Bullying among adolescents: The role of skills

MIGUEL SARZOSA
Department of Economics, Purdue University

SERGIO URZÚA
Department of Economics, University of Maryland and NBER

Bullying cannot be tolerated as a normal social behavior portraying a child's life. This paper quantifies its negative consequences allowing for the possibility that victims and nonvictims differ in unobservable characteristics. To this end, we introduce a factor analytic model for identifying treatment effects of bullying in which latent cognitive and noncognitive skills determine victimization and multiple outcomes. We use early test scores to identify the distribution of these skills. Individual-, classroom- and district-level variables are also accounted for. Applying our method to longitudinal data from South Korea, we first show that while noncognitive skills reduce the chances of being bullied during middle school, the probability of being victimized is greater in classrooms with relatively high concentration of boys, previously self-assessed bullies and students that come from violent families. We report bullying at age 15 has negative effects on physical and mental health outcomes at age 18. We also uncover heterogeneous effects by latent skills, from which we document positive effects on the take-up of risky behaviors and negative effects on schooling attainment. Our findings suggest that investing in noncognitive development should guide policy efforts intended to deter this problematic behavior.

Keywords. Bullying, cognitive and noncognitive skills, unobserved heterogeneity.

1. Introduction

Psychologists have defined a bullying victim as a person that is repeatedly and intentionally exposed to injury or discomfort by others, with the harassment potentially triggered by violent contact, insulting, communicating private or inaccurate information, and other unpleasant gestures like the exclusion from a group (Olweus (1997)). This explains why this aggressive behavior typically emerges in environments characterized by the imbalances of power and the needs for showing peer group status (Faris and Felmlee (2011)). Not surprisingly, schools are the perfect setting for bullying. The combination of peer pressure and diverse groups, together with a sense of self-control still not fully developed, makes schools a petri dish for its materialization.

Bullying is very costly. It should not be considered a normal part of the typical social grouping that occurs throughout an individual’s life (NAS (2016)). The fear of being bullied is associated with approximately 160,000 children missing school every day in the United States (15% of those who do not show up to school every day); one out of ten students drops out or changes school because of bullying (Baron (2016)); homicide perpetrators are twice as likely as homicide victims to have been victims of bullying (Gunnison, Bernat, and Goodstein (2016)); suicidal thoughts are two to nine times more prevalent among bullying victims than among nonvictims (Kim and Leventhal (2008)). Notably, the economic literature has mostly stayed away from research efforts for understanding this aggressive behavior.

Although the prevalence of school bullying is a global phenomenon, in South Korea, the country we examine in this paper, it represents a serious social problem. Suicides and bullying also go hand-in-hand in the country. Suicides among school-aged Koreans (ages 10 to 19) average one a day.2 The fierce academic competition resulting from the high value the society gives to education, which in turn makes school grades and test scores extremely high stake events, has been identified as one of the reasons behind the phenomenon. In fact, South Korean households spend 0.8% of the GDP per year out of their pockets on education (more than twice the OECD average), and after-school academies or hagwon are increasingly popular (Choi and Choi (2015)).3 This competitive high-pressure environment has fueled a climate of aggression that frequently evolves into physical and emotional violence.4

1See stopbullying.gov.

2Suicide is the country's largest cause of death among individuals between 15 and 24 years of age. According to the World Health Organization, the overall suicide rate in South Korea is among highest in the world with 28.9 suicides per 100,000 people (2013).

3The degree of competition is such that there are hagwons exclusively dedicated to prepare students for the admission processes of the more prestigious hagwons. These investments are not remedial measures. They do not aim at helping less proficient individuals to keep up with their classmates. Instead, they are intended to make good students even better than their peers. Such are the incentives to study extra hours that the government had to prohibit instruction in hagwon after 10PM. See www.economist.com/news/asia/21665029-korean-kids-pushy-parents-use-crammers-get-crammers-cr-me-de-la-cram and www.economist.com/node/21541713.

4In fact, the problem of school violence is so prevalent that in an effort to curb this unwanted behavior, the South Korean government installed 100,000 closed circuit cameras in schools in 2012, and since 2013, private insurance companies have been offering bullying insurance policies. www.huffingtonpost.com/2014/02/07/south-korea-bullying-insurance_n_4746506.html.
This paper assesses the determinants and medium-term consequences of being bullied. Our empirical analysis is carried out using South Korean longitudinal information on teenagers, which allows us to examine the extent to which cognitive and noncognitive skills can deter the occurrence of this unwanted behavior, and also how they might palliate or exacerbate its effects on several outcomes, including depression, life satisfaction, college enrollment, the incidence of smoking, drinking, health indicators, and the ability to cope with stressful situations.\(^5\)

Our conceptual framework is based on an empirical model of endogenous bullying, multiple outcomes and latent skills. As we describe below, the setting is flexible enough to incorporate several desirable features. First, it treats bullying as an endogenous behavior dependent on own and peer characteristics. We exploit the fact that students in Korea are randomly allocated to classrooms, so some classrooms may be more or less fostering of an aggressive environment depending on the students assigned to it (Carrell and Hoekstra (2010)). In this setting, each student’s stock of skills serves as the mediating mechanism between such environment and the probability of being victimized. Second, it recognizes that cognitive and noncognitive test scores available to the researcher are only proxies for latent skills (Heckman, Stixrud, and Urzua (2006)). This is critical for this paper since, as shown below, ability measures can be influenced by the school environment (Hansen, Heckman, and Mullen (2004)). Third, it avoids strong functional form assumptions on the distribution of latent skills, allowing for a flexible representation of the patterns observed in the data. Fourth, the model allows us to simulate counterfactual outcomes for individuals with different latent skill levels, which are then used to document heterogenous and nonlinear treatment effects of bullying on multiple variables. This provides a comprehensive perspective of its negative effects. Finally, it accommodates the potential effects of investments (improving school quality and diminishing aggressive behavior within the household) on the probability of being bullied.

The paper contributes to the literature in several ways. First, to the best of our knowledge, this is the first attempt to assess medium-term impacts of school victimization while dealing with its endogeneity (from the point of view of the victim). In particular, longitudinal data allows us to examine the transition from middle school to early adulthood, so we can identify the effects of early victimization during a decisive period of human development. Second, we provide evidence on how skills mediate between the potential supply of violence in the classroom and student’s likelihood of being victimized. Namely, we find that a one standard deviation increase in noncognitive skills reduces the probability of being bullied by more than 6%. Thus, we provide insights that can potentially motivate interventions to reduce its incidence. Third, we find that skills not only affect the probability of victimization, but also palliate the consequences of bullying in subsequent years. For instance, we find that cognitive skills reduce the incidence of bad habits, such as drinking and smoking, proportionally more among bullying

\(^5\)In this paper, we follow the literature and define cognitive skills as “all forms of knowing and awareness such as perceiving, conceiving, remembering, reasoning, judging, imagining, and problem solving” (APA (2006)), and noncognitive skills as personality and motivational traits that determine the way individuals think, feel, and behave (Borghans, Duckworth, Heckman, and Weel (2008)).
victims than among nonvictims. Fourth, we quantify the effects bullying has on several behavioral outcomes. Anticipating our results, we find that being bullied at age 15 increases the incidence of sickness by 93%, the incidence of mental health issues by 80%, and raises stress levels caused by friendships by 23.5% of a standard deviation, all by age 18. We also find that there are differential effects of bullying victimization across skill levels. Bullying increases depression by 11% of a standard deviation among students from the bottom decile of the noncognitive skill distribution, and reduces the likelihood of going to college by 5.5 to 9.4 percentage points in students that come from the lower-half of the non-cognitive skill distribution. We also show that bullying increases the likelihood of smoking by 10.3 percentage points for students in the lowest decile of the cognitive skill distribution.

The paper is organized as follows. Section 2 puts our research in the context of the literature analyzing bullying. Section 3 describes our data. In Section 4, and following the existing literature, we present results from regression analyses of the impact of bullying on different outcomes. Section 5 explains the empirical strategy we adopt in this paper. Section 6 presents and discusses our main results. Section 7 concludes.

2. Related literature

Research in psychology and sociology has been prolific in describing bullying as a social phenomenon. This literature has shown that younger kids are more likely to be bullied, that this misbehavior is more frequent among boys than among girls (Boulton and Underwood (1993), Perry, Kusel, and Perry (1988)), and that school and class size are not significant determinants of the likelihood of bullying occurrence (Olweus (1997)). It has also documented that bullying victims have fewer friends, are more likely to be absent from school, and do not like break times (Smith, Talamelli, Cowie, Naylor, and Chauhan (2004)); that they have lower self-evaluation (self-esteem) (Björkqvist, Ekman, and Lagerspetz (1982), Olweus (1997)); and that their brains have unhealthy cortisol reactions that make it difficult to cope with stressful situations (Ouellet-Morin et al. (2011)). Although mostly descriptive, this research provides insights that are essential for the specification of our empirical model. In particular, the common characterization of victims as individuals lacking social adeptness highlights the importance of controlling for skills, particularly noncognitive dimensions, when analyzing the determinants and potential consequences of bullying.

But unlike in sociology and psychology, economic research has not paid enough attention to bullying, and at least two reasons might explain this. First and foremost, the lack of representative information about bullying in both cross-sectional and longitudinal studies; and second, the fact that selection into this behavioral phenomenon is complex and non-random, reducing the chances of reliable identification strategies. Thus, the consequences of being bullied could be confounded by intrinsic characteristics that made the person a victim (or a perpetrator) in the first place.

In this context, only a handful of papers in economics analyze the effect of bullying, while the efforts to understand its endogeneity have been even more exiguous. Brown and Taylor (2008) estimate linear regression models and ordered probits to examine the
associations between bullying and educational attainment as well as labor market outcomes in the United Kingdom. Their findings suggest that being bullied (and being a bully) is correlated with lower educational attainment and, as a result, with lower wages later in life. Le, Miller, Heath, and Martin (2005) bundle bullying with several other conduct disorders such as stealing, fighting, raping, damaging someone’s property on purpose and conning, among others. Using an Australian sample of twins, these authors control for the potential endogeneity arising from genetic and environmental factors. Through linear regression models, they find that conduct disorders are positively correlated with dropping-out from school and being unemployed later in life. They do not explore, however, the latent dimensions influencing both the conduct disorder and the outcome variables they assess. By implementing an instrumental variable strategy, Eriksen, Nielsen, and Simonsen (2014) dealt with the endogeneity of bullying. Using detailed administrative information from Aarhus, a region in Denmark, they instrument teacher-parent reported bullying victimization in elementary school with the proportion of classroom peers whose parents have a criminal conviction. They confirm that elementary school bullying reduces 9th grade GPA.

