + Cε∗
t � ε∗

t |It−1 ∼ i�i�d� (0� IN)� (18)

where C is a matrix of impact multipliers and ε∗
t are “structural” shocks. The loading

matrix is sometimes reparametrized as C = JΨ , where Ψ is a diagonal matrix whose
elements contain the scale of the structural shocks, while the columns of J, whose di-
agonal elements are normalized to 1, measure the relative impact effects of each of
the structural shocks on all the remaining variables, so that the parameters of inter-
est become j = veco(J − IN) and ψ = vecd(Ψ). Similarly, the drift τ is often written as
(IN −Φ1 − · · · −Φp)μ under the assumption of covariance stationarity, where μ is the
unconditional mean of the observed process. We will revisit these interesting alternative
parametrizations below, but as we discussed in Section 2.2, they all give rise to asymp-
totically equivalent and possibly numerically identical DWH tests.

Let εt = Cε∗
t denote the reduced form innovations, so that εt |It−1 ∼ i�i�d� (0�Σ) with

Σ = CC′. As is well known, a Gaussian (pseudo) log-likelihood is only able to identify
Σ, which means the structural shocks ε∗

t and their loadings in C are only identified up
to an orthogonal transformation. Specifically, we can use the so-called LQ matrix de-
composition13 to relate the matrix C to the Cholesky decomposition of Σ = ΣLΣ

′
L as

C = ΣLQ, where Q is an N × N orthogonal matrix, which we can model as a function
of N(N − 1)/2 parameters ω by assuming that |Q| = 1.14,15 While ΣL is identified from
the Gaussian log-likelihood,ω is not. In fact, the underidentification ofω would persist
even if we assumed for estimation purposes that ε∗

t followed an elliptical distribution or
a location-scale mixture of normals.

Nevertheless, Lanne, Meitz, and Saikkonen (2017) show that statistical identification
of both the structural shocks and C (up to permutations and sign changes) is possible
assuming (i) cross-sectional independence of the N shocks and (ii) a non-Gaussian dis-
tribution for at least N−1 of them. Still, the reliability of the estimated impulse response
functions (IRFs) and associated forecast error variance decomposition (FEVDs) depends
on the validity of the assumed distributions. For that reason, a distributional misspecifi-
cation diagnostic such our DWH test, which does not specify any particular alternative
hypothesis, seems particularly appropriate.

13The LQ decomposition is intimately related to the QR decomposition. Specifically, Q′Σ′
L provides the

QR decomposition of the matrix C′,which is uniquely defined if we restrict the diagonal elements of ΣL to
be positive (see, e.g., Golub and van Loan (2013) for further details).

14See Section 9 of Magnus, Pijls, and Sentana (2021) for a detailed discussion of three ways of explicitly
parametrizing a rotation (or special orthogonal) matrix: (i) as the product of Givens matrices that depend
on N(N − 1)/2 Tait–Bryan angles, one for each of the strict upper diagonal elements; (ii) by using the so-
called Cayley transform of a skew-symmetric matrix; and (c) by exponentiating a skew-symmetric matrix.
Our procedures apply regardless of the chosen parametrization.

15If |Q| = −1 instead, we can change the sign of the ith structural shock and its impact multipliers in the
ith column of the matrix C without loss of generality as long as we also modify the shape parameters of the
distribution of ε∗

it to alter the sign of all its nonzero odd moments.
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For simplicity, in the rest of this section we assume that the N structural shocks are
cross-sectionally independent with symmetric marginal distributions. One particularly
important example will be ε∗

it |It−1 ∼ i�i�d� t(0�1� νi). Univariate t distributions are very
popular in finance as a way of capturing fat tails while nesting the traditional Gaussian
assumption. Their popularity is also on the rise in macroeconomics, as illustrated by
Brunnermeier, Palia, Sastry, and Sims (2021).

Let θ = [τ ′� vec′(A1)� � � � � vec′(Ap)� vec′(C)]′ = (τ ′�a′
1� � � � �a′

p�c′) = (τ ′�a′�c′) denote
the structural parameters characterizing the first two conditional moments of yt . In ad-
dition, let � = (�1� � � � ��N)′ denote the shape parameters, so that φ = (θ′��′)′. In the
case of the Student t, each distribution depends on a single shape parameter ηi = ν−1

i . As
in previous sections, we consider two alternative ML estimators of the structural param-
eters in θ: a restricted one which assumes that the shape parameters are known (RMLE),
and an unrestricted one that simultaneously estimates them (UMLE).

Somewhat surprisingly, it turns out that under correct distributional specification,
the UMLE is efficient for all the model parameters except the standard deviations of
the structural shocks. More formally, the following proposition derives the asymptotic
properties of the differences between the RMLE and UMLE under the null of correct
specification.

Proposition 14. If model (18) with cross-sectionally independent symmetric structural
shocks generates a covariance stationary process, then

√
T [μ̂T − μ̂T (�̄)] = op(1),

√
T [âT −

âT (�̄)] = op(1),
√
T [ĵT − ĵT (�̄)] = op(1), and limT→∞ V {√T [ψ̂T − ψ̂T (�̄)]} = Pψψ(φ0)−

Iψψ(φ0).

This result implies that we should base the DWH tests on the comparison of the
restricted and unrestricted ML estimators of the elements of ψ, their squares or logs,
thereby avoiding the need for generalized inverses that would arise if we compared the
estimators of the N2 elements of c (see Proposition B1.3).16 As usual, we can obtain two
asymptotically equivalent tests by using the scores with respect to ψ instead of the pa-
rameter estimators (see Proposition 3). Nevertheless, one should not use any of these
tests when one suspects that the innovations are Gaussian not only for the lack of unifor-
mity mentioned after Proposition 10 in Section 3.6, but also becauseψ is asymptotically
underidentified when two or more shocks are normal.

The results in Holly (1982) imply that this DWH test will be asymptotically equiva-
lent to the LR test of H0 : η= η̄ if and only if rank(Ic�) = N , a condition which we study
further in the proof of Proposition B1. When it holds, we can prove that the version of the
DWH test based on the efficient scores of the unrestricted parameter estimators evalu-
ated at the restricted parameter estimators is numerically identical to the LM test of this
null hypothesis, which is entirely analogous to the discussion that follows Proposition 7.

16If the autoregressive polynomial (IN − A1L − · · · − ApL
p) had some unit roots, so that (18) generated

a (co) integrated process, Proposition 14 would remain valid with μ replaced with τ , but its proof would
become more involved because of the nonstandard asymptotic distribution of the estimators of the con-
ditional mean parameters. In contrast, the distribution of the ML estimators of the conditional variance
parameters would remain standard (cf. Theorem 4.2 in Phillips and Durlauf (1986)).
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It might appear that one cannot compare these non-Gaussian ML estimators to
the Gaussian PML ones because the Gaussian pseudo log-likelihood is flat along an
N(N−1)/2-dimensional manifold of the structural parameters c. However, appearances
are sometimes misleading. Under correct distributional specification, the non-Gaussian
estimators will efficiently estimate the reduced form covariance matrix, so it is straight-
forward to develop DWH specification tests based on μ (or τ), a and σ = vech(Σ) or its
Cholesky factor σL = vech(ΣL), and their associated scores, even though we cannot do
it forω, let alone j or ψ.

Proposition B2 contains the asymptotic covariance matrix of the Gaussian pseudo-
ML estimators of the reduced form parameters, which are asymptotically inefficient rel-
ative to the UMLEs when the innovations are non-Gaussian. In turn, Proposition B1
provides the non-Gaussian scores and information matrix for τ and a. Finally, Propo-
sition B3 provides the analogous expressions for σL and ω.17 The only unusual feature
is that in computing the asymptotic covariance of the estimators of the N(N + 1)/2 pa-
rameters in σL in the non-Gaussian case, one must take into account the sampling vari-
ability in the estimation of the N(N −1)/2 structural parameters inω, as well as the drift
and autoregressive parameters.

The block diagonality of all the asymptotic covariance matrices immediately implies
that we can additively decompose the DWH test that compares all the reduced form pa-
rameters into a component that compares the conditional mean parameters and an-
other one that compares the residual covariance matrix Σ or its Cholesky decomposi-
tion. However, Fiorentini and Sentana (2020) show that if the true joint density of the
structural shocks ε∗

t in (18) is the product of N univariate densities but they are different
from the ones assumed for ML estimation purposes, then the restricted and unrestricted
non-Gaussian (pseudo) ML estimators of model (18) remain consistent for a and j but
not for τ or ψ. Thus, the parameters that are efficiently estimated by the unrestricted
ML estimator remain once again consistently estimated under distributional misspec-
ification. Although we cannot exploit the consistency of j to increase the power of the
DWH test that compares the ML estimators of the reduced form variance parameters
with the Gaussian ones because we cannot separately identify them with a Gaussian
pseudo log-likelihood, it makes sense to increase the power of the DWH test that com-
pares the ML estimators of the mean parameters with the Gaussian ones by saving de-
grees of freedom and focusing on either the drifts in τ or the unconditional means in μ
even though they do not directly affect the IRFs and FEVDs. Using the results on invari-
ance to reparametrization in Proposition 2, the DWH test of all the mean parameters is
asymptotically equivalent whether we parametrize the model in term of (τ�a) or (μ�a),
and in fact, some of the score versions will be numerically identical. In contrast, the
DWH tests that only focus on either τ or μ will be different.18

17Given that the mapping from σ to σL in expression (D13) of Supplemental Appendix D.1 is bijective,
we can invert it to obtain the scores and information matrix for σ andω from the corresponding expression
for σL andω.

18The intuition is as follows. In the case of the unconditional mean parametrization, the block diago-
nality of the information matrix not only arises between the conditional mean parameters and the rest,
but also between μ and a, with the same being true for the Gaussian PMLE covariance matrix. As a result,
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4. Monte Carlo evidence

In this section, we assess the finite sample size and power of our proposed DWH tests
in the univariate and multivariate examples that we have been considering by means of
extensive Monte Carlo simulation exercises. In all cases, we evaluate the three asymptot-
ically equivalent versions of the tests in (1), (3), and (4) using the ingredients in Proposi-
tions 8 and 9. To simplify the presentation, we denote the Wald-style test that compares
parameter estimators by DWH1, the test based on the score of the more efficient esti-
mator evaluated at the less efficient one by DWH2, and finally, the second score-based
version of the test by DWH3.

Univariate GARCH-M. Let rMt denote the excess returns on a broad-based portfolio.
Drost and Klaassen (1997) proposed the following model for such a series:

rMt = μt(θ)+ σt(θ)ε
∗
t � μt(θ) = τσt(θ)� σ2

t (θ)= ω+ αr2
Mt−1 +βσ2

t−1(θ)� (19)

The conditional mean and variance parameters are θ′ = (τ�ω�α�β). As explained in
Fiorentini and Sentana (2019), this model can also be written in terms of ϑc = (β�γ�δ)′
and ϑi, where γ = α/ω, δ = τω1/2, and ϑi = ω (reparametrization 1) or ϕc = (β�γ)′, ϕim

and ϕic , where γ = α/ω, ϕim = τω1/2, and ϕic = ω (reparametrization 2).
Random draws of ε∗

t are obtained from four different distributions: two standardized
Student t with ν = 12 and ν = 8 degrees of freedom, a standardized symmetric fourth-
order Gram–Charlier expansion with an excess kurtosis of 3�2, and another standard-
ized Gram–Charlier expansion with skewness and excess kurtosis coefficients equal to
−0�9 and 3�2, respectively. For a given distribution, random draws are obtained with the
NAG library G05DDF and G05FFF functions, as detailed in Amengual, Fiorentini, and
Sentana (2013). In all four cases, we generate 20,000 samples of length 2000 (plus an-
other 100 for initialization) with β = 0�85, α = 0�1, τ = 0�05, and ω = 1, which means
that δ = ϕim = 0�05, γ = 0�1, and ϑi = ϕic = 1. These parameter values ensure the strict
stationarity of the observed process. Under the null, the large number of Monte Carlo
replications implies that the 95% confidence bands for the empirical rejection percent-
ages at the conventional 1%, 5%, and 10% significance levels are (0�86�1�14), (4�70�5�30)
and (9�58�10�42), respectively.

