Strategic interactions in U.S. monetary and fiscal policies

XIAOSHAN CHEN
Durham University Business School, University of Durham

ERIC M. LEEPER
Department of Economics, University of Virginia and NBER

CAMPBELL LEITH
Adam Smith Business School, University of Glasgow

We estimate a model in which fiscal and monetary policy obey the targeting rules of distinct policy authorities, with potentially different objective functions. We find: (1) Time-consistent policy fits U.S. time series at least as well as instrument-rules-based behavior; (2) American policies often do not conform to the conventional mix of conservative monetary policy and debt-stabilizing fiscal policy, although economic agents expect fiscal policy to stabilize debt eventually; (3) Even after the Volcker disinflation, policies did not achieve that conventional mix, as fiscal policy did not begin to stabilize debt until the mid 1990s; (4) The high inflation of the 1970s could have been effectively mitigated by either a switch to a fiscal targeting rule or an increase in monetary policy conservatism; (5) If fiscal behavior follows its historic norm to eventually stabilize debt, current high debt levels produce only modest inflation; if confidence in those norms erodes, high debt may deliver substantially more inflation.

Keywords. Bayesian estimation, monetary and fiscal policy interactions, targeting rules, Markov switching.

1. Introduction

A large literature analyzes shifts in monetary policy regime. One important branch assesses how much of the “Great Moderation” in output and inflation volatility was simply “good luck”—a favorable shift in shock volatilities—or “good policy”—a desirable change in monetary policy rule parameters (Sims and Zha (2006)). Many researchers date the improvement in policy making to the Volcker disinflation in 1979 or shortly after. Very little work examines the role fiscal policy played in altering inflation trends. This
neglect is surprising in light of the comovements in inflation, real interest rates, and fiscal variables, including the government debt. The upward trend in inflation before the 1980s is associated with a downward trend in the debt-GDP ratio, while the moderation in inflation coincided with a step increase in the real interest rate and a rising debt-GDP ratio, at least until 1995 (Figure 1).

Bianchi (2012) and Bianchi and Ilut (2017) are notable exceptions. They build on the policy interactions in Leeper (1991) to allow for switches in the combinations of monetary and fiscal policy rules over time.\footnote{Leeper (1991) characterizes monetary policy as active (AM) or passive (PM) depending on whether or not it makes the nominal interest rate react strongly to inflation. A fiscal policy that adjusts taxes to ensure fiscal sustainability is passive (PF), while failing to do is an active policy (AF).} \footnote{Related papers include Davig (2004) and Davig and Leeper (2006, 2011), which allow for regime switching in estimated fiscal policy. Traum and Yang (2011) and Leeper, Traum, and Walker (2017) implicitly con-}
debt during the Great Inflation from 1965 to 1982. A period of policy conflict follows with both monetary and fiscal policy following active rules. Eventually, fiscal policy turns passive to stabilize debt in the face of the Fed’s anti-inflationary actions. This conventional policy mix—active money/passive fiscal—explains the sharp decline in inflation in the 1980s. Bianchi (2012) also finds that the 1970s were a period of passive monetary and active fiscal policy, but that this did not drive the high inflation of the 1970s. The key to explaining this difference is that Bianchi and Ilut (2017) estimate a set of regime change probabilities and rule parameters, which imply that fiscal policy is not expected to stabilize debt: inflation surprises do the stabilizing, as in the fiscal theory of the price level (FTPL).\(^3\) Bianchi’s (2012) contrasting estimates imply that ultimately economic agents expect that the government will stabilize debt, so that periods of active fiscal policy do not generate inflation as they would when that long-run belief is not in place.

This paper builds on that analysis in several ways. We consider other types of policy making in addition to simple instrument rules. Monetary policy minimizes an estimated objective function with fluctuations in the degree of inflation conservatism. This minimization, using the terminology of Svensson (2003), delivers a time-consistent specific targeting rule, as in Chen, Kirsanova, and Leith (2017). We permit fiscal policy to choose among active and passive simple instrument rules, and a time-consistent specific targeting rule, where the fiscal authority, in minimizing its estimated loss function, acts as a Stackelberg leader in a game with the monetary authority. This strategic policy specification, which resembles actual policy arrangements, implies a rich set of monetary and fiscal interactions. It also fits data surprisingly well, comparable to the usual instrument-rules-based menu. To solve the strategic policy game between the monetary and fiscal policy makers in the face of regime switching, the paper develops a new algorithm.