Drawing on these previous efforts, our empirical strategy extends the existing literature on several fronts. First, the setting we examine allows us to leverage on a feature of the Korean schooling system, namely the random allocation of students to classrooms, to account for the potential selection of students across classrooms. Moreover, in the spirit of the literature, we use classroom-level instrumental variables as source of exogenous variation affecting the probability of being victimized. Second, we control for unobserved heterogeneity in the form of cognitive and noncognitive skills. In this way, the analysis connects to the literature on skill formation (Cunha and Heckman (2008)) as it treats multiple skills not only as mechanisms that determine the chances of being bullied, but also as traits that palliate or exacerbate its negative effects (potentially on other traits). Since we find that unobserved skills are key determinants of the treatment and outcomes examined, we also shed light on how to identify causal effects when the treatment is driven by unobserved heterogeneity (latent skills) (Angrist and Imbens (1994), Heckman, Urzua, and Vytlacil (2006)). Finally, we provide medium-term impacts of school victimization on multiple outcomes. That is, we acknowledge that bullying affects the victims’ lives beyond school, and consequently, we quantify its impacts on other future dimensions (e.g., health status, risky behaviors, social relations, life satisfaction, and college attendance).

3. Data

We use the Korean Youth Panel Survey (KYPS), a longitudinal study designed to characterize and explain the behaviors of adolescents after they entered middle school. This panel was first launched in 2003 and collected rich information from a sample of students (age 14 at wave one) who were then interviewed once a year until 2008, covering the transition from middle-school into the beginning of their adult life.

6We provide details on how we use the random allocation of students to classrooms in Section 5.
Table 1. Main descriptive statistics of the KYPS sample.

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total sample size</td>
<td>3449</td>
</tr>
<tr>
<td>Number of females</td>
<td>1724</td>
</tr>
<tr>
<td>Fathers education:</td>
<td></td>
</tr>
<tr>
<td>High-school</td>
<td>42.94%</td>
</tr>
<tr>
<td>4yr Coll. or above</td>
<td>36.56%</td>
</tr>
<tr>
<td>Proportion of urban households</td>
<td>86.7%</td>
</tr>
<tr>
<td>Prop. of single-headed households</td>
<td>6%</td>
</tr>
<tr>
<td>Median monthly income per-capita</td>
<td>1 mill won</td>
</tr>
<tr>
<td>Mothers education:</td>
<td></td>
</tr>
<tr>
<td>High-school</td>
<td>56.31%</td>
</tr>
<tr>
<td>Prop. of youths in college by 19</td>
<td>56.65%</td>
</tr>
<tr>
<td>4yr Coll. or above</td>
<td>19.51%</td>
</tr>
<tr>
<td>Prop. of single-child households</td>
<td>8.8%</td>
</tr>
<tr>
<td>Number of schools</td>
<td>104</td>
</tr>
<tr>
<td>Average class size</td>
<td>35</td>
</tr>
<tr>
<td>Minimum class size</td>
<td>21</td>
</tr>
<tr>
<td>Maximum class size</td>
<td>42</td>
</tr>
</tbody>
</table>

Note: Data from the KYPS. We define as urban households those that live in a Dong as opposed to living in an Eup or a Meyu.

The KYPS is a representative sample of the entire country. Its sampling was stratified into the 12 regions including Seoul Metropolitan City. Within each region, schools were randomly chosen with sampling intervals to represent the region's proportion of middle-school students. In total, 104 schools were sampled. All the students of an entire class in a sampled school were interviewed and followed-up. The resulting panel consists of 3449 students who were repeatedly interviewed in six waves. Each year, information was collected in two separate questionnaires: one for the teenager, and one for their parents or guardians. Table 1 presents the descriptive statistics.

As this is a sensitive age range regarding life-path choices, the KYPS provides a unique opportunity to understand the effects of cognitive and noncognitive skills on multiple behaviors. This longitudinal study pays special attention to the life-path choices made by the surveyed population, inquiring not only about their decisions, but also about the environment surrounding their choices. For example, youths are often asked about their motives and the reasons that drive their decision-making process. Future goals and parental involvement in such choices are frequently elicited as well.

Besides inquiring about career planning and choices, the KYPS collects data on academic performance, student effort, and participation in different kinds of private tutoring activities. The survey also asks about time allocation, leisure activities, social relations, attachment to friends and family, participation in deviant activity, and the number of times the respondent has been victimized in different settings. In addition, the survey performs a comprehensive battery of personality questions from which measures of self-esteem, self-stigmatization, self-reliance, aggressiveness, anger, self-control, and satisfaction with life can be constructed.

While parents and guardians answer a short questionnaire covering household composition and their education, occupation, and income; the teenagers are often asked about the involvement of their parents in many aspects of their life, which are the

7The attrition in this longitudinal study is the following: by wave 2, 92% of the sample remained; by wave 3, 91% did so; by wave 4, 90%; and by wave 5, 86% remained in the sample. Sarzosa (2015) showed that attrition is not related with skills or victimizations.
sources of information we use to form classroom-level determinants of bullying. We
construct, for example, the proportion of peers in the classroom from families with a
history of violence using the answers to the following statements: “I always get along
well with brothers or sisters,” “I frequently see parents verbally abuse each other,” “I fre-
quently see one of my parents beat the other one,” “I am often verbally abused by par-
ents,” and “I am often severely beaten by parents.” Individual reactions to these state-
ments are recorded using a Likert scale ranging from “very true” to “very untrue.” After
aggregating the answers, we label students reporting an overall score above the mean as
coming from a violent family. Finally, for each student, we count the number of class-
mates from families with a history of violence.

Noncognitive measures (age 14).8 The KYPS contains a comprehensive battery of
measures related to personality traits. Among them, we select the scales of locus of con-
trol, irresponsibility, and self-esteem. Locus of control relates to the extent to which a
person believes her actions affect her destiny, as opposed to a person that believes that
luck is more important than her own actions (Rotter (1966)). People with internal locus
of control face life with a positive attitude as they are more prone to believe that their
future is in their hands (Tough (2012)). The irresponsibility scale captures the impossi-
bility to carry forward an assigned task to a successful conclusion. Interestingly, students
with low levels of responsibility tend to favor short-term rewards and that hampers their
ability to exert effort for extended period of time in order to achieve longer-term goals
(Duckworth, Peterson, Matthews, and Kelly (2007)). Thus, this scale might relate neg-
atively to perseverance and grit, that is, the ability to overcome obstacles and giving
proportionally greater value to large future rewards over smaller immediate ones (Duck-
worth and Seligman (2005)). Finally, self-esteem provides a measure of self-worth. Panel
A in Table 2 presents the descriptive statistics of the constructed measures.9

The choice of these variables is backed by research that shows that each of these per-
sonality traits are important determinants of future outcomes and the likelihood of vic-
timization. For instance, Duckworth and Seligman (2005), Heckman, Stixrud, and Urzua
(2006) and Urzua (2008) showed that the unobserved heterogeneity captured by some of
these measures are strong predictors of adult outcomes. In fact, our findings presented
in Appendix C in the Online Supplementary Material attest to that. In the same vein, psy-
chology literature shows that the traits chosen correlate with school bullying victimiza-
tion (Björkqvist, Ekman, and Lagerspetz (1982), Olweus (1997), Smith and Brain (2000)).
People with external locus of control or a higher degree of perseverance may have a
greater inclination to avoid/change a victimization situation. Self-esteem, on the other
hand, proxies prosociality in the following way. On average, prosocial children report

8Following the literature on unobserved heterogeneity, we use interchangeably the terms “measures”
and “scores” to denote the observable or manifest variables that come directly from the data as opposed to
the terms “skills” or “skill dimensions” we use to denote the unobserved factors.

9It should be noted that most of the noncognitive or socio-emotional information in the KYPS is recorded
in categories that group the reactions of the respondent in categories from “strongly agree” to “strongly dis-
agree.” In consequence, and following common practice in the literature, we construct socio-emotional skill
measures by adding categorical answers of several questions regarding the same topic. The exact questions
used can be found in Appendix A in the Online Supplementary Material.
higher levels of self-worth (Keefe and Berndt (1996)), and are more likely to have friends (Santavirta and Sarzosa (2019)). Therefore, children with higher levels of self-worth tend to have larger and more stable friendship networks, which in turn, reduce the chances of being bullied in school (Hodges and Perry (1996)).

Academic performance (age 14). While rich in other dimensions, the KYPS data is somewhat limited regarding cognitive measures. Ideally, we would like to have variables closely linked to pure cognitive ability. However, the lack of such measures forces us to infer cognitive ability from grades and self-assessed scholastic performance. In particular, we use the students’ self-reported performance in (i) math and science, and (ii) language (Korean) and social studies, together with the last semester’s overall sum of school grades in the previous semester (1st semester 2003).

Importantly, previous literature has shown that academic performance is not orthogonal to noncognitive skills (Borghans, Golsteyn, Heckman, and Humphries (2011)). That is particularly true for the self-assessed scholastic performance measures we use. Students’s reporting of those measures may be mediated by emotional traits like, for instance, how confident they are on themselves or their self-worth. In other words, the production function of self-reported scholastic performance has to be modeled using both cognitive and socio-emotional (or noncognitive) skills as inputs. As described below, our framework takes this into account.

Bullying (ages 14 and 15). Psychological research shows that children tend to restrict their definitions of bullying to verbal and/or physical abuse (Naylor, Cowie, Cossin, Bettencourt, and Lemme (2010)). Accordingly, in the KYPS—where bullying is self-reported—students are considered to be victims if they have been severely teased or bantered, threatened, collectively harassed, severely beaten, or robbed, and zero otherwise. Thus, the bullying victimization variable we focus on is binary. The reported

Table 2. Descriptive statistics: scores collected at age 14.

<table>
<thead>
<tr>
<th></th>
<th>All</th>
<th>Males</th>
<th>Females</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>S.D.</td>
<td>Mean</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. Noncognitive measures</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Locus of control</td>
<td>10.68</td>
<td>(2.14)</td>
<td>10.84</td>
</tr>
<tr>
<td>Irresponsibility</td>
<td>8.29</td>
<td>(2.40)</td>
<td>8.31</td>
</tr>
<tr>
<td>Self-esteem</td>
<td>−4.05</td>
<td>(4.46)</td>
<td>−3.85</td>
</tr>
<tr>
<td>B. Academic performance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Math and Science</td>
<td>0.12</td>
<td>(1.04)</td>
<td>0.26</td>
</tr>
<tr>
<td>Language and Social Studies</td>
<td>−0.002</td>
<td>(1.07)</td>
<td>−0.14</td>
</tr>
<tr>
<td>Class grade</td>
<td>−0.14</td>
<td>(1.07)</td>
<td>−0.19</td>
</tr>
</tbody>
</table>

Note: Measures collected from the first wave of the KYPS. Locus of control relates to the extent to which a person believes her actions affect her destiny, as opposed to a person that believes that luck is more important than her own actions (Rotter (1966)). The irresponsibility measure relates negatively to perseverance and grit. The noncognitive scores were constructed by aggregating the Likert scaled answers ranging from “very true” to “very untrue” across questions regarding each concept. We present the list of questions in Appendix A in the Online Supplementary Material (Sarzosa and Urzúa (2021)). Regarding academic test scores, we use (i) math and science; (ii) language (Korean) and social studies; and (iii) overall sum of school grades in the previous semester (1st semester 2003).
incidence of bullying in the KYPS for ages 14 and 15, presented in Table 3, is remarkably similar to the 22% incidence of bullying victimization reported in the United States (National Center for Education (2015)) and in line with the incidence reported in international studies for the same age (Smith and Brain (see 2000, for a summary)).