We estimate the model parameters three times: first by Gaussian PML and then by
maximizing the log-likelihood function of the Student t distribution with and without
fixing the degrees of freedom parameter to 12. We initialize the conditional variance pro-
cesses by setting σ2

1 to ω(1+γr2
M)/(1−β), where r2

M = 1
T

∑T
1 r2

Mt provides an estimate of
the second moment of rMt . The Gaussian, unrestricted Student t and restricted Student
t log-likelihood functions are maximized with a quasi-Newton algorithm implemented

the DWH test of the conditional mean parameters can be additively separated between the DWH test of μ,
which has all the power, and the DWH test of a, whose asymptotic power is equal to its size. In contrast, nei-
ther the information matrix nor the Gaussian sandwich matrix are block diagonal between τ and a when
we rely on the parametrization in terms of the drifts, which means that the DWH test based on the drifts is
not asymptotically independent from the DWH test based the dynamic regression coefficients a. But since
both the DWH test of all the mean parameters and the DWH test for a are the same in both reparametriza-
tions, the DWH test based on τ must be different from the DWH test for μ. The ordering of the local power
of these two tests is unclear.
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by means of the NAG library E04LBF routine with the analytical expressions for the score
vector and conditional information matrix in Fiorentini, Sentana, and Calzolari (2003).

Table 1 contains the empirical rejections rates of the three pairwise tests in Propo-
sitions 8 and 9, together with the corresponding three-way tests. When comparing the
restricted and unrestricted ML estimators, we also compute the LR test of the null hy-
pothesis H0 : η = η̄. As we mentioned in Section 3.4, the asymptotically equivalent LM
test of this hypothesis is numerically identical to the corresponding DWH3 test because
dim(η) = 1. Hence, we obtain exactly the same statistic whether we compare the entire
parameter vector θ or the scale parameter ϑi only.

When the true distribution of the standardized innovations is a Student t with 12
degrees of freedom, the empirical rejections rates of all tests should be equal to their
nominal sizes. This is in fact what we found except for the DWH1 and DWH2 tests that
compare the restricted and unrestricted ML estimators and scores, which are rather lib-
eral and reject the null roughly 10% more often than expected. A closer inspection of
those cases revealed that even though the small sample variance of both estimators is
well approximated by the variance of their asymptotic distributions, the Monte Carlo
distribution of their difference is highly leptokurtic, so the resulting critical values are
larger than those expected under normality. In contrast, the DWH3 test, which in this
case is invariant to reparametrization,19 seems to work very well.

When the true distribution is a standardized Student t with ν = 8, only the tests in-
volving the restricted ML estimators that fix the number of degrees of freedom to 12
should show some power. And indeed, this is what the second panel of Table 1 shows,
with DWH3 having the best raw (i.e., nonsize adjusted) power, and the LR ranking sec-
ond. In turn, the three-way tests suffer a slight loss power relative to the pairwise tests
that compare the two ML estimators. Finally, the empirical rejection rates of the tests
that compare the unrestricted ML and PML estimators are close to their significance
levels.

For the symmetric and asymmetric standardized Gram–Charlier expansions, most
tests show power close or equal to one. The only exceptions are the DWH1 and DWH2
versions of the tests comparing the unrestricted ML and PML estimators. Overall, the
DWH3 version our proposed tests seems to outperform the two other versions.

In addition, we find almost no correlation between the DWH tests that compare the
restricted and unrestricted ML estimators and the one that compare the Gaussian PMLE
with the unrestricted MLE, as expected from Propositions 4 and 5. This confirms that the
distribution of the simultaneous test can be well approximated by the distribution of the
sum of the two pairwise DWH tests.

Multivariate market model. Let rt denote the excess returns on a vector of N assets
traded on the same market as rMT . A very popular model is the so-called market model

rt = a + brMt +Ω1/2ε∗
t � (20)

19Proposition 2 implies that the score tests will be numerically invariant to reparametrizations if the
Jacobian used to recompute the conditional expected values of the Hessian matrices At and It and the
conditional covariance matrix of the scores Bt are evaluated at the same parameter estimators as the Jaco-
bian involved in recomputing the scores with respect to the transformed parameters by means of the chain
rule.
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The conditional mean and variance parameters are θ′ = (a′�b′�ω′), where ω= vech(Ω)

and Ω =Ω1/2Ω′1/2. In this case, Fiorentini and Sentana (2019) showed that can write
it in terms of ϑ ′

c = (a′�b′�� ′) and ϑi, with ϑi = |Ω|1/N and Ω◦(�) = Ω/|Ω|1/N
(reparametrization 1) or ϕc = b, ϕim = a and ϕic = vech(Φic) = vech(Ω) (reparametriza-
tion 2).

We consider four standardized multivariate distributions for ε∗
t , including two multi-

variate Student t with ν = 12 and ν = 8 degrees of freedom, a discrete scale mixture of two
normals (DSMN) with mixing probability 0�2 and variance ratio 10, and an asymmetric,
location-scale mixture (DLSMN) with the same parameters but a difference in the mean
vectors of the two components δ = 0�5�N , where �N is a vector of N ones (see Amen-
gual and Sentana (2010) and Supplemental Appendix E.1, respectively, for further de-
tails). For each distribution, we generate 20,000 samples of dimension N = 3 and length
T = 500 with a = 0�112�3, b = �3, andΩ= D1/2RD1/2, with D = 3�136I3 and the off diago-
nal terms of the correlation matrix R equal to 0�3. Finally, in each replication we generate
the strongly exogenous regressor rMt as an i�i�d� normal with an annual mean return of
7% and standard deviation of 16%.

Table 2 show the results of the size and power assessment of our proposed DWH
tests. As in the previous example, the DWH3 version of the test appears to be the best
one here too, although not uniformly so. When we compare restricted and unrestricted
MLEs, all versions of the DWH test perform very well both in terms of size and power de-
spite the fact that the number of parameters involved is much higher now (three inter-
cepts, three variances, and three covariances). On the other hand, the tests that compare
PMLE and unrestricted MLE show some small sample size distortions, which neverthe-
less disappear in simulations with larger sample lengths not reported here.

When the distribution is asymmetric, the DWH2 versions of the test that focus on the
scale parameter are powerful but not extremely so, the rationale being that they are de-
signed to detect departures from the Student t distribution within the spherical family.
In contrast, when we simultaneously compare a and vech(Ω), power becomes virtually
1 at all significance levels.

Once again, we find little correlation between the statistics that compare the re-
stricted and unrestricted ML estimators and the ones that compare the Gaussian PMLE
with the unrestricted MLE, as expected from Propositions 4 and 5. This confirms that we
can safely approximate the distribution of the simultaneous test by the distribution of
the sum of the two pairwise tests.

Structural VAR. Finally, we focus on the model in Section 3.8 by simulating samples
from the following bivariate Svar(1) process:(

y1t

y2t

)
=
(

1�2
0�5

)
+
(

0�7 0�5
−0�2 0�8

)(
y1t−1

y2t−2

)
+
(

1 0�313
0�583 1

)(
1�2 0
0 1�6

)(
ε∗

1t
ε∗

2t

)
�

In the size experiment, ε∗
1t and ε∗

2t are two independent standardized Student ts with
η1 = 0�15 and η2 = 0�10, respectively, but in the power experiment ε∗

1t is drawn from a
symmetric DSMN with mixing probability 0�52 and variance ratio 0�06, while ε∗

2t follows
an asymmetric DLSMN with mixing probability 0�3, variance ratio 0�2 and δ = 0�5. The
sample length is T = 2000.
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Figure 1. IRF and FVED. DGP: Independent DLSMN(δ1�κ1�λ1)=(0�0�52�0�06)�(δ2�κ2�λ2)=(0�3�0�2�0�2).

We consider three estimators, the Gaussian PMLE, the UMLE that assumes two in-
dependent Student t for the structural shocks, and the RMLE that fixes the shape param-
eters at their true values in the size experiment, and at ν1 = 8 and ν2 = 24 in the power
experiment.

Since the main purpose of Svars is policy analysis, it is of interest to compare the
Monte Carlos means of the estimated IRFs and FEVDs to their true values. Under cor-
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rect specification, all curves are virtually indistinguishable, confirming that the identifi-
cation and estimation strategy in Lanne, Meitz, and Saikkonen (2017) works remarkably
well. As Figure 1 shows, though, under incorrect specification, the IRFs and FEVDs of the
first variable are markedly biased even though the pattern of the IRFs is correct because
(I − AL)−1J is consistently estimated, as we explained at the end of Section 3.8. Remark-
ably, the RMLE curves show very little bias, but this is a fluke that disappears by fixing
the values of η1 and η2 to the pseudo-true values of the UMLEs.

Table 3 displays the finite sample size and power of our tests. Given the larger sam-
ple size, we observe lower finite sample size distortions than in the multivariate market
model.20 The three versions of the test show a similar behavior, with no version uni-
formly superior to the others. When the distribution is not Student, power is remarkable
and reaches 1 for all tests except the one that compares the PML and UML estimators of
the drifts τ . Even then, the percentage of rejections of the DWH2 statistic is above 92%
at the 1% nominal level. The fact that in this design only one of the shocks is asymmet-
ric, while the tests based on τ only have power under asymmetric shocks, might explain
why we do not observe a 100% rejection rate.

5. Empirical illustrations

In Fiorentini and Sentana (2019), we illustrated the empirical relevance of our proposed
consistent estimators by fitting the univariate Garch-M model (19) to the daily returns
of 200 large cap stocks from the main eurozone markets between 2014 and 2018. When
we compared Gaussian and unrestricted Student t MLEs by means of the score versions
of our tests, we rejected the null at the 5% significance level for 36�5% of the series if we
focused on symmetric alternatives (ϑi) and for 41% when we allowed for asymmetric
ones (ϕim, ϕis). In addition, the DWH test that checks the adequacy of the Student t

distribution with 4 degrees of freedom rejected the null at the 5% significance level for
39�5% of series, while the joint test obtained by adding the previous statistics up rejected
the null for more than half of the series under analysis.

In this section, we apply our procedures to the trivariate Svar in Angelini, Bacchioc-
chi, Caggiano, and Fanelli (2019), who revisited the empirical analysis in Ludvigson, Ma,
and Ng (forthcoming) and Carriero, Clark, and Marcellino (2018). Figure 2 displays the
data, which we downloaded from the JAE data archive at http://qed.econ.queensu.ca/
jae/2019-v34.3/angelini-et-al/. It consists of monthly observations from August 1960 to
April 2015 on a macro uncertainty index taken from Jurado, Ludvigson, and Ng (2015),
the rate of growth of the industrial production index, and a financial uncertainty index
constructed by Ludvigson, Ma, and Ng (forthcoming). As all these authors convincingly
argue, a joint model of financial and macroeconomic uncertainty is crucial to under-
stand the relationship between uncertainty and the business cycle.