Outcome variables (ages 18 and 19). According to the existing scientific literature, bullying relates to differences in later physical, psychosocial, and academic outcomes (NAS (2016)). We follow that taxonomy and document the impact of bullying on at least one outcome from each dimension.

When it comes to physical health, we examine medium to long term consequences resulting from somatization—the translation of emotional shocks to physical symptoms like sleep difficulties, gastrointestinal disorders, headaches, and chronic pain (NAS (2016))—or the take-up of unhealthy behaviors which can be understood as strategies teenagers use to cope with victimization and peer rejection (Carlyle and Steinman (2007), Niemelä et al. (2011)). To this end, we analyze self-reported health at age 18 (an indicator on whether the respondent considers she is in good health or not). In addition, although they are not direct measures of physical health, we also examine the incidence of smoking and drinking alcohol within this category.

We also link bullying to the incidence of mental health issues and stress. Mental health problems are commonly linked to many types of early life emotional trauma (Institute of Medicine and National Research Council (2014)). School bullying is no different. Available literature often links victimization to an increased incidence of psychotic symptoms (Cunningham, Hoy, and Shannon (2016)), to psychosocial maladjustment like depression and suicides (Hawker and Boulton (2000), Kim, Leventhal, Koh, and Boyce (2009)), and the increased presence of cortisol—the stress hormone which modifies many processes in the body, affects the prefrontal cortex of the brain and in consequence alters behavior (NAS (2016)), (Ouellet-Morin et al. (2011)). In consequence, we use a binary variable capturing whether the respondent has been diagnosed with psychological or mental problems, or not; and an index of depression that is constructed based on a battery of questions that assess its symptoms. Furthermore, using a detailed questionnaire, we assess the respondent’s stress levels by age 18 with respect to friends, parents, school, and poverty. We also aggregate them to construct a total stress index. Finally, we examine the effect of bullying on academic achievement using college attendance by age 19 as the outcome of interest.

Table 3 presents descriptive statistics for the outcome variables. We consistently observe victims having worse outcomes than nonvictims. These raw differences are statistically significant at conventional levels. Appendix C in the Online Supplementary Material shows that academic test scores and noncognitive measures are strong determinants of the outcomes we analyze.

These strong relationships between proxies for skills and later outcomes are critical for the empirical strategy we present in Section 5.

10Bullying after age 15 drops dramatically in the KYPS sample as student mature. The reported proportions of students victimized at ages 16 and 17 are just 4.6% and 3.2%, respectively, so we focus on the available period with a larger prevalence of bullying (14 and 15).

11Our findings indicate that noncognitive measures (age 14) correlate with all adult outcomes except college enrollment. Academic test scores (14), on the other hand, correlate with the incidence of depression and stress, college enrollment, and smoking.
To motivate our empirical strategy, we first report reduced-form associations between bullying at age τ_1, D_{τ_1}, and outcomes of interest reported at age τ_2, Y_{τ_2}, accounting for a rich set of controls collected at age τ_0, where $\tau_0 < \tau_1 < \tau_2$. Following the literature (Brown and Taylor (2008), Eriksen, Nielsen, and Simonsen (2012)), we posit the following regression model:

$$Y_{\tau_2} = \gamma D_{\tau_1} + T_{\tau_0} \pi + X_{\tau_0} \beta + \nu_{\tau_2},$$

(1)

where ν_{τ_2} denotes the error term, T is a vector containing cognitive and noncognitive test scores and X is a vector of individual characteristics.\(^1\)\(^2\) In our data τ_0 denotes age 14, τ_1 age 15, and τ_2 ages 18 or 19 depending on the outcome.

Table 4 shows the results from the estimation of equation (1) using the KYPS sample. These suggest positive correlations between being bullied at 15 and depression, the like-

\(^{12}\)The set of controls include month of birth, gender, number of siblings, household income per capita, whether the kids lives in an urban area, whether the kid lives with both parents, whether the kid lives only with her mother, father's education.
<table>
<thead>
<tr>
<th>Bullied ($D_{τ_1}$)</th>
<th>Depression (1)</th>
<th>Depression (2)</th>
<th>Smoking (1)</th>
<th>Smoking (2)</th>
<th>Drinking (1)</th>
<th>Drinking (2)</th>
<th>Feeling Sick (1)</th>
<th>Feeling Sick (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.216</td>
<td>0.134</td>
<td>0.019</td>
<td>0.002</td>
<td>0.019</td>
<td>-0.002</td>
<td>0.042</td>
<td>0.037</td>
</tr>
<tr>
<td></td>
<td>(0.042)</td>
<td>(0.042)</td>
<td>(0.014)</td>
<td>(0.014)</td>
<td>(0.021)</td>
<td>(0.021)</td>
<td>(0.012)</td>
<td>(0.012)</td>
</tr>
<tr>
<td>Obs.</td>
<td>2675</td>
<td>2552</td>
<td>3241</td>
<td>3097</td>
<td>3241</td>
<td>3097</td>
<td>2814</td>
<td>2683</td>
</tr>
<tr>
<td>Observables</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Test Scores</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bullied ($D_{τ_1}$)</th>
<th>Mental Health Problems (1)</th>
<th>Mental Health Problems (2)</th>
<th>Life Satisfaction (1)</th>
<th>Life Satisfaction (2)</th>
<th>College (1)</th>
<th>College (2)</th>
<th>Stress: Friends (1)</th>
<th>Stress: Friends (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>-0.062</td>
<td>-0.041</td>
<td>-0.059</td>
<td>-0.048</td>
<td>0.186</td>
<td>0.144</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.021)</td>
<td>(0.021)</td>
<td>(0.021)</td>
<td>(0.022)</td>
<td>(0.046)</td>
<td>(0.047)</td>
</tr>
<tr>
<td>Obs.</td>
<td>2814</td>
<td>2683</td>
<td>3241</td>
<td>3097</td>
<td>2681</td>
<td>2558</td>
<td>2806</td>
<td>2676</td>
</tr>
<tr>
<td>Observables</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Test Scores</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bullied ($D_{τ_1}$)</th>
<th>Stress: Parents (1)</th>
<th>Stress: Parents (2)</th>
<th>Stress: School (1)</th>
<th>Stress: School (2)</th>
<th>Stress: Poverty (1)</th>
<th>Stress: Poverty (2)</th>
<th>Stress: Total (1)</th>
<th>Stress: Total (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.105</td>
<td>0.083</td>
<td>0.147</td>
<td>0.141</td>
<td>0.194</td>
<td>0.145</td>
<td>0.228</td>
<td>0.183</td>
</tr>
<tr>
<td></td>
<td>(0.045)</td>
<td>(0.046)</td>
<td>(0.045)</td>
<td>(0.045)</td>
<td>(0.045)</td>
<td>(0.046)</td>
<td>(0.045)</td>
<td>(0.046)</td>
</tr>
<tr>
<td>Obs.</td>
<td>2806</td>
<td>2676</td>
<td>2806</td>
<td>2676</td>
<td>2806</td>
<td>2676</td>
<td>2806</td>
<td>2676</td>
</tr>
<tr>
<td>Observables</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Test Scores</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
</tr>
</tbody>
</table>

Note: Standard errors in parentheses. *** $p < 0.01$, ** $p < 0.05$, * $p < 0.1$. The observables controls used are: month of birth, gender, number of older siblings, number of younger siblings, natural log of household income per capita, urban, whether the kid lives with both parents, whether the kid lives only with her mother, father education: 2-year college, father education: 4-year college and, father education: graduate school. The tests scores used are: locus of control, irresponsibility, self-esteem, math and science, language and social studies, and a class score.

† Outcomes are collected at age 18, except college attendance, which is measured at age 19.

Of course, the interpretation of these results as causal effects rely on the conditional mean independence assumption of the error term in equation (1), $\nu_{τ_2}$, with respect to the set of controls. In principle, conditional on T and X (both collected before the bullying episode occurs), the timing helps to deter reverse causality from Y to D. This view, however, omits at least two fundamental issues. First, the possible presence of measurement error in cognitive and noncognitive scores. Second, the utilization of imperfect proxies for unobserved heterogeneity. Therefore, in principle, these findings might be
biased and should not be interpreted as causal effects (Heckman, Stixrud, and Urzua (2006)).

Instrumental variables (IVs) might be used to identify the impact of bullying in this setting. This is the approach of Eriksen, Nielsen, and Simonsen (2014), which we also explore in Appendix D in the Online Supplementary Material. The causal interpretation of these results, however, needs additional qualifications. For instance, if the problematic behavior emerges from circumstances involving unobserved dimensions, a local interpretation (LATE) of the IV estimator might be viable; nonetheless, it would not inform about other general treatment effects such as the average treatment effect or the treatment effect on the treated (Heckman, Urzua, and Vytlacil (2006)). As we discuss below, our empirical model takes these potential threats to identification into account and confirm the role of unobserved (essential) heterogeneity.13

5. Empirical model

This section introduces a model of endogenous bullying with unobserved heterogeneity in the form of latent cognitive and noncognitive skills. The core of the empirical strategy adapts Hansen, Heckman, and Mullen (2004) and Heckman, Stixrud, and Urzua (2006) to the analysis of this problematic social behavior. Skills are assumed to be known to the agents (not to the econometrician) and to determine outcomes, treatment (bullying) and early noncognitive measures and academic test scores. Bullying, in turn, is also triggered by observed individual- and classroom-level characteristics, and it might affect future outcomes.

As in the previous section, here we assume $\tau_0 < \tau_1 < \tau_2$. Let $\theta^C_{\tau_0}$ and $\theta^N_{\tau_0}$ denote latent cognitive and noncognitive skill levels, respectively. These are conceptualized as correlated endowments with associated probability density function $f_{\theta^C_{\tau_0}, \theta^N_{\tau_0}}(\cdot, \cdot)$, and cumulative function $F_{\theta^C_{\tau_0}, \theta^N_{\tau_0}}(\cdot, \cdot)$. Equipped with $(\theta^C_{\tau_0}, \theta^N_{\tau_0})$, we introduce a binary indicator characterizing bullying status (being bullied or not) and a vector of subsequent counterfactual outcomes.

Let D_{τ_1} be a dummy variable denoting whether or not an individual has been a victim of bullying at τ_1. We posit the model:

$$D_{\tau_1} = \mathbb{1}[Z_{\tau_1} \beta^{D_{\tau_1}} + \alpha^{D_{\tau_1}} \cdot \theta^C_{\tau_0} + \alpha^{D_{\tau_1}} \cdot \theta^N_{\tau_0} + e_{\tau_1}^D \geq 0],$$

where $\mathbb{1}[A]$ denotes an indicator function that takes a value of 1 if A is true, and 0 otherwise. We assume $e_{\tau_1}^D \perp (\theta^C_{\tau_0}, \theta^N_{\tau_0}, Z_{\tau_1})$. Z_{τ_1} represents a set of individual- and classroom-

13Table D.2 in Appendix D of the Online Supplementary Material presents IV estimates of the effect bullying at age 15 on later outcomes exploiting the proportion of peers that report being bullies in the class as well as the proportion of peers in the classroom that come from families with a history of violent behavior (both at age 14) as instruments. We provide a detailed discussion of these instruments when we describe our empirical strategy in Section 5. Table D.1 reports the first stage estimates. Overall, the IV results suggest unstable and nonstatistically significant effects to bullying. In results available upon request, we implement formal tests for essential heterogeneity (Heckman, Schmierer, and Urzua (2010)). They confirm that heterogenous treatment effects cannot be ruled out in our context, alerting about the causal interpretation of the IV parameters.
level observables which determines bullying. Its contribution to the model’s identification is discussed below.