20As expected from Proposition 10, though, size distortions become a serious problem in a separate
Monte Carlo exercise in which ε∗

1t and ε∗
2t are two independent standardized Student t with with 66�6 and

100 degrees of freedom, respectively, which are rather difficult to distinguish from Gaussian random vari-
ables in finite samples.

http://qed.econ.queensu.ca/jae/2019-v34.3/angelini-et-al/
http://qed.econ.queensu.ca/jae/2019-v34.3/angelini-et-al/
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Figure 2. Data.

We adopt the original Var(4) specification in Angelini et al. (2019), which implies
that T = 653 after initialization of the log-likelihood with 4 presample observations. Our
main point of departure is that we assume that the structural innovations follow three
independent standardized Student t distributions with νi degrees of freedom, which al-
lows us to identify the entire matrix of impact multipliers C = JΨ . Thus, the unrestricted
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Table 4. Parameter estimates. Sample period 1960:08–2015:04.

PML UML RML

τ′ 0�013 1�261 0�013 0�008 1�045 −0�007 0�010 1�042 −0�002

J
1�000 −0�006 0�069 1�000 −0�008 0�063

14�045 1�000 0�771 21�354 1�000 0�968
0�157 −0�001 1�000 0�208 −0�001 1�000

Ψ 0�010 0�681 0�199 0�009 0�582 0�020

JΨ2J′ × 10
0�001 −0�011 0�001 0�003 0�007 0�027 0�001 −0�009 0�000

−0�011 4�329 0�007 0�007 5�063 0�305 −0�009 3�733 0�003
0�001 0�007 0�007 0�027 0�305 0�397 0�000 0�003 0�004

ML procedure estimates 2N + (p+ 1)N2 = 51 parameters, while the restricted MLE fixes
ν1 = ν2 = ν3 = 8 (We tried different values for the ν’s ranging from 6 to 10 but results were
very similar). Finally, the Gaussian PMLE estimates N(N − 1)/2 = 3 parameters less be-
cause it can only identify CC′ = JΨ2J′ =Σ.

Our PML estimators of the autoregressive matrices coincide with those in Angelini
et al. (2019). Further, the restricted and unrestricted MLEs of those parameters are also
very similar because the three estimators are consistent under weak conditions, as we
explained in Section 3.8. The estimates of the drift, the (scaled) impact multiplier matrix
J, the standard deviations of the structural shocks in Ψ and the unconditional variance
of the one period ahead forecast errors Σ are reported in Table 4. As can be seen, the
three estimators of the drift parameters are quite similar for the first two series, while
for the last one the sign of the UML and RML estimators is reversed with respect to the
PML one. A look at the estimators of Σ reveals both an unbalanced scaling of the data,
and a low predictability in the rate of growth of the industrial production index. The
restricted and unrestricted MLEs of J are rather similar. In fact, the consistency of the
non-Gaussian ML estimators of the matrix J is indirectly confirmed by the extremely
high (= 0�995) time series correlation between the (nonstandardized) estimates of each
structural shock obtained as J−1εt(θ) evaluated at the RMLE and UMLE. In contrast,
there is a striking difference in the standard deviation of the third structural shock, which
strongly points to distributional misspecification. However, this conjecture needs to be
confirmed by our formal DWH test statistics, which account for the sampling variability
of the estimators.

The three versions of our DWH tests produce qualitatively similar results. For that
reason, in Table 5 we only report the results of the versions that evaluate the score of the
more efficient estimators at the less efficient ones (e.g., the unrestricted Student t scores
at the Gaussian PMLE). According the Monte Carlo results in the previous section, these
are the most conservative ones. As expected, we conclude that the null of correct spec-
ification of the structural innovation distributions is clearly rejected. The test statistics
that compares the unrestricted ML estimator of the variance of the Wold innovations

ĴΨ̂
2

Ĵ′ with its PML counterpart Σ̄ has a tiny p-value. Similarly, if we compare the same
estimators of the drift parameters, the p-value of our DWH statistic is 0�001. Given the
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Table 5. DHW test statistics. Sample period 1960:08–2015:04.

Test d.f. Statistic p-value

PML vs. UML

τ@(θ̂T � η̂T ) 3 13�90 0�003
vech(Σ)@(θ̂T � η̂T ) 6 28�66 7 × 10−5

(τ� vech(Σ))@(θ̂T � η̂T ) 9 42�57 0�0

UML vs. RML

diag(C)@(θ̄T � η̄) 3 343�93 0�0
η= η̄ 3 143�55 0�0

Note: PML vs. UML tests are based on the UML score computed at the PMLE.
In turn, UML vs. RML tests correspond to the UML score computed at the RMLE,
and the LR test, respectively.

Table 6. DHW test statistics. Sample period 1988:05–2015:04.

Test d.f. Statistic p-value

PML vs. UML

τ@(θ̂T � η̂T ) 3 5�65 0�130
vech(Σ)@(θ̂T � η̂T ) 6 14�57 0�024
(τ� vech(Σ))@(θ̂T � η̂T ) 9 20�22 0�017

UML vs. RML

diag(C)@(θ̄T � η̄) 3 69�69 0�0
η= η̄ 3 37�82 0�0

Note: PML vs. UML tests are based on the UML score computed at the PMLE.
In turn, UML vs. RML tests correspond to the UML score computed at the RMLE,
and the LR test, respectively.

additivity of these two test statistics mentioned at the end of Section 3.8, the p-value of
the joint test is virtually zero. As for the comparison between the restricted and unre-
stricted MLEs of the diagonal elements of Ψ , which contain the standard deviations of
the structural shocks, the DWH tests massively reject once again. This rejection is con-
firmed by the asymptotically equivalent LR test of H0 : ν1 = ν2 = ν3 = 8.

To gauge the extent to which are results might be driven by events in the first part
of our sample, we also consider a subsample that uses the second half of the available
observations. Specifically, it begins in 1988:05, thereby avoiding the October 87 market
crash. As can be seen from Table 6, the model is still rejected but not overwhelmingly
so.

In summary, the assumption of independent, non-Gaussian structural shocks is very
attractive because it allows the identification of all the model parameters without any
additional restrictions, but it entails distributional misspecification risks. Our empirical
results confirm that those risks cannot be ignored.
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6. Conclusions and directions for further research

We propose an extension of the Durbin–Wu–Hausman specification tests which simul-
taneously compares three or more likelihood-based estimators of the parameters of gen-
eral multivariate dynamic models with nonzero conditional means and possibly time-
varying variances and covariances. Although we focus most of our discussion on the
comparison of the three estimators offered by the dominant commercial econometric
packages, namely, the Gaussian PML estimator, as well as ML estimators based on a non-
Gaussian distribution, which either jointly estimate the additional shape parameters or
fix them to some plausible values, we also consider two semiparametric estimators, one
of which imposes the assumption that the standardized innovations follow a spherical
distribution.

We also explore several important issues related to the practical implementation
of our proposed tests, including the different versions, their numerical invariance to
reparametrizations, and their application to subsets of parameters. By explicitly consid-
ering a multivariate framework with nonzero conditional means we are able to cover
many empirically relevant applications. Our results also apply to dynamic structural
models, whose focus differs from the conditional mean and variance, and raise some
interesting inference issues that we also study in detail. Extensions to stochastic volatil-
ity models in which the log-likelihood cannot be obtained in closed form are conceptu-
ally possible as long as the ML estimators and their asymptotic variances are available,
but we leave the interesting computational considerations that they raise for further re-
search.

To select the right number of degrees of freedom, we need to figure out the rank of
the difference between the estimators’ asymptotic covariance matrices. In this respect,
we discuss several situations in which some of the estimators are equally efficient for
some of the parameters and prove that the semiparametric estimators share a saddle
point efficiency property: they are as inefficient as the Gaussian PMLE for the parame-
ters that they cannot estimate adaptively.

A comparison of our results with those in Fiorentini and Sentana (2019) imply that
the parameters that are efficiently estimated by the semiparametric procedures con-
tinue to be consistently estimated by the parametric estimators under distributional
misspecification. In contrast, the remaining parameters, which the semiparametric pro-
cedures can only estimate with the efficiency of the Gaussian PML estimator, will be in-
consistently estimated by distributionally misspecified parametric procedures. For that
reason, we focus our tests on the comparison of the estimators of this second group of
parameters, for which the usual efficiency—consistency trade off is of first-order impor-
tance.

Our Monte Carlo experiments indicate that many of our proposed tests work quite
well, but some versions show noticeable size distortions in small samples. Since we have
a fully specified model under the null, parametric bootstrap versions might be worth ex-
ploring. An interesting extension of our Monte Carlo analysis would look at the power of
our tests in models with time-varying shape parameters or misspecified first and second
moment dynamics.
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Given the increased popularity of Independent Component Analysis in econometric
applications, as illustrated by the Svars in Section 3.8, specification tests that directly
target the maintained assumptions of nonnormality and independence of the struc-
tural shocks provide a particularly appropriate complement to our proposed tests (see
Amengual, Fiorentini, and Sentana (2021)). We could also extend our theoretical results
to a broad class of models for which a pseudo log-likelihood function belonging to the
linear exponential family leads to consistent estimators of the conditional mean pa-
rameters (see Gouriéroux, Monfort, and Trognon (1984a)). For example, we could use
a DWH test to assess the correct distributional specification of Lanne’s (2006) multi-
plicative error model for realized volatility by comparing his ML estimator based on a
two-component Gamma mixture with the Gamma-based consistent pseudo ML esti-
mators in Engle and Gallo (2006). Similarly, we could also use the same approach to test
the correct specification of the count model for patents in Hausman, Hall, and Griliches
(1984) by comparing their ML estimator, which assumes a Poisson model with unob-
served gamma heterogeneity, with the consistent pseudo ML estimators in Gouriéroux,
Monfort, and Trognon (1984b). All these extensions constitute interesting avenues for
further research.

Appendix A: Proofs

Proof of Proposition 1. Assuming that θ0 belongs to the interior of its admissible
parameter space, the estimators of θ will be characterized with probability tending to 1
by the first-order conditions

∂m̄′
T (θ̂T )

∂θ
S̃mT m̄T (θ̂T ) = 0� (A1)

∂n̄′
T (θ̃T )

∂θ
S̃nT n̄T (θ̃T ) = 0� (A2)

By analogy, θm and θn will be the pseudo-true values of θ implicitly defined by the ex-
actly identified moment conditions

J ′
m(θm)SmE

[
mt (θm)

] = 0�

J ′
n(θn)SnE

[
nt (θn)

] = 0�

Under the null hypothesis that both sets of moments are correctly specified, we will have
that θm = θn = θ0.