Potential outcomes at age \(\tau_2 \), on other hand, structurally depend on bullying status at age \(\tau_1 \). Let \(Y_{0,\tau_2}, Y_{1,\tau_2} \) denote an outcome of interest (e.g., the incidence of depression) under \(D_{\tau_1} = 0 \) and \(D_{\tau_1} = 1 \), respectively. Thus,

\[
Y_{1,\tau_2} = X_Y \beta Y_1 + \alpha Y_{0,C} \theta_{C0} + \alpha Y_{0,N} \theta_{N0} + \epsilon_{\tau_2} \quad \text{if } D_{\tau_1} = 1,
\]

\[
Y_{0,\tau_2} = X_Y \beta Y_0 + \alpha Y_{0,C} \theta_{C0} + \alpha Y_{0,N} \theta_{N0} + \epsilon_{\tau_2} \quad \text{if } D_{\tau_1} = 0,
\]

where \((\epsilon_{\tau_2}^1, \epsilon_{\tau_2}^0) \perp (\theta_{C0}, \theta_{N0}, X_Y)\). \(X_Y \) contains a set of observed characteristics. Despite the fact that vectors \(X_Y \) and \(Z_{\tau_1} \) can partially share variables, they play different roles. While \(Z_{\tau_1} \) is the vector of variables affecting bullying, \(X_Y \) determines outcomes at \(\tau_2 \).

Note that under our assumptions, although \(D_{\tau_1} \) is endogenous, once we control for unobserved heterogeneity \((\theta_{C0}, \theta_{N0})\) and observed characteristics (including exclusion restrictions), the error terms in \((Y_{1,\tau_2}, Y_{0,\tau_2}, D_{\tau_1})\) are mutually independent.

Conceptually, expressions (2), (3), and (4) can be directly used to define different treatment effects of bullying \(D_{\tau_1} \) on outcome \(Y_{\tau_2} \) (Heckman and Vytlacil (2007)). Our empirical results focus on two: the average effect of bullying (ATE) and the average effect of bullying among victims (TT). Formally, we study:

\[
ATE_{\tau_2}(\theta_{NC0}, \theta_{C0}) = E[Y_{1,\tau_2} - Y_{0,\tau_2}| \theta_{NC0}, \theta_{C0}],
\]

\[
TT_{\tau_2}(\theta_{NC0}, \theta_{C0}) = E[Y_{1,\tau_2} - Y_{0,\tau_2}| \theta_{NC0}, \theta_{C0}, D_{\tau_1} = 1],
\]

where the expectations are taken jointly with respect to the observable characteristics and the idiosyncratic shocks. We also present versions of these parameters after integrating out latent cognitive and noncognitive skills.\(^{14}\)

Sufficient conditions for the identification of versions of this model and its associated treatment parameters exist in the literature (Cameron and Heckman (1998), Heckman, Humphries, and Veramendi (2016)). However, our setting involves two additional challenges. First, the natural complexities of modeling bullying among adolescents magnify the importance of accounting for exogenous variation triggering this misbehavior. Its omission could lead to a misspecified model, potentially affecting the interpretation of the latent skills and parameters of interest. Second, since within our framework latent skills are interpreted as predetermined endowments, we must protect them from the potential effects of bullying in both \(\tau_0 \) and \(\tau_1 \). This condition makes the identification of the joint distribution of unobserved cognitive and noncognitive skills particularly challenging. In what follows, we deal with these concerns.

5.1 Identification arguments

We exploit the longitudinal dimension of our data and the institutional features of the South Korean schooling system to secure the identification of \(F_{\theta_{C0}, \theta_{N0}}(\cdot, \cdot) \). We begin by

\(^{14}\)Appendix G of the Online Supplementary Material extends the set of treatment effects to the analysis of specific policy changes.
augmenting the model with a measurement system of test scores collected during \(\tau_0 \), that is, before \(D_{\tau_0} \) is realized.

Test scores at \(\tau_0 \) and latent skills. Let \(\mathbf{T}_{\tau_0} = [T_{1, \tau_0}, T_{2, \tau_0}, \ldots, T_{L, \tau_0}]' \) be a vector of test scores collected at age \(\tau_0 \). Each component is assumed to be the result of a linear technology combining observed characteristics \(\mathbf{X}_T \) and cognitive and noncognitive skills, \((\theta^C_{\tau_0}, \theta^N_{\tau_0}) \). Therefore, even after conditioning on observables, \(\mathbf{T}_{\tau_0} \) is linked to the treatment and outcome equations (2), (3), and (4) through a latent factor structure.

As discussed in Carneiro, Hansen, and Heckman (2003), under general assumptions, a large enough number of test scores in the measurement system can be used to secure the identification of \(F_{\theta^C_{\tau_0}, \theta^N_{\tau_0}}(\cdot, \cdot) \). In our case, however, the argument requires further considerations as the KYPS data is collected during the school year. As a consequence, students may have been exposed to some degree of treatment (bullying) prior to date of the tests, fueling concerns about reversed causality (scores influenced by bullying and vice versa). Hansen, Heckman, and Mullen (2004) faced a similar challenge when examining the potential impact of schooling and latent ability on test scores.\(^{15}\) By extending the measurement system and exploiting limit arguments, they show the parameters of the model, including the distribution of latent abilities, can be identified. This structure is well suited for our setting so we adopt it. Thus, we adopt a measurement system that is functionally dependent on the bullying status at \(\tau_0, D_{\tau_0} \), as follows:

\[
\mathbf{T}_{\tau_0} = \begin{cases}
\mathbf{X}_T \beta^T_{D_{\tau_0}=1} + \Lambda_{D_{\tau_0}=1} \Theta_{\tau_0} + \mathbf{e}^T_{D_{\tau_0}=1} & \text{if } D_{\tau_0} = 1, \\
\mathbf{X}_T \beta^T_{D_{\tau_0}=0} + \Lambda_{D_{\tau_0}=0} \Theta_{\tau_0} + \mathbf{e}^T_{D_{\tau_0}=0} & \text{if } D_{\tau_0} = 0,
\end{cases}
\]

where \(D_{\tau_0} \) takes the value of one if the individual is bullied at \(\tau_0 \), and zero otherwise; \(\Theta_{\tau_0} = [\theta^C_{\tau_0}, \theta^N_{\tau_0}] \) is the vector of latent skills, and \(\Lambda_{D_{\tau_0}=1} \) and \(\Lambda_{D_{\tau_0}=0} \) are associated loading matrices. \(\mathbf{e}^T_{D_{\tau_0}=0} \) and \(\mathbf{e}^T_{D_{\tau_0}=1} \) represent the vectors of mutually independent error terms.

Identification of the model requires a number of equations in each subsystem such that \(L \geq 2k + 1 \), where \(k \) is the number of factors. Therefore, the presence of two latent skills implies that there should be at least five measures in expression (5). To anchor the scale of each latent factor, we must impose additional normalizations. Within each subsystem, we normalize one leading for each latent skill. This implies other loadings should be interpreted as relative to those used as numeraires. And to pin down the correlation between cognitive and noncognitive skills, we assume at least one dedicated test score per latent skill (Sarzosa (2015)).\(^{16}\) These last two assumptions effectively impose restrictions on the elements of \(\Lambda_{D_{\tau_0}=0} \) and \(\Lambda_{D_{\tau_0}=1} \). One possible configuration for

\(^{15}\)In their setting, the threats to identification come from the fact that highly skilled people might attain higher education levels, but schooling, in turn, is believed to develop skills influencing test scores. Hence, when in presence of a high-skilled high-education person, econometricians cannot disentangle whether the person is highly educated because she was highly skilled or she is highly skilled (reports high test scores) because she acquired more education.

\(^{16}\)For further details, see Appendix B of the Online Supplementary Material.
the loading matrices in system (5) when $L = 6$ is

$$
A_{D_{\tau_0}=1} = \begin{bmatrix}
\alpha_{D_{\tau_0}=1}^T N & 0 \\
\alpha_{D_{\tau_0}=1}^T T_2 & 0 \\
\alpha_{D_{\tau_0}=1}^T T_3 & 0 \\
\alpha_{D_{\tau_0}=1}^T T_4 & 0 \\
\alpha_{D_{\tau_0}=1}^T T_5 & 1 \\
\end{bmatrix}, \quad A_{D_{\tau_0}=0} = \begin{bmatrix}
\alpha_{D_{\tau_0}=0}^T N & 0 \\
\alpha_{D_{\tau_0}=0}^T T_2 & 0 \\
\alpha_{D_{\tau_0}=0}^T T_3 & 0 \\
\alpha_{D_{\tau_0}=0}^T T_4 & 0 \\
\alpha_{D_{\tau_0}=0}^T T_5 & 0 \\
\end{bmatrix},
$$

where the first three scores represent “pure” noncognitive measures, while scores four and five reflect both cognitive and noncognitive skills. The sixth score is an exclusive cognitive measure. This is the configuration we implement in practice.

As the measurement system is functionally linked to bullying at τ_0, a model for D_{τ_0} completes the identification argument for the parameters in expression (5) and $F_{\theta^c_{\tau_0}, \theta^N_{\tau_0}}(\cdot, \cdot)$. Consistent with (2), we assume

$$
D_{\tau_0} = 1[Z_{\tau_0}^T \beta_{D_{\tau_0}} + \Lambda_{D_{\tau_0}} \theta^T_{\tau_0} + e_{D_{\tau_0}} \geq 0],
$$

where $\Lambda_{D_{\tau_0}} = [\alpha^{D_{\tau_0}, N}, \alpha^{D_{\tau_0}, C}]$ and Z_{τ_0} is a vector of variables affecting bullying. We assume $(e^T_{D_{\tau_0}=1}, e^T_{D_{\tau_0}=0}, e_{D_{\tau_0}})$ are orthogonal with respect to observed variables and latent skills, and that all error terms are mutually independent. $f_{\theta^c_{\tau_0}, \theta^N_{\tau_0}}(\cdot)$ is the associated probability function associated with each of the l components of the vector $[e^T_{D_{\tau_0}=1}, e^T_{D_{\tau_0}=0}]$.

Following Hansen, Heckman, and Mullen (2004), if the support of $Z_{\tau_0}^T \beta_{D_{\tau_0}}$ matches the support of the compound error term in equation (6), $(\Lambda_{D_{\tau_0}} \theta^T_{\tau_0} + e_{D_{\tau_0}})$, limit arguments can be used to non-parametrically identify the joint distribution of the compound errors in the test score equation $((\Lambda_{D_{\tau_0}=1} \theta^T_{\tau_0} + e^T_{D_{\tau_0}=1}), (\Lambda_{D_{\tau_0}=0} \theta^T_{\tau_0} + e^T_{D_{\tau_0}=0}))$. Using this distribution as an input, and under the assumptions $(X_T, Z_{\tau_0}) \perp (e^T_{D_{\tau_0}=1}, e^T_{D_{\tau_1}=1}, \theta^T_{\tau_0})$ and $(e^T_{D_{\tau_0}=1} \perp e^T_{D_{\tau_1}=1} \perp \theta^T_{\tau_0})$, the underlying factor structure secures the nonparametric identification of the distributions of latent skills and error terms, as well as the factor loadings.