The Wald version of the DWH test in (1) is based on the difference between θ̃T and
θ̂T . Under standard regularity conditions (see, e.g., Newey and McFadden (1994)), first-
order Taylor expansions of (A1) and (A2) around θ0 imply that

√
T(θ̂T − θ0)= −[J ′

m(θ0)SmJm(θ0)
]−1J ′

m(θ0)Sm

√
Tm̄T (θ0)+ op(1)�

√
T(θ̃T − θ0)= −[J ′

n(θ0)Sn(θ0)Jn(θ0)
]−1J ′

n(θ0)Sn

√
T n̄T (θ0)+ op(1)�

(A3)
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Therefore,

√
T(θ̃T − θ̂T ) =

{[
J ′
m(θ0)SmJm(θ0)

]−1J ′
m(θ0)Sm −[J ′

n(θ0)SnJn(θ0)
]−1J ′

n(θ0)Sn

}

×
[√

Tm̄T (θ0)√
T n̄T (θ0)

]
+ op(1)� (A4)

On the other hand, the first score version of the DWH test is as a test of the moment
restrictions

J ′
m(θn)SmE

[
mt (θn)

]= 0� (A5)

If we knew θn, it would be straightforward to test whether (A5) holds. But since we do
not know it, we replace it by its consistent estimator θ̃T , which satisfies (A2). To account
for the sampling variability that this introduces under the null, we can use again a first-
order Taylor expansion around θ0 of the sample version of (A5) evaluated at θ̃T . Given
the assumed root-T consistency of θ̃T for θ0, we can use (A3) to write this expansion as

J ′
m(θ̃T )Sm

√
Tm̄T (θ̃T )

= J ′
m(θ0)Sm

√
Tm̄T (θ0)+J ′

m(θ0)SmJm(θ0)Sm

√
T(θ̃T − θ0)+ op(1)

= J ′
m(θ0)Sm

√
Tm̄T (θ0)

− [
J ′
m(θ0)SmJm(θ0)

][
Jn(θ0)Sn(θ0)J ′

n(θ0)
]−1J ′

n(θ0)Sn

√
T n̄T (θ0)+ op(1)� (A6)

But a comparison between (A6) and (A4) makes clear that

√
T(θ̃T − θ̂T )= [

J ′
m(θ0)SmJm(θ0)

]−1[J ′
m(θ0)Sm

√
Tm̄T (θ̃T )

]+ op(1)� (A7)

which confirms that the Wald and score versions of the test are asymptotically equiva-
lent because rank[J ′

n(θ0)SnJn(θ0)] = dim(θ) in first-order identified models. Given that
m̄T (θ) and n̄T (θ) are exchangeable, the second equivalence condition trivially holds
too.

Proof of Proposition 2. The Wald-type version of the Hausman test for the original
parameters in (1) is infeasible when Δ is unknown, in which case it must be computed
as

T(θ̃T − θ̂T )′Δ∼
T (θ̃T − θ̂T )� (A8)

where Δ∼
T denotes a consistent estimator of a generalized inverse of Δ, which does not

necessarily coincide with a generalized inverse of a consistent estimator of the asymp-
totic covariance matrix of

√
T(θ̃T − θ̂T ) because of the potential discontinuities of gen-

eralized inverses. Given the assumed regularity of the reparametrization, we can apply
the delta method to show that the asymptotic covariance matrix of

√
T(π̃T − π̂T ) will be

∂θ′(π0)

∂π
Δ
∂θ(π0)

∂π ′ �
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which in turn implies that we can use

[
∂θ(π̇T )

∂π ′
]−1

Δ∼
T

[
∂θ′(π̇T )

∂π

]−1

as a consistent estimator of its generalized inverse provided that π̇T is a consistent es-
timator of π0. Therefore, the Wald-type version of the Hausman test for the original pa-
rameters will be

T(π̃T − π̂T )
′
[
∂θ(π̇T )

∂π ′
]−1

Δ∼
T

[
∂θ′(π̇T )

∂π

]−1
(π̃T − π̂T )� (A9)

Lemma 1 in Supplemental Appendix B states the numerical invariance of GMM estima-
tors and criterion functions to reparametrizations when the weighting matrix remains
the same, so that

π̃T − π̂T = r(θ̃T )− r(θ̂T )�

In general, though, one would expect (A8) and (A9) to differ. However, when the mapping
from θ to π is affine, the Jacobian of the inverse transformation is the constant matrix
A−1, yielding

T(π̃T − π̂T )
′A′−1Δ∼

T A−1(π̃T − π̂T ) = T(θ̃T − θ̂T )′Δ∼
T (θ̃T − θ̂T )�

as required.
Let us now look at one of the score versions of the DWH test in terms of the original

parameters, the other one being entirely analogous. We saw in the proof of the previous
proposition that the first-order condition for θ̂T is (A1). Therefore, we can compute the
alternative DWH test in practice as

Tm̄′
T (θ̃T )S̃mT

∂m̄T (θ̃T )

∂θ′ Λ∼
mT

∂m̄′
T (θ̃T )

∂θ
S̃mT m̄T (θ̃T )� (A10)

Lemma 1 also implies that m̄T (π) = m̄T [θ(π)] and θ̃T = θ(π̃T ) when the weight-
ing matrix used to compute θ̃T and π̃T is common. Given the assumed regularity of
the reparametrization, we can easily show that the asymptotic covariance matrix of
J ′
m(π0)Sm

√
T m̄T (π̃T ) will be

Λm = ∂θ′(π0)

∂π
Λm

∂θ(π0)

∂π ′ �

As a consequence, it seems natural to use

[
∂θ(π̇T )

∂π ′
]−1

Λ∼
mT

[
∂θ′(π̇T )

∂π

]−1
(A11)

as a consistent estimator of a generalized inverse ofΛm, provided that π̇T is a consistent
estimator of π0. Therefore, we can compute the analogous test in terms of π as

T m̄′
T (π̃T )S̃mT

∂m̄T (π̃T )

∂π ′
[
∂θ(π̇T )

∂π ′
]−1

Λ∼
mT

[
∂θ′(π̇T )

∂π

]−1 ∂m̄′
T (π̃T )

∂π
S̃mT m̄T (π̃T )� (A12)
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Combining the chain rule for derivatives with the results in Lemma 1, we can prove

that

∂m̄′
T (π̃T )

∂π
S̃mT m̄T (π̃T )= ∂θ′(π̃T )

∂π

∂m̄′
T (θ̃T )

∂θ
S̃mT m̄T (θ̃T )�

which in turn implies that

m̄
′
T (π̃T )S̃mT

∂m̄T (π̃T )

∂π ′
[
∂θ(π̇T )

∂π ′
]−1

Λ∼
mT

[
∂θ′(π̇T )

∂π

]−1 ∂m̄′
T (π̃T )

∂π
S̃mT m̄T (π̃T )

= m̄′
T (θ̃T )S̃mT

∂m̄T (θ̃T )

∂θ′
∂θ(π̃T )

∂π ′
[
∂θ(π̇T )

∂π ′
]−1

Λ∼
mT

[
∂θ′(π̇T )

∂π

]−1

× ∂θ′(π̃T )

∂π

∂m̄′
T (θ̃T )

∂θ
S̃mT m̄T (θ̃T )�

Therefore, (A10) and (A12) will be numerically identical if

∂θ(π̃T )

∂π ′
[
∂θ(π̇T )

∂π ′
]−1

= Ip�

Sufficient conditions for this to happen are that the mapping is affine, or that we use

π̇T = π̃T in computing (A11).

Proof of Proposition 3. Again, we focus on the first result, as the second one is en-

tirely analogous. Let us start from the asymptotic equivalence relationship (A7). Given

that

J ′
m(θ0)SmJm(θ0) =

[
J ′

1m(θ)SmJ1m(θ) J ′
1m(θ)SmJ2m(θ)

J ′
2m(θ)SmJ1m(θ) J ′

2m(θ)SmJ2m(θ)

]
and

J ′
m(θ0)Sm

√
Tm̄T (θ̃T ) =

[
J ′

1m(θ)Sm

√
Tm̄T (θ̃T )

J ′
2m(θ)Sm

√
Tm̄T (θ̃T )

]
�

the application of the partitioned inverse formula yields

√
T(θ̃1T − θ̂1T ) = [

J ′
m(θ0)SmJm(θ0)

]11m̄⊥
1T (θ̃T �Sm)� where

[
J ′
m(θ0)SmJm(θ0)

]11 =
[

J ′
1m(θ)SmJ1m(θ)

−J ′
1m(θ)SmJ2m(θ)

[
J ′

2m(θ)SmJ2m(θ)
]−1J ′

2m(θ)SmJ1m(θ)

]−1

�

Given that [J ′
m(θ0)SmJm(θ0)]11 will have rank p1 because [J ′

m(θ0)SmJm(θ0)] has

rank p, the Wald version of the DWH test that focuses on θ1 only is equivalent to a score

version that looks at m̄⊥
1T (θ̃T �Sn).
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Proof of Proposition 4. Given that

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

θ̂
2
T − θ̂1

T

θ̂
3
T − θ̂2

T
���

θ̂
J−1
T − θ̂J−2

T

θ̂
J
T − θ̂J−1

T

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎡
⎢⎢⎢⎢⎢⎢⎣

−I I 0 � � � 0 0 0
0 −I I � � � 0 0 0
���

���
� � �

� � �
���

���
���

0 0 0 � � � −I I 0
0 0 0 � � � 0 −I I

⎤
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

θ̂
1
T

θ̂
2
T

θ̂
3
T
���

θ̂
J−2
T

θ̂
J−1
T

θ̂
J
T

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
� (A13)

it follows immediately from (5) that

lim
T→∞

V

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

√
T

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

θ̂
2
T − θ̂1

T

θ̂
3
T − θ̂2

T
���

θ̂
J−1
T − θ̂J−2

T

θ̂
J
T − θ̂J−1

T

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

Ω2 −Ω1 0 � � � 0 0
0 Ω3 −Ω2 � � � 0 0
���

���
� � �

���
���

0 0 � � � ΩJ−1 −ΩJ−2 0
0 0 � � � 0 ΩJ −ΩJ−1

⎤
⎥⎥⎥⎥⎥⎥⎦
� (A14)

which in turn implies the asymptotic independence of nonoverlapping DWH test statis-
tics of the form (1). But since (A13) holds for any T , all J(J − 1)/2 possible differences
between any two of the J estimators will be linear combinations of the J − 1 adjacent
differences in (A14).

Proof of Proposition 5. Given that Propositions C1–C3 in Supplemental Appendix C
and Proposition D3 in Supplemental Appendix D derive all the information bounds,
we simply need to compute the off-diagonal elements. Let us start with the first row.
Straightforward manipulations imply that

E
[
sθt (φ)s′

θ|ηt (φ)|φ
] = E

{
sθt (φ)

[
s′
θt (φ)− s′

ηt (φ)I−1
ηη(φ)I ′

θη(φ)
]|φ}

= Iθθ(φ)− Iθη(φ)I−1
ηη(φ)I ′

θη(φ)= P(φ)�

Intuitively, P(φ0) is the covariance matrix of the residuals in the multivariate theoretical
regression of sθt (φ0) on sηt (φ0), which trivially coincides with the covariance matrix
between those residuals and sθt (φ0). Next,

E
[
sθt (φ)s̊′

θt (φ)|φ
]

=E
[
Zdt(θ)edt(φ)

{
e′
dt(φ)Z′

dt(θ)− [
e̊′
dt(φ)− e̊′

dt(θ�0)K̊+(κ)K̊(0)
]
Z′
d(φ)

}|φ]
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=E
[
Zdt(θ)edt(φ)e′

dt(φ)Zdt(θ)|φ
]

−E
{

Zdt(θ)edt(φ)
[
e̊′
dt(φ)− e̊′

dt(θ�0)K̊+(κ)K̊(0)
]
Z′
d(φ)|φ

}
= Iθθ(φ0)− Ws(φ0)W′

s(φ0) ·
{[

N + 2
N

mss(η0)− 1
]

− 4
N
[
(N + 2)κ0 + 2

]}= S̊(φ0)

by virtue of the law of iterated expectations, together with expressions (C33), (C34),
and (C35) in Supplemental Appendix C. Intuitively, S̊(φ0) is the variance of the error
in the least squares projection of sθt (φ0) onto the Hilbert space spanned by all the time-
invariant functions of ς t (θ0) with bounded second moments that have zero conditional
means and are conditionally orthogonal to edt(θ0�0), which trivially coincides with the
covariance matrix between those residuals and sθt (φ0). Given that this Hilbert space in-
cludes the linear span of sηt (φ0), it follows immediately that S̊(φ0) is smaller than P(φ0)

in the positive semidefinite sense.
We also know from the proof of Proposition D3 in Supplemental Appendix D that

E
[
sθt (φ)s̈′

θt (φ)|φ
]

=E
[
Zdt(θ)edt(φ)

{
e′
dt(φ)Z′

dt(θ)− [
e′
dt(φ)− e′

dt(θ�0)K+(�)K(0)
]
Z′
d(φ)

}|φ]
=E

[
Zdt(θ)edt(θ��)e′

dt(θ��)Zdt(θ)|φ
]

−E
{

Zdt(θ)edt(φ)
[
e′
dt(φ)− e′

dt(θ�0)K+(�)K(0)
]
Z′
d(φ)|φ

}
= Iθθ(φ)− Zd(φ)

[
Mdd(�0)−K(0)K+(�0)K(0)

]
Z′
d(φ) = S̈(φ0)

by virtue of the law of iterated expectations, together with expressions (B3) and (C22) in
Supplemental Appendices B and C, respectively. Intuitively, S̈(φ0) is the covariance ma-
trix of the errors in the projection of sθt (φ0) onto the Hilbert space spanned by all the
time-invariant functions of ε∗

t with zero conditional means and bounded second mo-
ments that are conditionally orthogonal to edt(θ0�0), which trivially coincides with the
covariance matrix between those residuals and sθt (φ0). The fact that the residual vari-
ance of a multivariate regression cannot increase as we increase the number of regres-
sors explains why S̊(φ0) is at least as large (in the positive semidefinite matrix sense) as
S̈(φ0), reflecting the fact that the relevant tangent sets become increasing larger. Finally,

E
[
sθt (φ)s′

θt (θ�0)|φ]= −∂E
[
s′
θt (θ�0)|φ]/∂θ= A(φ)

thanks to the generalized information equality.
Let us now move on to the second row, and in particular to

E
[
sθ|ηt (φ)s̊′

θt (φ)|φ
]

= E
[{

Zdt(θ)edt(φ)− Iθη(φ)I−1
ηη(φ)ert(φ)

}
× {

e′
dt(φ)Z′

dt(θ)− [
e̊′
dt(φ)− e̊′

dt(θ�0)K̊+(κ)K̊(0)
]
Z′
d(φ)

}|φ]
= E

[{Zdt(θ)edt(φ)e′
dt(φ0)Z′

dt(φ0)|φ
]−E

[
Zdt(θ)edt(φ)e̊′

dt(φ)Z′
dt(φ0)|φ

]
+E

[
Zdt(θ)edt(φ)e′

dt(θ�0)K+(�0)K(0)Z′
d(φ)|φ

]
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− Iθη(φ)I−1
ηη(φ)E

[
ert(φ)e′

dt(φ)Z′
dt(θ)|φ

]
+ Iθη(φ)I−1

ηη(φ)E
[
ert(φ)e̊′

dt(φ)Z′
d(θ)|φ

]
− Iθη(φ)I−1

ηη(φ)E
[
ert(φ)e̊′

dt(θ�0)K̊+(κ)K̊(0)Z′
d(φ)|φ

]
= Iθθ(φ)− Ws(φ0)W′

s(φ0) ·
{[

N + 2
N

mss(η0)− 1
]

− 4
N
[
(N + 2)κ0 + 2

]}= S̊(φ0)

where we have used the fact that

E
[
ert(φ)e′

dt(φ)|φ
] = E

{
E
[
ert(φ)e′

dt(φ)|ςt�φ
]|φ}=E

[
ert(φ)e̊′

dt(φ)|φ
]

= E
{

ert(φ)
[
δ(ςt�η)(ςt/N)− 1

]|φ}[0 vec′(IN)
]

and

E
[
ert(φ)e′

dt(θ�0)|φ] = E
{
E
[
ert(φ)e′

dt(θ�0)|ςt�φ
]|φ}= E

[
ert(φ)e̊′

dt(θ�0)|φ]
= E

{
ert(φ)

[
(ςt/N)− 1

]|φ}[0 vec′(IN)
]= 0

by virtue of Lemma 3 in Supplemental Appendix B. Similarly,

E
[
sθ|ηt (φ)s̈′

θt (φ)|φ
]

= E
[{

Zdt(θ)edt(φ)− Iθη(φ)I−1
ηη(φ)ert(φ)

}
× {

e′
dt(φ0)

[
Z′
dt(φ0)− Z′

d(φ)
]− e′

dt(θ0�0)K+(�0)K(0)Z′
d(φ)

}|φ]
= E

[
Zdt(θ)edt(φ)e′

dt(φ0)Z′
dt(φ0)|φ

]−E
[
Zdt(θ)edt(φ)e′

dt(φ0)Z′
d(φ)|φ]

−E
[
Zdt(θ)edt(φ)e′

dt(θ�0)K+(�0)K(0)Z′
d(θ)|φ

]
= Iθθ(φ)− Zd(φ)

[
Mdd(�0)−K(0)K+(�0)K(0)

]
Z′
d(φ) = S̈(φ0)

because sηt (φ) is orthogonal to edt(θ�0) by virtue of Lemma 3 and

E
[
ert(φ)}

{
e′
dt(φ0)

[
Z′
dt(φ0)− Z′

d(φ)
]}|φ]= 0

by the law of iterated expectations. Finally,

E
[
sθ|ηt (φ)s′

θt (θ�0)|φ]=E
[{

Zdt(θ)edt(φ)− Iθη(φ)I−1
ηη(φ)ert(φ)

}
e′
dt
(θ�0)Z′

dt(φ)|φ
]

= A(φ)

because of the generalized information equality and the orthogonality of ert(φ) and
edt(θ�0).

Let us start the third row with

E
[
s̊θt (φ)s̈′

θt (φ)|φ
]= E

[{
Zdt(θ)edt(φ)− Zd(φ)

[
e̊dt(φ)− K̊(0)K̊+(κ)e̊dt(θ�0)

]}
× {

e′
dt(φ0)

[
Z′
dt(φ0)− Z′

d(φ)
]− e′

dt(θ0�0)K+(�0)K(0)Z′
d(φ)

}|φ]
= Iθθ(φ)− Zd(φ)

[
Mdd(�0)−K(0)K+(�0)K(0)

]
Z′
d(φ) = S̈(φ0)
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because

E
{[

e̊dt(φ)− K̊(0)K̊+(κ)e̊dt(θ�0)
]
e′
dt(φ0)

[
Z′
dt(φ0)− Z′

d(φ)
]|φ}= 0

by the law of iterated expectations. In addition, we have that

E
[
s̊θt (φ)s′

θt (θ�0)|φ]= A(φ)� (A15)

which follows immediately from (A21) and the generalized information matrix equality.
Turning to the last off-diagonal element, we can show that

E
[
s̈θt (φ)s′

θt (θ�0)|φ]=E
[{

Zdt(θ)edt(θ��)− Zd(θ��)
[
edt(θ��)−K(0)K+(�)edt(θ�0)

]}
× e′

dt(θ�0)Z′
dt(θ)|φ

]
=A(θ)

because edt(θ�0) is conditionally orthogonal to [edt(θ��)−K(0)K+(�)edt(θ�0)] by con-
struction. This result also proves the positive semidefiniteness of S̈(φ0)−A(θ)B−1(φ)×
A(θ) because this expression coincides with the residual covariance matrix in the theo-
retical regression of the semiparametric efficient score on the Gaussian pseudo-score.

To prove the second part of the proposition, it is convenient to regard each estima-
tor as an exactly identified GMM estimator based on the corresponding score, whose
asymptotic variance depends on the asymptotic variance of this score and the corre-
sponding expected Jacobian. In this regard, note that the information matrix equality
applied to the restricted and unrestricted versions of the efficient score implies that

−∂E
[
sθt (φ)|φ

]
/∂θ′ = E

[
sθt (φ)s′

θt (φ)|φ
]= Iθθ(φ) and

−∂E
[
sθ|ηt (φ)|φ

]
/∂θ′ = E

[
sθ|ηt (φ)s′

θ|ηt (φ)|φ
]= P(φ)�

Similarly, we can use the generalized information matrix equality together with some
of the arguments in the proof of Proposition C3 in Supplemental Appendix C to show
that

− ∂E
[
s̊θt (φ)|φ

]
/∂θ

= E
[
s̊θt(φ0)s′

θt (φ0)|φ
]

= E
[
Zdt(θ0)edt(φ0)e′

dt(φ0)Z′
dt(θ0)

∣∣∣φ0
]

−E

{
Ws(φ0)

[[
δ(ςt�η0)

ςt

N
− 1

]

− 2
(N + 2)κ0 + 2

(
ςt

N
− 1

)]
e′
dt(φ0)Z′

dt(θ0)
∣∣∣φ0

}

= Iθθ(φ0)− Ws(φ0)E

{[{
δ(ςt�η0)

ςt

N
− 1

}

− 2
(N + 2)κ0 + 2

(
ςt

N
− 1

)]
e′
dt(φ0)

∣∣∣φ0

}
Zd(θ0)
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= Iθθ(φ0)− Ws(φ0)E

[{[
δ(ςt�η0)

ςt

N
− 1

]

− 2
(N + 2)κ0 + 2

(
ςt

N
− 1

)}[
δ(ςt�η0)

ςt

N
− 1

]∣∣∣φ0

]
W′

s(φ0)

= Iθθ(φ0)− Ws(φ0)W′
s(φ0) ·

{[
N + 2
N

mss(η0)− 1
]

− 4
N
[
(N + 2)κ0 + 2

]}

= S̊(φ0)= E
[
s̊θt (φ)s̊′

θt (φ)|φ
]
� (A16)

The generalized information matrix equality also implies that

−∂E
[
s̈θt (φ0)|φ0

]
∂θ

=E
[
s̊θt (φ0)s′

θt (φ0)|φ
]=E

[
Zdt(θ0)edt(φ0)e′

dt(φ0)Z′
dt(θ0)|φ0

]
�

On this basis, we can use standard first-order expansions of
√
T [θ̂T (η0) − θ0] and√

T(θ̂T − θ0) to show that

lim
T→∞

E
{
T
[
θ̂T (η0)− θ0

](
θ̂

′
T − θ′

0
)}= I−1

θθ (φ) lim
T→∞

E[T s̄θT (φ)s̄′
θ|ηT (φ)}P−1(φ) = I−1

θθ (φ)�

All the remaining asymptotic covariances are obtained analogously.

Proof of Proposition 6. Given the efficiency of θ̂T relative to θ̃T , it follows from
Lemma 2 in Hausman (1978) that

√
T(θ̃T − θ̂T ) →N

[
0�C(φ0)−P−1(φ0)

]
�

The other two results follow directly from Proposition 1 after taking into account that

−∂E
[
sθ|ηt (φ)|φ

]
/∂θ′ = P(φ)�

−∂E
[
sθt (θ�0)|φ]/∂θ′ = A(φ)

(A17)

by the generalized information matrix equality.

Proof of Proposition 7. The efficiency of θ̂T (η) relative to θ̂T and Lemma 2 in Haus-
man (1978) imply that

√
T
[
θ̂T − θ̂T (η)

]→ N
[
0�Iθθ(φ0)− I−1

θθ (φ0)
]

under then null of correct specification. The other two results follow directly from
Proposition 1 and the partitioned inverse formula after taking into account (A17) and

−∂E
[
sθt (θ� η̄)|φ

]
/∂θ′ = Iθθ(φ)

by the information matrix equality.

Proof of Proposition 8. The proof of Proposition 6 immediately implies that
√
T(θ̃T − θ̂T ) →N

[
0�Cθ1θ1(φ0)−Pθ1θ1(φ0)

]
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under the null. If we combine this result with Proposition 3, we obtain the expressions
for the asymptotic variances of the two asymptotically equivalent score versions.