Outcomes at τ_2 and bullying at τ_1. Once $F_{\theta^c_{\tau_0}, \theta^N_{\tau_0}}(\cdot, \cdot)$ is obtained, the identification of the parameters in (2), (3), and (4) can be secured using standard arguments as we can account for latent skills (see also Heckman, Stixrud, and Urzua (2006)).

The assignment of students to schools as a threat to identification. Strategic responses of schools to bullying can jeopardize the previous identification argument. To see this, consider the case of students selectively allocated across schools/classrooms based on

\[17\] At this stage, exclusion restrictions are not needed to formally secure the identification of the parameters governing equations (2), (3), and (4). This, of course, should not be interpreted as a justification for not paying close attention to the empirical specification of the model, particularly the bulling equation. To what extent the results vary depending on whether we have exclusion restrictions or not in D_{τ_1} is an empirical question that Appendix I addresses in the Online Supplementary Material.
previous bullying events (say, when going from elementary to middle school). Such sorting process should lead to a more complex factor structure than the one we explore here, as past social interactions conforming collective constructs of latent skills could determine bullying today as well as its future effects.

Fortunately, an institutional feature of South Korea’s schooling system allows us to circumvent this concern. In particular, we benefit from the random allocation of students to classrooms within school districts mandated by the “Leveling Policy” of 1969. The law “requires that elementary school graduates be randomly (by lottery) assigned to middle schools—either public or private—in the relevant residence-based school district” (Kang (2007)). Students then remain with the same group of peers for the next 3 years. Below we provide confirmatory evidence of the random allocation of students to classrooms mandated by the policy.18

5.2 Implementation

We estimate the model using a two-stage maximum likelihood estimation (MLE) procedure. We first consider the information from τ_0, the first year of middle school in our sample, and estimate

$$
L_{\tau_0} = \prod_{i=1}^{N} \int \int \left\{ \prod_{l=1}^{L} \left[f_{\varepsilon_{0,\tau_0}}(X_{T_i}, T^{1}_{0i,\tau_0}, \zeta^A, \zeta^B) \times \ldots \right] \right\}^{1-D_{i,\tau_0}} \times \Pr[D_{i,\tau_0} = 0] \right\} D_{i,\tau_0} \right\} \right\} d\mathbb{F}_{\theta^C_{\tau_0}, \theta^N_{\tau_0}}(\zeta^A, \zeta^B),
$$

where, given the identification arguments, we approximate $\mathbb{F}_{\theta^C_{\tau_0}, \theta^N_{\tau_0}}(\cdot, \cdot)$ using a mixture of Gaussian distributions. This feature grants flexibility and is empirically important. In addition, we parametrize $f_{\varepsilon_{D_{\tau_0}}}(\cdot)$ as normal distributions, $\mathcal{N}(0, \sigma_{\varepsilon_{D_{\tau_0}}}^2)$, for $l = 1, \ldots, L$.

The error term in the bullying equation, $e^{D_{\tau_0}}$, is assumed to be distributed according to a standardized normal distribution. The model is estimated using two sets—one for each victimization condition at τ_0—of six test scores (Locus of Control, Irresponsibility, Self Esteem, Language and Social Sciences, Math and Sciences, and yearly exam). As it is customary in the literature, the set of controls X_T includes gender, family structure indicators, father’s education attainment, monthly household income (per capita) and the age stated in months starting from March 1989.19 The specification of the bullying

18The “Leveling Policy” explicitly prevents the sorting of students by ability and achievement levels. See details of the policy in Appendix E of the Online Supplementary Material. Furthermore, according to the KYPS documentation, the survey’s sampling was such that the rare cases in which “classes formed based on superiority or inferiority as well as special classes were excluded.”

19All individuals in our sample were born within the same academic year, which goes from March to February.
equation is less well established. Moreover, since τ_0 represents the first year of the survey (2003), the set of predetermined variables to serve as Z_{τ_0} is limited within the KYPS study. To enlarge this set, we gather additional information from administrative sources collected by the Korean Educational Development Institute (KEDI).\footnote{KEDI’s dataset has detailed information about the universe of educational institutions from kindergarten to high school over time, including the administrative and educational districts to which they belong. Thus, by combining it with the KYPS through the latter’s location information, we were able to back out the school districts of all KYPS schools. See more details in Appendix E of the Online Supplementary Material.} In particular, we use the yearly fraction of students that move out of the district and the yearly proportion of middle school dropouts to capture variation affecting bullying prevalence across schools and districts. To avoid confounding biases, we use data from 2002 when conforming Z_{τ_0}. Thus, we exploit pre-τ_0 variation to characterize bullying in τ_0. Given the random assignment of students to schools, conditional on D_{τ_0} and X_T, Z_{τ_0} should not directly affect individual-level test scores. From this analysis, after imposing the above mentioned normalizations, we proceed to estimate the parameters in the measurement system, bullying equation (at τ_0), and distribution characterizing $F_{\theta_{\tau_0}, \theta_N} (\cdot, \cdot)$.

Having obtained the first set of parameters, we move on to the estimation of those in equations (2), (3), and (4). In this case, the likelihood function is

$$\mathcal{L}_{\tau_1} = \prod_{i=1}^{N} \int \int \left\{ \frac{f_{\epsilon_{\tau_2}}(XY_0, Y_{0i, \tau_2}, \xi^A, \xi^B)}{\Pr(D_{i, \tau_1} = 0|Z_{\tau_1, i}, \xi^A, \xi^B)} \cdot \Pr(D_{i, \tau_1} = 1|Z_{\tau_1, i}, \xi^A, \xi^B) \right\} dF_{\theta_{\tau_0}, \theta_N} (\xi^A, \xi^B),$$

where we assume $e_{\tau_1}^Y \sim \mathcal{N}(0, \sigma^2_{\tau_1}), e_{\tau_2}^Y \sim \mathcal{N}(0, \sigma^2_{\tau_2}),$ and $e_{\tau_1}^D \sim \mathcal{N}(0, 1)$. The vector X_Y includes age, gender, number of siblings, family income, rural residency, parental background, and household composition. For Z_{τ_1}, we mimic the specification of D_{τ_0} and include the yearly fraction of students that move out of the district and the yearly per capita tax revenue in the school district. The four variables are constructed using data from KEDI at τ_0, so consistent with our previous formulation we do not rely on contemporaneous information to explain bullying at τ_1. In fact, we exploit this logic to extend the set of controls in D_{τ_1}. From the first round of the KYPS data, we construct variables that, while exogenous to students, encapsulate their previous social interactions and, consequently, affect their chances of being bullied at τ_1 (Sarzosa (2015)). More precisely, we include the proportion of males peers, the proportion of peers that report being bullies and the proportion of peers that come from a violent family. These are constructed using classroom-level data from τ_0. The first two affect the probability of being bullied as it accounts for the supply of violence in the classroom. The last one—inspired by the variable “classroom proportion of incarcerated parents” used by Eriksen, Nielsen, and Simonsen (2014), as both relate household emotional trauma with violent behavior in school (Carrell and Hoekstra (2010))—captures...
the well-established fact that youths with behavioral challenges are more likely to come from violent households (Carlson (2000), Wolfe, Crooks, Lee, McIntyre-Smith, and Jaffe (2003)). Hence, randomly formed classrooms in which there are more students coming from violent families are more prone to witness violent behavior than classrooms with a lower concentration of students that come from violent families.\footnote{Appendix E in the Online Supplementary Material presents formal tests for the random allocation of students to classrooms within the KYPS sample. Its Table E.1 shows the random allocation mandated by the “Leveling Policy” in fact occurred. It documents that the shares of bully peers and of peers with violent families in the classroom at τ_0 are uncorrelated with a number of important background characteristics while controlling for school district fixed effects. See the distributions, means, and standard deviations of the relevant variables in Figure E.1.} From L_{τ_1}, we obtain the parameters from the outcome equations and bullying at τ_1.\footnote{Since the two-step procedure does not necessarily deliver asymptotically efficient estimators, we use a Limited Information Maximum Likelihood and correct the variance-covariance matrix of the second stage incorporating the estimated variance-covariance matrix and gradient of the first stage (Greene (2000)). An alternative approach could have been based on the joined estimation of the parameters contained in L_{τ_0} and L_{τ_1}. We favor the two-step procedure as the first step—estimating the test scores measurement system—is the same regardless of the outcome used.}

6. Main results

6.1 Measurement system

In the interest of brevity, here we focus on the main results obtained from the measurement system. Appendix B in the Online Supplementary Material discusses the results in more detail. Its Table B.1 displays the full set of estimated parameters.

As expected, latent skills determine school grades as well as noncognitive measures. In fact, the estimated loadings in expression (5) are large and statistically different from zero at the 1\% level. For instance, one standard deviation increase in noncognitive skills would increase the Language/Social Studies score by 23\% of a standard deviation and the Math/Science score by 26\% of a standard deviation. In turn, a one standard deviation increase in cognitive skills would increase the Language/Social Studies score by half of a standard deviation and the Math/Science score by 46\% of a standard deviation. The importance of both latent skills is consistent with the results in the literature (Heckman, Stixrud, and Urzua (2006), Heckman, Humphries, and Veramendi (2018)).

Figure 1 presents the results from a variance decomposition analysis of T_{τ_0} as well as the estimated distribution of latent skills. Its Panel (a) shows that the unobserved skills explain a sizable proportion of the variance of noncognitive measures and academic test scores, being always more prominent than the variance captured by the set of observable characteristics.\footnote{These findings go in line with our argument against the use test scores as proxies for skills in Section 4. The unexplained part of the variance of test scores should correlate with n_{τ_2} in (1) biasing the regression results. This illustrates some of the advantages of our approach.} Using the model’s estimates, on the other hand, its Panel (b) recreates the joint distribution of noncognitive and cognitive skills at τ_0. The estimated correlation is 0.4534, while the density function does not display a “bell-curved” shape. These results highlight the importance of allowing for correlated skills and a flexible functional form for $F_{\theta_0^{C}, \theta_0^{N}}(\cdot, \cdot)$.

\[F_{\theta_0^{C}, \theta_0^{N}}(\cdot, \cdot) \]
Figure 1. Results from the measurement system. Note: Panel (a) presents the proportion of the test scores variance explained by X_T and $\Theta_{\tau_0} = \begin{bmatrix} \theta_C^{\tau_0} & \theta_N^{\tau_0} \end{bmatrix}$ (latent cognitive and noncognitive skills). We label as Residuals the portion of the test score variance that remains unexplained. Locus Cont stands for Locus of Control, Irrespons. stands for Irresponsibility, Self Est. stands for Self-Esteem, Lang & SS stands for Language and Social Sciences, Math and Sc stands for Math and Science. Panel (b) displays the estimated joint distribution of skills at τ_0. Namely, $f_{\theta_A^{\tau_0}, \theta_B^{\tau_0}} (\cdot, \cdot)$. It was constructed from random draws based on the model’s estimates whose full set of estimated parameters can be found in Table B.1 in the Appendix of the Online Supplementary Material. The distribution is centered at $(0, 0)$. The correlation coefficient between cognitive and noncognitive skills is 0.4534. The standard deviation of the noncognitive skills marginal distribution is 0.309 and that of the cognitive skills distribution is 0.893. Values in the top and bottom 1% in both dimensions were excluded for this figure.