Proof of Proposition 9. The proof of Proposition 7 immediately implies that

√
T
[
θ̂1T − θ̂1T (η)

]→N
{

0�
[
Pθ1θ1(φ0)− Iθ1θ1(φ0)

]}
under the null. If we combine this result with Proposition 3, we obtain the expressions
for the asymptotic variances of the two asymptotically equivalent score versions.

Proof of Proposition 10. The proof of the first part is trivial, except perhaps for the
fact that Msr(0) = 0, which follows from Lemma 3 in Supplemental Appendix B because
est(θ0�0) coincides with est(θ0��0) under normality.

To prove the second part, we use the fact that after some tedious algebraic manipu-
lations we can write Mdd(η)−K(0)K+(κ)K(0) in the spherical case as

⎧⎨
⎩
[
mll(η)− 1

]
IN 0

0
[

mss(η)− 1
κ+ 1

]
(IN2 + KNN)+

[
mss(η0)− 1 + 2κ

(κ+ 1)
[
(N + 2)κ+ 2

] ] vec(IN) vec′(IN)

⎫⎬
⎭ �

Therefore, given that Zl(φ0) �= 0, Iθθ(φ) − S̈(φ) will be zero only if mll(η) = 1, which in
turn requires that the residual variance in the multivariate regression of δ(ςt�η0)ε

∗
t on ε∗

t

is zero for all t, or equivalently, that δ(ςt�η0) = 1. But since the solution to this differen-
tial equation is g(ςt�η) = −�5ςt + C, then the result follows from (C19) in Supplemental
Appendix C.

If the true conditional mean were 0, and this was taken into account in estimation,
then the first diagonal block would disappear, and Iθθ(φ)− S̈(φ) could also be 0 if

Zd(θ��)
[
Mdd(�)−K(0)K+(�)K(0)

]
Z′
d(θ��) = 0�

Although this condition is unlikely to hold otherwise, it does not strictly speaking require
normality. For example, Amengual, Fiorentini, and Sentana (2013), correcting an earlier
typo in Amengual and Sentana (2010), showed that

mss(η0) = Nκ+ 2
(N + 2)κ+ 2

for the Kotz distribution, which immediately implies that

mss(η)− 1
κ+ 1

= Nκ2

(κ+ 1)(2κ+Nκ+ 2)
and

mss(η0)− 1 + 2κ
(κ+ 1)

[
(N + 2)κ+ 2

] = − 2κ2

(κ+ 1)(2κ+Nκ+ 2)
�

When N = 1, (IN2 + KNN) = 2 and vec(IN) vec′(IN) = 1, which trivially implies that
Iθθ(φ) − S̈(φ) = 0. However, this result fails to hold for N ≥ 2. Specifically, using the
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explicit expressions for the commutation matrix in Magnus (1988), it is straightforward
to show that

κ2

(κ+ 1)(4κ+ 2)

⎛
⎜⎜⎜⎝

2 0 0 0
0 1 1 0
0 1 1 0
0 0 0 2

⎞
⎟⎟⎟⎠− κ2

(κ+ 1)(2κ+ 1)

⎛
⎜⎜⎜⎝

1
0
0
1

⎞
⎟⎟⎟⎠
(

1 0 0 1
)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

κ2

(κ+ 1)(2κ+ 1)
0 0 − κ2

(κ+ 1)(2κ+ 1)

0
κ2

(κ+ 1)(2κ+ 1)
κ2

(κ+ 1)(2κ+ 1)
0

0
κ2

(κ+ 1)(2κ+ 1)
κ2

(κ+ 1)(2κ+ 1)
0

− κ2

(κ+ 1)(2κ+ 1)
0 0

κ2

(κ+ 1)(2κ+ 1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
�

which can only be 0 under normality.

Proof of Proposition 11. Note that Iθθ(φ)− S̊(φ) is Ws(φ)W′
s(φ) times the residual

variance in the theoretical regression of δ(ςt�η0)ςt/N − 1 on (ςt/N)− 1. Therefore, given
that Ws(φ) �= 0, Iθθ(φ)− S̊(φ) can only be 0 if that regression residual is identically 0 for
all t. The solution to the resulting differential equation is

g(ςt�η)= − N(N + 2)κ
2
[
(N + 2)κ+ 2

] ln ςt − 1[
(N + 2)κ+ 2

]ςt +C�

which in view of (C19) in Supplemental Appendix C implies that

h(ςt;η)∝ ς
N

(N+2)κ+2 −1
t exp

{
− 1[

(N + 2)κ+ 2
]ςt
}
�

i.e., the density of Gamma random variable with mean N and variance N[(N +2)κ0 +2].
In this sense, it is worth recalling that κ≥ −2/(N + 2) for all spherical distributions, with
the lower limit corresponding to the uniform.

As for the second part, expression (C27) in Supplemental Appendix C implies that in
the spherically symmetric case the difference between P(φ0) and Iθθ(φ0) is given by

Ws(φ0)W′
s(φ0) · [msr(η0)M−1

rr (η0) m′
sr(η0)

]
�

which is the product of a rank one matrix times a nonnegative scalar. Therefore, given
that Ws(φ) �= 0 and Mrr(η0) has full rank, P(φ0) can only coincide with Iθθ(φ0) if the
1 × q vector msr(η0) is identically 0.

Proof of Proposition 12. Given our assumptions on the mapping rs(·), we can di-
rectly work in terms of the ϑ parameters. In this sense, since the conditional covariance
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matrix of yt is of the form ϑiΣ
◦
t (ϑc), it is straightforward to show that

Zdt(ϑ) =
{
ϑ

−1/2
i

[
∂μ′

t (ϑc)/∂ϑc
]
Σ

◦−1/2′
t (ϑc)

0

1
2
{
∂ vec′[Σ◦

t (ϑc)
]
/∂ϑc

}[
Σ

◦−1/2′
t (ϑc)⊗Σ◦−1/2′

t (ϑc)
]

1
2
ϑ−1
i vec′(IN)

⎫⎪⎬
⎪⎭

=
[

Zϑclt(ϑ) Zϑcst(ϑ)

0 Zϑist(ϑ)

]
� (A18)

Thus, the score vector for ϑ will be[
sϑct(ϑ�η)

sϑit(ϑ�η)

]
=
[

Zϑclt(ϑ)elt (ϑ�η)+ Zϑcst(ϑ)est(ϑ�η)
Zϑist(ϑ)est(ϑ�η)

]
� (A19)

where elt (ϑ�η) and est(ϑ�η) are given in expressions (C8) and (C9) in Supplemental
Appendix C, respectively.

It is then easy to see that the unconditional covariance between sϑct(ϑ�η) and
sϑit(ϑ�η) is

E

{[
Zϑclt(ϑ) Zϑcst(ϑ)

][Mll(η) 0
0 Mss(η)

][
0

Z′
ϑist

(ϑ)

]∣∣∣ϑ�η
}

=
{
2mss(η)+N

[
mss(η)− 1

]}
2ϑi

×E

{
1
2
∂ vec′[Σ◦

t (ϑc)
]

∂ϑc

[
Σ

◦−1/2′
t (ϑc)⊗Σ◦−1/2′

t (ϑc)
]∣∣∣ϑ�η} vec(IN)

=
{
2mss(η)+N

[
mss(η)− 1

]}
2ϑi

Zϑcs(ϑ�η) vec(IN)�

with Zϑcs(ϑ�η)= E[Zϑcst(ϑ)|ϑ�η], where we have exploited the serial independence of
ε∗
t , as well as the law of iterated expectations, together with the results in Proposition C1

in Supplemental Appendix C.
We can use the same arguments to show that the unconditional variance of sϑit(ϑ�η)

will be given by

E

{[
0 Zϑist(ϑ)

][Mll(η) 0
0 Mss(η)

][
0

Z′
ϑist

(ϑ)

]∣∣∣ϑ�η
}

= 1

4ϑ2
i

vec′(IN)
[
mss(η)(IN2 + KNN)+ [

mss(η)− 1
]
) vec(IN) vec′(IN)

]
vec(IN)

=
{
2mss(η)+N

[
mss(η)− 1

]}
N

4ϑ2
i

�
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Hence, the residuals from the unconditional regression of sϑct(ϑ�η) on sϑit(ϑ�η)

will be

sϑ1|ϑit(ϑ�η)

= Zϑclt(ϑ)elt (ϑ�η)+ Zϑcst(ϑ)est(ϑ�η)

− 4ϑ2
i{

2 mss(η)+N
[
mss(η)− 1

]}
N

{
2mss(η)+N

[
mss(η)− 1

]}
2ϑi

× Zϑcs(ϑ) vec(IN)
1

2ϑi
vec′(IN)est(ϑ�η)

= Zϑclt(ϑ)elt (ϑ�η)+ [
Zϑcst(ϑ)− Zϑcs(ϑ�η)

]
est(ϑ�η)�

The first term of sϑc |ϑit(ϑ0�η0) is clearly conditionally orthogonal to any function
of ςt(ϑ0). In contrast, the second term is not conditionally orthogonal to functions of
ςt(ϑ0), but since the conditional covariance between any such function and est(ϑ0�η0)

will be time-invariant, it will be unconditionally orthogonal by the law of iterated expec-
tations. As a result, sϑc |ϑit(ϑ0�η0) will be unconditionally orthogonal to the spherically
symmetric tangent set, which in turn implies that the spherically symmetric semipara-
metric estimator of ϑc will be ϑi-adaptive.

To prove Part 1b, note that Proposition C3 in Supplemental Appendix C and (A18)
imply that the spherically symmetric semiparametric efficient score corresponding to
ϑi will be

s̊ϑit(ϑ) = − 1
2ϑi

vec′(IN) vec
{
δ
[
ςt(ϑ)�η

]
ε∗
t (ϑ)ε

∗′
t (ϑ)− IN

}

− N

2ϑi

{[
δ
[
ςt(ϑ)�η

]ςt(ϑ)
N

− 1
]

− 2
(N + 2)κ+ 2

[
ςt(ϑ)

N
− 1

]}

= 1
2ϑi

{
δ
[
ςt(ϑ)�η

]
ςt(ϑ)−N

}

− N

2ϑi

{[
δ
[
ςt(ϑ)�η

]ςt(ϑ)
N

− 1
]

− 2
(N + 2)κ+ 2

[
ςt(ϑ)

N
− 1

]}

= N

ϑi

[
(N + 2)κ+ 2

][ςt(ϑ)
N

− 1
]
�

But since the iterated spherically symmetric semiparametric estimator of ϑ must set
to 0 the sample average of this modified score, it must be the case that

∑T
t=1 ςt(ϑ̊T ) =∑T

t=1 ς
◦
t (ϑ̊cT )/ϑ̊iT =NT , which is equivalent to (12).

To prove Part 1c note that

sϑit(ϑ�0) = 1
2ϑi

[
ςt(ϑ)−N

]
(A20)

is proportional to the spherically symmetric semiparametric efficient score s̊ϑit(ϑ),
which means that the residual covariance matrix in the theoretical regression of this
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efficient score on the Gaussian score will have rank p − 1 at most. But this residual co-
variance matrix coincides with S̊(φ)−A(φ)B−1(φ)A(φ) since

E
[
s̊θt (φ)s′

θt (θ�0)|φ]=E
[
Zdt(θ)edt(φ)e′

dt(θ�0)Z′
dt(θ)|φ

]= A(θ) (A21)

because the regression residual[
δ(ςt�η)

ςt

N
− 1

]
− 2

(N + 2)κ0 + 2

(
ςt

N
− 1

)

is conditionally orthogonal to edt(θ0�0) by the law of iterated expectations, as shown in
the proof of Proposition C3 in Supplemental Appendix C.

Tedious algebraic manipulations that exploit the block-triangularity of (A18) and
the constancy of Zϑist(ϑ) show that the different information matrices will be block
diagonal when Wϑcs(φ0) is 0. Then, Part 2a follows from the fact that Wϑcs(φ0) =
−E{∂dt(ϑ0)/∂ϑc|φ0} will trivially be 0 if E[ln |Σ◦

t (ϑc)||φ0] = k ∀ϑc .
Finally, to prove Part 2b note that (A20) implies that the Gaussian PMLE will also

satisfy (12). But since the asymptotic covariance matrices in both cases will be block-
diagonal between ϑc and ϑi when E[ln |Σ◦

t (ϑc)||φ0] = k ∀ϑc , the effect of estimating ϑc

becomes irrelevant.

Proof of Proposition 13. We can directly work in terms of the ϕ parameters thanks
to our assumptions on the mapping rg(·). Given the specification for the conditional
mean and variance in (14), and the fact that ε∗

t is assumed to be i�i�d� conditional on zt
and It−1, it is tedious but otherwise straightforward to show that the score vector will be⎡

⎢⎣ sϕ1t (ϕ��)

sϕic t (ϕ��)

sϕimt(ϕ��)

⎤
⎥⎦=

⎡
⎢⎣Zϕ1lt (ϕ)elt (ϕ��)+ Zϕ1st(ϕ)est(ϕ��)

Zϕicst (ϕ)est(ϕ��)
Zϕimlt(ϕ)elt (ϕ��)

⎤
⎥⎦ � (A22)

where

Zϕ1lt (ϕ) = {
∂μ�′

t (ϕ1)/∂ϕ1 + ∂ vec′[Σ�1/2
t (ϕ1)

]
/∂ϕ1 · (ϕim ⊗ IN)

}
Σ

�−1/2′
t (ϕ1)Φ

−1/2′
2 �

Zϕ1st(ϕ) = ∂ vec′[Σ�1/2
t (ϕ1)

]
/∂ϕ1 · [Φ1/2

2 ⊗Σ�−1/2′
t (ϕ1)Φ

−1/2′
2

]
�

Zϕimlt(ϕ) =Φ−1/2′
2 = Zϕiml(ϕ)�

Zϕicst(ϕ)= ∂ vec′(Φ1/2)/∂ϕic · (IN ⊗Φ−1/2′
2

)= Zϕics(ϕ)�

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(A23)

elt(ϕ��) and est(ϕ��) are given in (D4) in Supplemental Appendix D, with

ε∗
t (ϕ) =Φ−1/2

ic Σ
�−1/2
t (ϕc)

[
yt −μ�

t (ϕc)−Σ�1/2
t (ϕc)ϕim

]
� (A24)

It is then easy to see that the unconditional covariance between sϕct(ϕ��) and the
remaining elements of the score will be given by

[
Zϕcl(ϕ��) Zϕcs(ϕ��)

][Mll(�) Mls(�)

M′
ls(�) Mss(�)

][
0 Z′

ϕiml(ϕ)

Z′
ϕics

(ϕ) 0

]
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with Zϕcl(ϕ��) = E[Zϕclt(ϕ)|ϕ��] and Zϕcs(ϕ��) = E[Zϕcst(ϕ)|ϕ��], where we have ex-
ploited the serial independence of ε∗

t and the constancy of Zϕicst (ϕ) and Zϕimlt(ϕ), to-
gether with the law of iterated expectations and the definition[

Mll(�) Mls(�)

M′
ls(�) Mss(�)

]
= V

[
elt(ϕ��)
est(ϕ��)

∣∣∣ϕ��
]
�

Similarly, the unconditional covariance matrix of sϕic t (ϕ��) and sϕimt(ϕ��) will be

[
0 Zϕics(ϕ)

Zϕiml(ϕ) 0

][
Mll(�) Mls(�)

M′
ls(�) Mss(�)

][
0 Z′

ϕiml(ϕ)

Z′
ϕics

(ϕ) 0

]
�

Thus, the residuals from the unconditional least squares projection of sϕct(ϕ��) on
sϕic t (ϕ��) and sϕimt(ϕ��) will be

sϕc |ϕic �ϕimt(ϕ��) = Zϕclt(ϕ)elt (ϕ��)+ Zϕcst(ϕ)est(ϕ��)

−
[

Zϕcl(ϕ��) Zϕcs(ϕ��)
][elt(ϕ��)

est(ϕ��)

]

= [
Zϕclt(ϕ)− Zϕcl(ϕ��)

]
elt (ϕ��)+ [

Zϕcst(ϕ)− Zϕcs(ϕ��)
]
est(ϕ��)�

because both Zϕics(ϕ) and Zϕiml(ϕ) have full row rank when Φic has full rank in view of
the discussion that follows expression (D13) in Supplemental Appendix D.

Neither elt (ϕ��) nor est(ϕ��) will be conditionally orthogonal to arbitrary functions
of ε∗

t . But their conditional covariance with any such function will be time-invariant.
Hence, sϕc |ϕic �ϕimt(ϕ��) will be unconditionally orthogonal to ∂ ln f [ε∗

t (ϕ);�]/∂� by
virtue of the law of iterated expectations, which in turn implies that the unrestricted
semiparametric estimator of ϕc will be ϕi-adaptive.

To prove Part 1b, note that the semiparametric efficient scores corresponding to ϕic

and ϕim will be given by[
0 Zϕics(ϕ)

Zϕiml(ϕ) 0

]
K(0)K+(�0)

{
ε∗
t (ϕ)

vec
[
ε∗
t (ϕ)ε

∗′
t (ϕ)− IN

]
}

because Zϕicst (ϑ) = Zϕics(ϑ) and Zϕimlt(ϑ) = Zϕiml(ϑ) ∀t. But if (16) and (17) hold, then
the sample averages of elt[ϕc�ϕic(ϕc)�ϕim(ϕc); 0] and est[ϕc�ϕic(ϕc)�ϕim(ϕc); 0] will
be 0, and the same is true of the semiparametric efficient score.

To prove Part 1c, note that[
sϕic t (ϕ�0)
sϕimt(ϕ�0)

]
=
[

0 Zϕics(ϕ)

Zϕiml(ϕ) 0

][
ε∗
t (ϕ)

vec
[
ε∗
t (ϕ)ε

∗′
t (ϕ)− IN

]
]
� (A25)

which implies that the residual covariance matrix in the theoretical regression of the
semiparametric efficient score on the Gaussian score will have rank p − N(N + 3)/2 at
most because both Zϕics(ϕ) and Zϕiml(ϕ) have full row rank when Φic has full rank. But
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as we saw in the proof of Proposition 5, that residual covariance matrix coincides with
S̈(φ0)−A(θ)B−1(φ)A(θ).

Tedious algebraic manipulations that exploit the block structure of (A23) and the
constancy of Zϕicst (ϕ) and Zϕimlt(ϕ) show that the different information matrices will
be block diagonal when Zϕcl(ϕ��) and Zϕcs(ϕ��) are both 0. But those are precisely the
necessary and sufficient conditions for sϕct(ϕ��) to be equal to sϕc |ϕic �ϕimt(ϕ��), which
is also guaranteed by two conditions in the statement of part 2. In this sense, please note
that the reparametrization of ϕic and ϕim that satisfies those conditions will be such
that the Jacobian matrix of vech[K−1/2(ϕc)ΦicK−1/2′(ϕc)] and K−1/2(ϕc)ϕim − l(ϕc) with
respect to ϕ evaluated at the true values is equal to{

−V −1

[
sϕic t (ϕ0)

sϕimt(ϕ0)

∣∣∣φ0

]
E

[
sϕic t (ϕ0)s′

ϕct
(ϕ0)

sϕimt(ϕ0)s′
ϕct

(ϕ0)

∣∣∣φ0

]∣∣∣∣∣IN(N+1)/2

0

∣∣∣∣∣ 0
IN

}
�

Finally, to prove Part 2b simply note that (A25) implies the Gaussian PMLE will also
satisfy (16) and (17). But since the asymptotic covariance matrices in both cases will be
block-diagonal between ϕc and ϕi when the two conditions in the statement of part 2
hold, the effect of estimating ϕc becomes irrelevant.

Proof of Proposition 14. The proof builds up on Proposition B1 in Supplemental
Appendix B. Assuming covariance stationarity, the relationship vector of drift param-
eters τ and the unconditional mean μ is given by (IN − A1 − · · · − Ap)μ. Hence, the
Jacobian from one vector of parameters to the other is

∂

(
τ

a

)

∂
(
μ′�a′) =

⎛
⎜⎜⎜⎜⎝

IN − A1 − · · · − Ap −μ′ ⊗ IN � � � −μ′ ⊗ IN
0 IN2 � � � 0
���

���
� � �

���

0 0 � � � IN2

⎞
⎟⎟⎟⎟⎠ �

Consequently, Zlt (θ) for (μ′�a′�c′) becomes

⎛
⎜⎜⎜⎜⎜⎜⎝

(IN − A1 − · · · − Ap)C−1′

(yt−1 −μ)⊗ C−1′
���

(yt−p −μ)⊗ C−1′
0N2×N

⎞
⎟⎟⎟⎟⎟⎟⎠
�

so that

Iμμ = (IN − A1 − · · · − Ap)C−1′MllC
−1(IN − A1 − · · · − Ap)

′�

Iaa =
⎡
⎢⎣

Γ (0) � � � Γ (p− 1)
���

� � �
���

Γ ′(p− 1) � � � Γ (0)

⎤
⎥⎦⊗ C−1′MllC

−1�
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and Iμa = 0. Consequently, the asymptotic variances of the restricted and unrestricted
ML estimators of μ and a will be given by

I−1
μμ = (IN − A1 − · · · − Ap)

−1′CM−1
ll C′(IN − A1 − · · · − Ap)

−1�

I−1
aa =

⎡
⎢⎣

Γ (0) � � � Γ (p− 1)
���

� � �
���

Γ ′(p− 1) � � � Γ (0)

⎤
⎥⎦

−1

⊗ CM−1
ll C′�

where Γ (j) is the jth autocovariance matrix of yt .
Let us now look at the conditional variance parameters. The product rule for differ-

entials dC = (dJ)Ψ + J(dΨ) immediately implies that

dvec(C) = (Ψ ⊗ IN)ΔN dveco(J)+ (IN ⊗ J)EN dveco(Ψ)�

where EN is the N2 × N matrix such that vec(Ψ) = EN vecd(Ψ) for any diagonal matrix
Ψ , where vecd(Ψ) places the elements in the main diagonal of Ψ in a column vector,
and ΔN is an N2 × N(N − 1) matrix such that vec(J − IN) = ΔN veco(J − IN), with the
operator veco(J − IN) stacking by columns all the elements of the zero-diagonal matrix
J − IN except those that appear in its diagonal. Therefore, the Jacobian will be

∂ vec(C)

∂
(
j′�ψ′) = [

(Ψ ⊗ IN)ΔN (IN ⊗ J)EN

]= [
ΔN(Ψ ⊗ IN−1) (IN ⊗ J)EN

]
� (A26)

where we have used Proposition 6 in Magnus and Sentana (2020), which says that
Υ ΔN =ΔN(Δ′

NΥ ΔN) for any diagonal matrix Υ and Δ′
N(Ψ ⊗ IN)ΔN = (Ψ ⊗ IN−1) .