6.2 The determinants of bullying and outcome equations

We now analyze the determinants of bullying at age 15 (τ_1) and its consequences on outcomes at ages 18 or 19 (τ_2), accounting for latent skills. To this end, we estimate equation (2) as well as (3) and (4) for the same dimensions examined in the context of our regression analysis, that is, for physical, psychosocial, and academic outcomes.

Table 5 presents the results for four different specifications of the bullying equation (2). Its most salient finding is that while cognitive skills do not play a role in deterring or motivating the undesired behavior, noncognitive skills are important determinants of the likelihood of the event. Our findings indicate that a one standard deviation increase in noncognitive skills translates into a 0.71 percentage points reduction in the likelihood of being bullied (or 6.7% relative to the overall probability of being a victim of bullying). This significant effect remains unchanged across specifications defining the sorting into bullying. Figure 2 illustrate this sorting as a function of unobserved skill. Those identified as victims have a distribution of noncognitive skills that lie to the left of that of nonvictims. Importantly, despite the difference in the skills distributions for victims and nonvictims, there is a wide overlap between them. Therefore, the identification of the heterogeneous treatment effects we present later relies on the variation of the latent skills and not on the parametric extrapolation of a locally identified treatment effect (Cooley, Navarro, and Takahashi (2016)).
The findings in Table 5 confirm that the characteristics of the classroom to which students are randomly assigned determine the likelihood of being bullied (Sarzosa (2015)). First, having more male peers increases the chances of victimization. A one standard deviation increase in the proportion of boys in the classroom increases the likelihood of being bullied by 14.4%. That is, given the average class size of 31 students, an additional boy in the classroom increases the probability of being victimized by 1.3%. This goes in line with psychological literature that indicates that bullying is more prevalent among boys than among girls (Olweus (1997), Wolke, Woods, Stanford, and Schulz (2001), Smith et al. (2004), Faris and Felmlee (2011)). The results also indicate that the availability of suppliers of violence within each classroom matters. In fact, all else evaluated at the mean, an additional bully in the classroom at age 14 increases the chances of victimization at age 15 by 3.6%. In the same vein, the marginal effect of increasing the
concentration of peers in the classroom that come from violent families is positive and linearly increasing. Thus, the effect of adding a student that comes from a violent family on victimization is larger among classrooms that already have relatively high concentration of this type of students. For instance, adding one of this students to such classroom should, on average, increase the likelihood of being bullied by 2.8%. Consistent with the literature that relates peer effects, conformism, and youth delinquency (Patacchini and Zenou (2012)), this suggests the existence of complementarities between peers from violent families in the generation of violence within the classroom.

Table 6 contains the results for equations (3) and (4) across outcomes. Importantly, latent skills have differential effects depending on whether the person was involved in bullying or not. These findings suggest that skills not only influence the likelihood of being involved in bullying, but also they might play a significant role as mediators of the negative consequences associated with this problematic social behavior. Cognitive skills, for example, tend to deter drinking and smoking more among victims of bullying than among nonvictims. In the same way, noncognitive skills tend to reduce stress more

24The figures in Table 6 and the subsequent simulations were obtained from a model where the treatment equation followed specification (4) in Table 5. Our main findings are robust to the specification of the bullying equation. Appendix I in the Online Supplementary Material reports the results from specification (1) where we use no exclusion restrictions (results from specifications (2) and (3) are available from the authors upon request). Figure B.1 shows that the omission of other determinants of bullying at age 15 (exclusion restrictions) generates distinctive sorting patterns by cognitive and noncognitive skills. This is not surprising as classroom-level determinants of bullying are statistically significant at conventional levels (see Table 5). Importantly, the small differences between the estimated ATEs and TTs in Tables 8 (below) and B.3 suggest that exclusion restrictions (at age 15) are not contributing much to relax the jointly independent assumption of the error terms in the bullying and outcome equations (after controlling for skills). This consistent with our hypothesis that latent cognitive and noncognitive skills play a critical role in identifying the treatment effects of interest.
Table 6. Outcome equations (age 18, \(\tau_2 \)) by bullying status \(D \) (age 15, \(\tau_1 \)).

<table>
<thead>
<tr>
<th>Bullied</th>
<th>(1) Depression</th>
<th>(2) Drinking</th>
<th>(3) Smoking</th>
<th>(4) Life Satisfaction</th>
<th>(5) Feeling Sick</th>
<th>(6) Mental Health Problems</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(D = 0)</td>
<td>(D = 1)</td>
<td>(D = 0)</td>
<td>(D = 1)</td>
<td>(D = 0)</td>
<td>(D = 1)</td>
</tr>
<tr>
<td>Noncogn Skills</td>
<td>-0.294</td>
<td>-0.377</td>
<td>-0.056</td>
<td>-0.404</td>
<td>-0.044</td>
<td>0.035</td>
</tr>
<tr>
<td>(0.031)</td>
<td>(0.080)</td>
<td>(0.016)</td>
<td>(0.040)</td>
<td>(0.010)</td>
<td>(0.029)</td>
<td>(0.015)</td>
</tr>
<tr>
<td>Cognitive Skills</td>
<td>0.029</td>
<td>0.006</td>
<td>-0.011</td>
<td>-0.066</td>
<td>-0.032</td>
<td>-0.134</td>
</tr>
<tr>
<td>(0.022)</td>
<td>(0.060)</td>
<td>(0.011)</td>
<td>(0.031)</td>
<td>(0.007)</td>
<td>(0.022)</td>
<td>(0.011)</td>
</tr>
<tr>
<td>Observations</td>
<td>2445</td>
<td>2880</td>
<td>2880</td>
<td>2880</td>
<td>2570</td>
<td>2780</td>
</tr>
</tbody>
</table>

Bullied	\(D = 0 \)	\(D = 1 \)	\(D = 0 \)	\(D = 1 \)	\(D = 0 \)	\(D = 1 \)	\(D = 0 \)	\(D = 1 \)				
Noncogn Skills	-0.019	0.040	-0.192	-0.461	-0.115	-0.064	-0.095	-0.206	-0.242	-0.414	-0.253	-0.322
(0.015)	(0.044)	(0.033)	(0.100)	(0.033)	(0.095)	(0.032)	(0.090)	(0.032)	(0.094)	(0.033)	(0.089)	
Cognitive Skills	0.070	0.091	0.066	0.093	0.173	0.141	0.296	0.317	0.179	0.213	0.009	0.079
(0.011)	(0.033)	(0.023)	(0.073)	(0.024)	(0.070)	(0.023)	(0.067)	(0.023)	(0.068)	(0.023)	(0.066)	
Observations	2448	2563	2563	2563	2563	2563						

Note: This table presents the estimated coefficients of the outcome expressions (3) and (4) across outcomes. "Depression" corresponds to a standardized index of depression symptoms. "Drinking" takes the value of 1 if the respondent drank an alcoholic beverage at least once during the last year. "Smoking" takes the value of 1 if the respondent smoked a cigarette at least once during the last year. "Life Satisfaction" takes the value of 1 if the respondent reports being happy with the way she is leading her life. "Sick" takes the value of 1 if the respondent reports having felt physically ill during the last year. "Mental Health Problems" takes the value of 1 if the respondent has been diagnosed with psychological or mental problems. "College" takes the value of 1 if the respondent attends college by age 19. The "Stress" variables are standardized indexes that collect stress symptoms triggered by different sources, namely friends, parents, school, and poverty. "Stress: Total" aggregates the four triggers of stress. Controls not show: Age in months, gender, number of older and younger siblings, family income, rurality indicator, bi-parental household, and Father’s education. See the complete estimates in Tables H.1 and H.2 in the Appendix of the Online Supplementary Material. Columns headed as 1 collect the coefficients for those who were bullied at age 15. Columns headed as 0 collect the coefficients for those who were not bullied at age 15. Standard errors in parentheses. † "College" attendance is measured at age 19.
among victims than among nonvictims. So regardless of whether bullying has large or small consequences on a particular dimension—which is the topic we address next—skill endowments help cope with these consequences in various ways depending on the outcome.

6.3 The impact of bullying

To empirically establish that our approach delivers meaningful treatment effects of bullying on different outcomes, we must first assess to what extent our empirical model replicates key features of the data. Thus, we use the results presented in Section 6.2 to simulate moments from the outcome distributions and compare them to actual data. Table 7 displays these data-model comparisons. In particular, while 11.07% of the sample declares being bullied, our model predicts a 11.08%. With respect to the outcomes of interest, we compare the simulated and actual conditional means: $E[Y_{0, \tau_2} | D_{\tau_1} = 0]$ and $E[Y_{1, \tau_2} | D_{\tau_1} = 1]$. The model is able to closely recreate the observed averages and standard deviations by bullying status for the large majority of outcomes.

Table 7. Assessing the fit of the model: conditional means.

<table>
<thead>
<tr>
<th>Depression</th>
<th>Smoking</th>
<th>Sick</th>
<th>Life Satisfaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td>Model</td>
<td>Data</td>
<td>Model</td>
</tr>
<tr>
<td>$E[Y_0</td>
<td>D = 0]$</td>
<td>0.0614</td>
<td>0.0576</td>
</tr>
<tr>
<td>(0.902)</td>
<td>(0.875)</td>
<td>(0.331)</td>
<td>(0.330)</td>
</tr>
<tr>
<td>$E[Y_1</td>
<td>D = 1]$</td>
<td>0.1532</td>
<td>0.0842</td>
</tr>
<tr>
<td>(0.891)</td>
<td>(0.843)</td>
<td>(0.377)</td>
<td>(0.375)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>College</th>
<th>Mental Health</th>
<th>Stress: Friends</th>
<th>Stress: Parents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td>Model</td>
<td>Data</td>
<td>Model</td>
</tr>
<tr>
<td>$E[Y_0</td>
<td>D = 0]$</td>
<td>0.6998</td>
<td>0.6960</td>
</tr>
<tr>
<td>(0.458)</td>
<td>(0.458)</td>
<td>(0.281)</td>
<td>(0.283)</td>
</tr>
<tr>
<td>$E[Y_1</td>
<td>D = 1]$</td>
<td>0.6151</td>
<td>0.6275</td>
</tr>
<tr>
<td>(0.487)</td>
<td>(0.489)</td>
<td>(0.389)</td>
<td>(0.384)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stress: School</th>
<th>Stress: Poverty</th>
<th>Stress: Total</th>
<th>Drink</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td>Model</td>
<td>Data</td>
<td>Model</td>
</tr>
<tr>
<td>$E[Y_0</td>
<td>D = 0]$</td>
<td>−0.0034</td>
<td>−0.0183</td>
</tr>
<tr>
<td>(0.994)</td>
<td>(0.988)</td>
<td>(0.991)</td>
<td>(0.975)</td>
</tr>
<tr>
<td>$E[Y_1</td>
<td>D = 1]$</td>
<td>0.0752</td>
<td>0.0701</td>
</tr>
<tr>
<td>(1.043)</td>
<td>(1.013)</td>
<td>(0.990)</td>
<td>(0.964)</td>
</tr>
</tbody>
</table>

Note: The simulated moments (i.e., Model) are calculated using 40,000 observations generated from the models’ estimates. The data columns contain the observed mean at age 18 obtained from the KYPS. “Depression” corresponds to a standardized index of depression symptoms. “Smoking” takes the value of 1 if the respondent smoked a cigarette at least once during the last year. “Feeling Sick” takes the value of 1 if the respondent reports being physically ill during the last year. “Life Satisfied” takes the value of 1 if the respondent reports being happy with the way she is leading her life. “College” takes the value of 1 if the respondent attends college by age 19. “Mental Health Problems” takes the value of 1 if the respondent has been diagnosed with psychological or mental problems. The “Stress” variables are standardized indexes that collect stress symptoms triggered by different sources, namely friends, parents, school, and poverty. Stress: Total aggregates the four triggers of stress. Standard deviations in parentheses.
ATE and TT of being bullied. Table 8 presents the ATE and TT estimates of being bullied at age 15 on outcomes at age 18 and older. The findings indicate significant effects of victimization on physical and mental health outcomes. When analyzing ATE, our results indicate that being bullied at age 15 on average causes the incidence of sickness to increase by 6.5 percentage points 3 years later, which represents an increase of about 93% relative to the baseline status (nonvictim). In the same way, on average, the incidence of mental health issues increased by 80% due to victimization.25 Regarding the stress measures, we find that being bullied on average increases the stress caused by friendships by 23.5% of a standard deviation (SD), the stress caused by the relationship with parents by 16% of a SD, and the stress caused by school by 12.3% of a SD. Overall, the results for TT confirm these results also among victims. These findings contrast to the ones reported in the regression analysis, which ignore the endogeneity caused by the selection into treatment and abstract for the measurement error problems affecting test scores. For instance, while we find no overall effect of bullying on depression, life satisfaction, and college attendance, the OLS estimates found effects of -13.4%, -4.1 and -4.8 percentage points, respectively.

Beyond the overall ATE and TT, we can use our empirical strategy to inquire about these treatment parameters at different regions of the skills space. Thus, we estimate treatment effects conditional on skills, with the intention of assessing about subsets of teenagers (endowed with specific cognitive and noncognitive skills levels) who face impacts even under the absence of significant overall average effects. Given the high correlation between cognitive and non-cognitive skills, these results are best presented in three-dimensional figures displaying the association between skills (x and y-axes) and the outcome of interest (z-axis). To aide exposition, in what follows, we present the results grouping the outcomes into four categories: health (excluding stress), education, take-up of risky behaviors and stress measures. In addition, based on the estimation of pairwise confidence intervals, we code into the figures the significance levels of testing the absence of an effect due to victimization. Darker colors represent smaller p-values.

The analysis confirms the existence of differential effects of victimization depending on the level of skills. In particular, Figures 3 show that individuals who start middle school with low stocks of skills face harsher health consequences of bullying. For instance, even though we found no average effects, Figure 3(a) demonstrates that student with very low stocks of noncognitive skills (in the first decile of the distribution) report 11% of a SD higher scores in the depression symptom index. Likewise, Figure 3(b) shows that victims who had low levels of both skills are up to 13.4 percentage points less likely to be satisfied with how their life is going at age 18 as a result of bullying at age 15.

Similar patterns emerge among outcomes where we found overall significant average treatment effects. For “Mental health problems” or “Felling sick” by age 18, we find stronger effects for students with low levels of both latent skills at age 14. In fact, while we

25“Not being in good health” and “Developing mental health issues” represent low-incidence outcomes. Therefore, linear probability models like the ones estimates in each treatment status of the empirical model might run into difficulties. Appendix F in the Online Supplementary Material presents the results using probit functions in the outcome equations. We confirm that our results from the models using linear outcome equations differ very little from the ones using nonlinear equations.
Table 8. Treatment effects: Outcomes at age 18 (τ_2) of being bullied at age 15 (τ_1).

<table>
<thead>
<tr>
<th></th>
<th>Depression</th>
<th>Smoking</th>
<th>Drinking</th>
<th>Feeling Sick</th>
<th>Mental Health Problems</th>
<th>Life Satisfaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATE</td>
<td>0.0593</td>
<td>0.0241</td>
<td>0.0053</td>
<td>0.0653</td>
<td>0.0787</td>
<td>−0.0166</td>
</tr>
<tr>
<td></td>
<td>(0.0627)</td>
<td>(0.0208)</td>
<td>(0.0282)</td>
<td>(0.0216)</td>
<td>(0.0236)</td>
<td>(0.0290)</td>
</tr>
<tr>
<td>TTE</td>
<td>0.0472</td>
<td>0.0243</td>
<td>0.0264</td>
<td>0.0524</td>
<td>0.0820</td>
<td>−0.0131</td>
</tr>
<tr>
<td></td>
<td>(0.0588)</td>
<td>(0.0208)</td>
<td>(0.0274)</td>
<td>(0.0213)</td>
<td>(0.0243)</td>
<td>(0.0282)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>College</th>
<th>Stress: Friends</th>
<th>Stress: Parent</th>
<th>Stress: School</th>
<th>Stress: Poverty</th>
<th>Stress: Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATE</td>
<td>−0.0476</td>
<td>0.2354</td>
<td>0.1595</td>
<td>0.1231</td>
<td>0.0699</td>
<td>0.1988</td>
</tr>
<tr>
<td></td>
<td>(0.0320)</td>
<td>(0.0756)</td>
<td>(0.0693)</td>
<td>(0.0687)</td>
<td>(0.0670)</td>
<td>(0.0694)</td>
</tr>
<tr>
<td>TTE</td>
<td>−0.0377</td>
<td>0.2561</td>
<td>0.1491</td>
<td>0.1421</td>
<td>0.0891</td>
<td>0.2109</td>
</tr>
<tr>
<td></td>
<td>(0.0309)</td>
<td>(0.0711)</td>
<td>(0.0670)</td>
<td>(0.0640)</td>
<td>(0.0653)</td>
<td>(0.0673)</td>
</tr>
</tbody>
</table>

Note: Standard errors in parenthesis. This Table presents the estimated treatment parameters:

\[ATE = \int \mathbb{E}[Y_1(\tau_2) - Y_0(\tau_2) | \xi_{NC}, \xi_C] \, dF_{\theta_{NC} \theta_C}(\xi_{NC}, \xi_C) \]

and

\[TT = \int \mathbb{E}[Y_1(\tau_2) - Y_0(\tau_2) | \xi_{NC}, \xi_C, D_{\tau_1} = 1] \, dF_{\theta_{NC} \theta_C}(\xi_{NC}, \xi_C). \]

The variable Depress corresponds to a standardized index of depression symptoms. "Smoking" takes the value of 1 if the respondent smoked a cigarette at least once during the last year. "Drinking" takes the value of 1 if the respondent drank an alcoholic beverage at least once during the last year. "Feeling Sick" takes the value of 1 if the respondent reports having felt physically ill during the last year. "Mental Health Problems" takes the value of 1 if the respondent has been diagnosed with psychological or mental problems. "Life Satisfaction" takes the value of 1 if the respondent reports being happy with the way she is leading her life. "College" takes the value of 1 if the respondent attends college by age 19. The "Stress" variables are standardized indexes that collect stress symptoms triggered by different sources, namely friends, parents, school, and poverty. Stress: Total aggregates the four triggers of stress.
Figure 3. ATE of being bullied at age 15 on health outcomes at age 18. Note: Panels display $ATE(\theta^{NC}, \theta^{C}) = E[Y_1 - Y_0|\theta^{NC}, \theta^{C}]$ in the z-axis resulting from 40,000 simulations based on the findings of the empirical model. The x-axis and y-axis contain the deciles of noncognitive and cognitive skills, respectively. “Depression” is a standardized aggregated index of depression symptoms. “Mental Health Problems” takes the value of 1 if the respondent has been diagnosed with psychological or mental problems. “Life Satisfaction” takes the value of 1 if the respondent reports being happy with the way she is leading her life. “Feeling Sick” takes the value of 1 if the respondent reports having felt physically ill during the last year.

document an average effect of victimization on the likelihood of having mental health problems of 7.8 percentage points, Figure 3(c) shows that the effect on children with low levels of noncognitive skills might reach up to 12 percentage points. Another worth-noticing finding from the effect of bullying has on “Feeling sick,” Figure 3(d), is that the impact is statistically different from zero even among highly skilled students.

Evidence from the psychological literature suggests that bullying might affect schooling attainment, particularly by fostering a dislike for school that contributes to absenteeism and school drop out (e.g., Smith et al. (2004)). By documenting the effect bullying has on college enrollment and stress caused by school, a measure that proxies a dislike for school and its related activities, we shed light on this idea.
Figure 4. ATE of being bullied at age 15 on educational outcomes at age 18 and older. Note: Panels display $ATE(\theta^{NC}, \theta^{C}) = \mathbb{E}[Y_1 - Y_0|\theta^{NC}, \theta^{C}]$ in the z-axis resulting from 40,000 simulations based on the findings of the empirical model. The x-axis and y-axis contain the deciles of noncognitive and cognitive skills, respectively. “Stress: school” is a variable that aggregates stress symptoms triggered by situations related with school. “College Attendance” takes the value of 1 if the respondent attends college by age 19.

Figure 4(a) indicates that the overall ATE of bullying on stress symptoms triggered by situations related with school (12% of a SD) is driven mainly by the large effect victimization has on students with low levels of noncognitive skills. In fact, the effect in the first decile of the noncognitive distribution (14.3% of a SD) is roughly twice larger than that obtained in the tenth decile (7.5% of a SD). The figure also shows an upward gradient between the effect victimization has on stress in school and cognitive skills. Although the gradient is not statistically different from zero, the positive relation suggests that smarter individuals may develop a larger distaste for school than those with lower levels of cognitive skills.