As a result, the scores with respect to j and ψ will be[
(Ψ ⊗ IN−1)Δ

′
N

E′
N

(
IN ⊗ J′)

] (
IN ⊗ J−1′)(IN ⊗Ψ−1)est(φ)

=
[
(Ψ ⊗ IN−1)Δ

′
N

(
IN ⊗ J−1′)(IN ⊗Ψ−1)
Ψ−1E′

N

]
est(φ)

=
[
Δ′

N

(
IN ⊗ J−1′)(Ψ ⊗Ψ−1)

Ψ−1E′
N

]
est(φ)�

Similarly, the information matrix of the unrestricted ML estimators of (j�ψ��) will
be ⎧⎪⎪⎨

⎪⎪⎩

[
Δ′

N

(
IN ⊗ J−1′)(Ψ ⊗Ψ−1)

Ψ−1E′
N

]
Mss

[(
Ψ ⊗Ψ−1)(IN ⊗ J−1)ΔN ENΨ

−1
]

M′
srE′

N

[(
Ψ ⊗Ψ−1)(IN ⊗ J−1)ΔN ENΨ

−1
]

[
Δ′

N

(
IN ⊗ J−1′)(Ψ ⊗Ψ−1)

Ψ−1E′
N

]
ENMsr

Mrr

⎫⎪⎬
⎪⎭
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=
⎡
⎢⎣Δ

′
N

(
IN ⊗ J−1′)(Ψ ⊗Ψ−1)Mss

(
Ψ ⊗Ψ−1)(IN ⊗ J−1)ΔN

Ψ−1E′
NMss

(
Ψ ⊗Ψ−1)(IN ⊗ J−1)ΔN

M′
srE′

N

(
Ψ ⊗Ψ−1)(IN ⊗ J−1)ΔN

Δ′
N

(
IN ⊗ J−1′)(Ψ ⊗Ψ−1)MssENΨ

−1 Δ′
N

(
IN ⊗ J−1′)(Ψ ⊗Ψ−1)ENMsr

Ψ−1E′
NMssENΨ

−1 Ψ−1E′
NENMsr

M′
srE′

NENΨ
−1 Mrr

⎤
⎥⎦

=
⎡
⎢⎣Δ

′
N

(
IN ⊗ J−1′)(Ψ ⊗Ψ−1)Mss

(
Ψ ⊗Ψ−1)(IN ⊗ J−1)ΔN

Ψ−1MssE′
N

(
IN ⊗ J−1)ΔN

M′
srE′

N

(
IN ⊗ J−1)ΔN

Δ′
N

(
IN ⊗ J−1′)ENMssΨ

−1 Δ′
N

(
IN ⊗ J−1′)ENMsr

Ψ−1MssΨ
−1 Ψ−1Msr

M′
srΨ

−1 Mrr

⎤
⎥⎦ �

Let us now obtain the asymptotic covariance matrix of the restricted ML estimators
of (j�ψ) which fix � to its true values. Lemmas 4 and 5 in Supplemental Appendix B
contain the inverses of Mss and[(

Ψ ⊗Ψ−1)(IN ⊗ J−1)ΔN ENΨ
−1]�

respectively. Thus, the asymptotic covariance matrix of the RMLEs of (j�ψ) will be{
Δ′

N(IN ⊗ J)
(
Ψ−1 ⊗Ψ)[IN2 − ENE′

N(IN ⊗ J)
(
Ψ−1 ⊗Ψ)]

ΨE′
N(IN ⊗ J)

}
M−1

ss

×
{[

IN2 − (
Ψ−1 ⊗Ψ)(IN ⊗ J′)ENE′

N

](
Ψ−1 ⊗Ψ)(IN ⊗ J′)ΔN

(
IN ⊗ J′)ENΨ

}
�

which does not have have any special structure, except in the unlikely event that J0 = IN ,
in which case the inverse in Lemma 5 of Supplemental Appendix B would reduce to{[

Δ′
N

(
Ψ−1 ⊗Ψ)ΔN

]
Δ′

N

ΨE′
N

}
�

where we have used the fact that IN2 − ENE′
N = ΔNΔ

′
N (see Proposition 4 in Magnus

and Sentana (2020)). Tedious algebraic manipulations then show that the asymptotic
covariance matrix of the restricted ML estimators of (j�ψ) which fix � to its true values
when J0 = IN would be{[

Δ′
N

(
Ψ−1 ⊗Ψ)ΔN

][
Δ′

N(KNN + Υ )ΔN

]−1[
Δ′

N

(
Ψ−1 ⊗Ψ)ΔN

]
0

0 ΨM−1
ss Ψ

}
�

The matrixΔ′
N(Ψ−1 ⊗Ψ)ΔN is obviously diagonal. In turn, Proposition 5 in Magnus and

Sentana (2020) implies that the matrix Δ′
N(KNN + Υ )ΔN =Δ′

NKNNΔN +Δ′
NΥ ΔN is the

sum of a diagonal matrixΔ′
NΥ ΔN and a symmetric orthogonal matrixΔ′

NKNNΔN whose
only N(N − 1) nonzero elements are 1s in the positions corresponding to the ij and ji
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elements of J for j > i. Therefore, although the parameters in the different columns of
J would not be asymptotically orthogonal when J0 = IN , the dependence seems to be
limited to pairs of elements {J}ij and {J}ji.

We can follow an analogous procedure to find the asymptotic covariance matrix of
the unrestricted ML estimators of (j�ψ��) for general J, which will be⎧⎪⎨
⎪⎩
Δ′

N(IN ⊗ J)
(
Ψ−1 ⊗Ψ)[IN2 − ENE′

N(IN ⊗ J)
(
Ψ−1 ⊗Ψ)] 0

ΨE′
N(IN ⊗ J) 0

0 IN

⎫⎪⎬
⎪⎭

×
[(

M−1
ss 0

0 0

)
+
(

ENM−1
ss MsrMrrM′

sr M−1
ss E′

N −ENM−1
ss MsrMrr

−MrrM′
sr M−1

ss E′
N Mrr

)]

×
{[

IN2 − (
Ψ−1 ⊗Ψ)(IN ⊗ J′)ENE′

N

](
Ψ−1 ⊗Ψ)(IN ⊗ J′)ΔN

(
IN ⊗ J′)ENΨ 0

0 0 IN

}

=

⎧⎪⎨
⎪⎩
Δ′

N(IN ⊗ J)
(
Ψ−1 ⊗Ψ)[IN2 − ENE′

N(IN ⊗ J)
(
Ψ−1 ⊗Ψ)]

ΨE′
N(IN ⊗ J)

0

⎫⎪⎬
⎪⎭M−1

ss

×
{[

IN2 − (
Ψ−1 ⊗Ψ)(IN ⊗ J′)ENE′

N

](
Ψ−1 ⊗Ψ)(IN ⊗ J′)ΔN

(
IN ⊗ J′)ENΨ 0

}

+

⎧⎪⎨
⎪⎩
Δ′

N(IN ⊗ J)
(
Ψ−1 ⊗Ψ)[IN2 − ENE′

N(IN ⊗ J)
(
Ψ−1 ⊗Ψ)] 0

ΨE′
N(IN ⊗ J) 0

0 IN

⎫⎪⎬
⎪⎭

×
(

EN M−1
ss MsrMrrM′

sr M−1
ss E′

N −ENM−1
ss MsrMrr

−MrrM′
sr M−1

ss E′
N Mrr

)

×
{[

IN2 − (
Ψ−1 ⊗Ψ)(IN ⊗ J′)ENE′

N

](
Ψ−1 ⊗Ψ)(IN ⊗ J′)ΔN

(
IN ⊗ J′)ENΨ 0

0 0 IN

}
�

Let us look at the second term in the sum. First of all, its northeastern block is

−Δ′
N(IN ⊗ J)

(
Ψ−1 ⊗Ψ)[IN2 − ENE′

N(IN ⊗ J)
(
Ψ−1 ⊗Ψ)]ENM−1

ss MsrMrr

=Δ′
N(IN ⊗ J)

(
Ψ−1 ⊗Ψ)ENM−1

ss MsrMrr

+Δ′
N(IN ⊗ J)

(
Ψ−1 ⊗Ψ)ENE′

N(IN ⊗ J)
(
Ψ−1 ⊗Ψ)]ENM−1

ss MsrMrr

=Δ′
N(IN ⊗ J)ENM−1

ss MsrMrr +Δ′
N(IN ⊗ J)ENE′

N(IN ⊗ J)EN M−1
ss MsrMrr

=Δ′
N(IN ⊗ J)ENM−1

ss MsrMrr +Δ′
N(IN ⊗ J)EN(IN � J) M−1

ss MsrMrr = 0�

and the same applies to the southwestern one by symmetry.
Turning now to the eastern block, we get

−ΨE′
N(IN ⊗ J)ENM−1

ss MsrMrr = −ΨM−1
ss MsrMrr�
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a diagonal matrix, and by symmetry, the same applies to the southern block. The south-
eastern block is trivially Mrr , which is also diagonal.

Let us now focus on the northwestern and western blocks, which are given by

Δ′
N(IN ⊗ J)

(
Ψ−1 ⊗Ψ)[IN2 − ENE′

N(IN ⊗ J)
(
Ψ−1 ⊗Ψ)]ENM−1

ss MsrMrr M′
srM−1

ss E′
N

× [
IN2 − (

Ψ−1 ⊗Ψ)(IN ⊗ J′)ENE′
N

](
Ψ−1 ⊗Ψ)(IN ⊗ J′)ΔN and

ΨE′
N(IN ⊗ J)ENM−1

ss MsrMrr M′
srM−1

ss E′
N

× [
IN2 − (

Ψ−1 ⊗Ψ)(IN ⊗ J′)ENE′
N

](
Ψ−1 ⊗Ψ)(IN ⊗ J′)ΔN�

respectively. Given that the northeastern block is 0, these two blocks will be 0 too. Finally,
given that the central block is

ΨE′
N(IN ⊗ J)ENM−1

ss MsrMrr M′
srM−1

ss E′
N

(
IN ⊗ J′)ENΨ =ΨM−1

ss MsrMrrM′
srM−1

ss Ψ �

the second term in the sum reduces to⎛
⎜⎝0 0 0

0 ΨM−1
ss MsrMrr M′

srM−1
ss Ψ −ΨM−1

ss MsrMrr

0 −MrrMsr M−1
ss Ψ Mrr

⎞
⎟⎠ � (A27)

This expression confirms that the restricted and unrestricted ML estimators of j are
equally efficient because the first term in the sum is a bordered version of the asymptotic
covariance matrix of the restricted MLEs of j and ψ.

Expression (A27) also implies that the unrestricted ML estimators of j and � are
asymptotically independent, and that the unrestricted MLEs of � are as efficient as its re-
stricted ML estimators which fix j to its true value and simultaneously estimateψ and �.
In fact, given that the asymptotic covariance matrix of those restricted estimators would
be (

Ψ
[
M−1

ss + M−1
ss MsrMrrM′

sr M−1
ss

]
Ψ −ΨM−1

ss MsrMrr

−MrrM′
sr M−1

ss Ψ Mrr

)
� (A28)

and that all four blocks are diagonal matrices, it is tedious but otherwise straightforward
to prove that each of the diagonal elements of Mrr coincides with the asymptotic vari-
ance of the MLE of ηi in a univariate Student t log-likelihood that only estimates this
parameter and a scale parameter γi.

The comparison between (A27) and (A28) also indicates that the covariance between
the ML estimators ofψ and � is the same regardless of whether j is estimated or not. The
same is true of the correction to the asymptotic covariance matrix of ψ resulting from
estimating �. In contrast,ΨM−1

ss Ψ and

E′
N(IN ⊗ C)M−1

ss (IN ⊗ C′)EN = E′
N(IN ⊗ JΨ)M−1

ss (IN ⊗ΨJ′)EN

do not generally coincide unless J0 = IN .
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