All this evidence goes in line with the claim that bullying is a very harmful mechanism through which violence deters learning and schooling achievement, providing a channel through which the findings of Eriksen, Nielsen, and Simonsen (2014) on its effect on GPA materialize. Figure 4(b) complements this result as it shows that bullying is also an important deterrent to tertiary education enrollment (by age 19). Teenagers that belong to the lower-half of the noncognitive skill distribution face a negative impact of bullying on college enrollment of the order of 5.5 to 9.4 percentage points. This is especially remarkable if we take into account that noncognitive skills are not statistically significant determinants of college enrollment (see Table C.2 in the Appendix of the Online Supplementary Material and Espinoza, Sarzosa, and Urzua (2018)). However, bullying does have an impact among those with low noncognitive skills. For them, the behavioral problem becomes an obstacle to higher education attainment. This finding also relates to the potential effect of victimization on the stress caused by school. In particular, it is interesting to note the difference the stock of noncognitive skills makes in palliating the consequences of school bullying on college attendance, even among the smartest students. Victims that start middle school with very high levels of cognitive skills can go from facing no impact to facing a 5.6 percentage points decrease in the
Figure 5. ATE of being bullied (15) on take-up of risky behaviors (18). Note: Panels display $ATE(\theta^{NC}, \theta^C) = E[Y_1 - Y_0| \theta^{NC}, \theta^C]$ in the z-axis resulting from 40,000 simulations based on the findings of the empirical model. The x-axis and y-axis contain the deciles of noncognitive and cognitive skills, respectively. “Smoking” takes the value of 1 if the respondent smoked a cigarette at least once during the last year. “Drinking” takes the value of 1 if the respondent drank an alcoholic beverage at least once during the last year.

likelihood of attending college by age 19 depending on the initial level of noncognitive skills.

Unlike previous outcomes, the effect of bullying on the take-up of risky behaviors, such as smoking and drinking alcoholic beverage, is mainly mediated by cognitive instead of non-cognitive skills. Figure 5(a) displays the significant impact of bullying on smoking by age 18 for those who belong to the lower-half of the cognitive skill distribution (the estimated impact is about 10.3 percentage points). Interestingly, for those in the first decile bullying increases the likelihood of smoking by 15.4 percentage points. That is, those individuals are more than two times more likely to smoke than the average 18 year-old Korean. On the other hand, we find that bullying victimization reduces the likelihood of smoking, given that the victims had cognitive skills in the top 20% of the distribution. In fact, students in the top decile are 8.3 percentage points less likely to smoke by age 18 as a result of bullying.26

26The reduction in the incidence of smoking due to bullying for students with high levels of cognitive skills may seem puzzling. One could hypothesize that it may be due to remedial investments by parents, as it is the case for grade retention (Cooley, Navarro, and Takahashi (2016)). However, in the case of bullying, parents do not seem to systematically respond with investments (Sarzosa (2015)). In fact, when asked about whether children have been bullied at school, parents and children’s answer do not correlate (Holt, Kantor, and Finkelhor (2009)). In addition, if remedial investment was taking place, we would observe some positive effects in more outcomes, but we do not. We hypothesize that reduction in the incidence of smoking may be due to the negative effect that victimization has on college attendance. Table C.2 in the Appendix of the Online Supplementary Material shows that cognitive skills increase the likelihood of attending college. Thus, individuals who enroll in college have, on average, higher cognitive skills. In results available upon request, we find that college attendance increases the likelihood of smoking for students with high levels of cognitive skills. Thus, given that bullying decreases the changes of going to college, it may be shielding some high skilled people from the effect college attendance has on smoking.
Figure 6. ATE of being bullied (15) on stress (18). Note: All panels present the $ATE(\theta^{NC}, \theta^{C}) = E[Y_1 - Y_0|\theta^{NC}, \theta^{C}]$ in the z-axis product of 40,000 simulations based on the findings of the empirical model. The x-axis and y-axis contain the deciles of noncognitive and cognitive skills. Stress: Parents is a variable that aggregates stress symptoms triggered by the relation of the respondent with her parents. Stress: Poverty is a variable that aggregates stress symptoms triggered by situations related with economic difficulties. Friends is a variable that aggregates stress symptoms triggered by situations related with friends and social relations. Stress: Total is a variable that aggregates stress symptoms triggered by situations related with friends, parents, school, and poverty.

A similar pattern emerges from the analysis of the likelihood of drinking alcohol. Figure 5(b) shows that while individuals that come from the first decile of the cognitive skill distribution are 8.3 percentage points more likely to drink alcohol by age 18 as a result of being victims of bullying at age 15, those that come from the tenth decile are 5.8 percentage points less likely to do so. However, the latter effect is not statistically different from zero.

In line with the results on mental health, depression and life satisfaction, we find that being bullied in middle school affects the emotional wellbeing later in life as it leads to greater levels of stress. Figure 6 shows that victimization significantly increases stress due to different causes and for most of the skills space. Panel (a) indicates that the effect of victimization on the stress caused by the relationship with the parents is
significantly different from zero regardless of students’ stock of skills, with the smallest effects reported among students with high cognitive skills and low noncognitive skills (9% of a SD). Among students with low cognitive skills and high noncognitive skills, the effect reaches 24.5% of a SD. Likewise, Panel (b) establishes that the effects on the stress caused by friendships are also sizable and significant. However, in this case the magnitude largely depend upon the level of non-cognitive endowments: it is about a third of a SD among those in the bottom third of the noncognitive distribution, while about 16% of a SD for those in the top third. And when it comes to stress due to economic conditions, Panel (c) shows bullying has a positive and significant effect only for students with very high levels of cognitive skills and low levels of noncognitive skills. More precisely, among those in the top third of the cognitive and bottom third of the noncognitive skill distributions the estimated impact is about 16.5% of a SD. The last panel confirm how bullying increases total stress (the accumulation across symptoms) for any combination of cognitive and noncognitive skills.

All in all, these results attest to the fact that cognitive and noncognitive skills not only affect bullying occurrence, but also, they mediate the extent to which this undesired behavior affects subsequent outcomes. While Figures J.1–J.4 in Appendix J of the Online Supplementary Material confirm this statement using TT instead of ATE, Appendix G explores this even further. It assesses the heterogenous local responses at age 15 to a hypothetical policy change that would drop the number of bullies by half at age 14. That is, we estimate how much of the average effect of bulling among switchers one year later would not materialize thanks to a policy that would reduce the number of purveyors of violence in the classroom. The findings suggest that reducing the number of bullies in the classrooms at age 14 reduces the average incidence of bullying by 13% at 15. Despite this relatively small change in victimization, we find that among switchers the damage done bullying would be greatly reduced.27

6.4 Bullying and investments in skills

We have shown that skills are key determinants of bullying and its consequences. However, the findings are silent about the importance of skill investments. By modifying the stock of skills, parents could reduce the occurrence of bullying.

To examine this hypothesis, we reestimated the bullying model (equation (2)), but this time including variables proxying for parental investments. Formally, the model is augmented to include a vector of skills’ investment measures at time τ_0, which includes an index of parental control that measures whether the parents know where the youth is, who she is with and how long she will be there, an index of parental harmony that measures how much time the kid spends with their parents, whether the child considers she is treated with affection by parents, if she believes her parents treat each other

27Like in Cooley, Navarro, and Takahashi (2016), given that skills affect the selection into treatment and the size of the effects, the impact of the policy on the marginal student are closer to the counterfactual gain to not being bullied among those who were bullied before the policy change. Interestingly, even in the context of this small change in victimization, we document heterogeneous responses by latent skills and graphically identify the set of complies within the skills domain.
Table 9. The model with investment controls.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Coefficient</th>
<th>Std. Err.</th>
<th>Coefficient</th>
<th>Std. Err.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noncognitive</td>
<td>−0.1290</td>
<td>(0.052)</td>
<td>−0.0805</td>
<td>(0.056)</td>
</tr>
<tr>
<td>Cognitive</td>
<td>0.0300</td>
<td>(0.036)</td>
<td>0.0052</td>
<td>(0.039)</td>
</tr>
</tbody>
</table>

Investment Controls at \(\tau_0 \)

- Parental Control: −0.0219 (0.040)
- Parental Harmony: 0.0245 (0.041)
- Parental Abuse: 0.1113 (0.034)
- School Quality: 0.0405 (0.014)
- School Environment: 0.0166 (0.007)

Observations: 2880 2682

Note: This table presents the estimated coefficients for equation (2). Column (1) is included for completeness as it displays the results in Table 5. Column (2) adds controls. “Parental Control” measures whether the parents know where the youth is, who he is with and how long he will be there, “Parental Harmony” measures how much time the respondent spends with their parents, whether she is treated with affection by them, if her parents treat each other well, and if her parents talk candidly and frequently to her. “Parental Abuse” measures whether the household is a violent setting. “School Quality” measures teacher responsiveness and learning conditions (i.e., how likely are students to attend top institutions of higher education after graduating from that particular school, and whether students believe their school allows them to develop their talents and abilities), and “School Environment” is measured using information about robbery and criminal activity within or around the school and the presence of litter and garbage within the school or its surroundings. In both specifications we controlled for age in months, gender, rurality, the number of older and younger siblings the respondent has, the natural logarithm of the monthly income per capita, whether the respondent lives in a bi-parental household, whether the respondent’s father is absent from the household, father’s education, the % of peer bullies, and the % of peers that come from violent families.

Table 9 presents the findings. Column (1) reproduces the original results just for comparison (see Table 5), while (2) displays the results after controlling for investments. The introduction of new controls reduces the point estimate of the effect of noncognitive skills on the likelihood of being bullied. More importantly, however, the results show that less violence-prone parents and better schools negatively correlate with the incidence of bullying. Of course, we must be careful when interpreting these figures as, for instance, we do not account for the endogeneity of parental investment. Nevertheless, the findings suggest that the inertia caused by low skill levels, particularly

28School quality measures are coded in a reverse scale where high numbers mean less school quality.
noncognitive traits, in previous periods on higher likelihoods of being involved in bullying might potentially be reversed through the modification of tangible scenarios like the improvement of schools—including teachers—and diminishing aggressive behavior within households. This is consistent with the literature that documents the role of parental investments on skill formation and future outcomes (Cunha and Heckman (2008)).

7. Conclusions
This paper examines the determinants and consequences of bullying at age 15 on subsequent mental and physical health, risky behaviors, and schooling attainment. We base our analysis on the estimation of an empirical model of endogenous bullying and counterfactual outcomes. In this framework, latent cognitive and noncognitive skills are sources of unobserved heterogeneity. We estimate the model using longitudinal information from South Korea (KYPs).

Our findings show that noncognitive skills significantly reduce the likelihood of being a victim of bullying. In particular, one standard deviation increase in noncognitive skills reduces the probability of being bullied by 6.7%. In contrast, we do not find significant effects of cognitive skills on bullying. On the other hand, when analyzing the impact of bullying, we document higher incidence of self-reported depression, sickness, mental health issues and stress, as well as a lower incidence of life satisfaction and college enrollment 3 years after the event. We also document heterogenous effects across outcomes as function of cognitive and non-cognitive skills. Overall, the magnitudes of the estimated ATE and TT are by no means small, suggesting that bullying represents a heavy burden that needs to be carried for a long time.

Finally, consistent with the recent literature on skill formation, our results suggest that investing in skills development is essential for any policy intended to fight bullying. They not only reduce in general the incidence of bullying, as there will be less people prone to be perpetrators and victims, but also significantly lessen its negative effects.

References

29These results must be interpreted with caution as parental decisions can be correlated with students’ latent skills. The empirical assessment of this possibility is outside the scope of the paper and we leave it for future research.

National Center for Education Statistics 2015, Student Reports of Bullying and Cyber-Bullying: Results From the 2013 School Crime Supplement to the National Crime Victimization Survey, volume 2015. US Department of Education. [953]

Co-editor Christopher Taber handled this manuscript.

Manuscript received 30 September, 2018; final version accepted 21 October, 2020; available online 22 January, 2021.