The fit to data of targeting rules introduces fresh insights into the narrative of how policies have interacted and evolved in the post-war period. Under time-consistent targeting rules, movement between regimes is more nuanced and it is rare that policy combinations conform to something akin to the theoretical active/passive pairings. We find that the Great Moderation was not associated with a decisive break from poor monetary and fiscal policy. Neither was the inflation of the 1970s driven by fiscal shocks, although a different fiscal regime could have mitigated the Great Inflation as effectively as a more conservative monetary policy. We reconcile these findings with narrative evidence on the evolution of policy making. Finally, we use stochastic simulations to examine the risks to inflation posed by current high levels of government debt. Risks can be significant, but remain modest as long as fiscal authorities adhere to the historical norm by which they eventually stabilize debt. Even a small probability that this norm will be abandoned, though, can undermine price stability dramatically.

\(^3\)See Leeper and Leith (2017) for a discussion of the FTPL in the context of both instrument and targeting rules.
2. The model

Households, a monopolistically competitive production sector, and the government populate the economy. A continuum of goods enters the households’ consumption basket. Households form external consumption habits at the level of the consumption basket as a whole, what Ravn, Schmitt-Gröhe, and Uribe (2006) call “superficial” habits. Both price and inflation inertia help to capture the hump-shaped responses of output and inflation to shocks evident in VAR-based studies, as in other empirical applications of the New Keynesian model (Smets and Wouters (2003) and Christiano, Eichenbaum, and Evans (2005)).

The government levies a tax on firms’ sales revenue, which is equivalent to a tax on all labor and profit income in this model. These revenues finance government consumption, pay for transfers to households, and service the outstanding stock of government debt. Government issues a portfolio of bonds of different maturities subject to a geometrically declining maturity structure.

2.1 Households

A continuum of households indexed by k and of measure one derive utility from consumption of a composite good, $C_k^t = \left(\int_0^1 \left(C_k^t \right)^{\eta} \, di \right)^{1/\eta}$, where η is the elasticity of substitution between the goods in this basket. Households suffer disutility from hours spent working, N_k^t. Habits are formed at the level of the aggregate consumption good and households fail to take account of the impact of their consumption decisions on the utility of others. To facilitate data-consistent detrending around a balanced growth path without restricting preferences to be logarithmic, we assume that consumption enters the utility function scaled by the economy-wide technology trend (Lubik and Schorfheide (2006) and An and Schorfheide (2007)). This implies that the household’s consumption norms rise with technology and are affected by habits externalities. Households maximize

$$
E_0 \sum_{t=0}^{\infty} \beta^t \left[\frac{(X_k^t)^{1-\sigma} (\xi_t)^{-\sigma}}{1-\sigma} - \frac{(N_k^t)^{1+\varphi} (\xi_t)^{-\sigma}}{1+\varphi} \right],
$$

where $X_k^t \equiv \frac{C_k^t}{A_t^t} - \theta \frac{C_{t-1}}{A_{t-1}}$ is the habit-adjusted consumption aggregate, θ is the habit persistence parameter ($0 < \theta < 1$), and $C_{t-1} \equiv \int_0^1 C_k^{t-1} \, dk$ is the cross-sectional average of consumption. Households gain utility from consuming more than other households and are disappointed if their consumption does not grow in line with technical progress. Preferences are subject to a taste shock, $\ln \xi_t = \rho_T \ln \xi_{t-1} + \sigma_T \varepsilon_{t,T}$. β is the discount factor ($0 < \beta < 1$), and σ and φ are the inverses of the intertemporal elasticities of habit-adjusted consumption and work ($\sigma, \varphi > 0; \sigma \neq 1$).

4 For a comparison of the implications for optimal policy of alternative forms of habits, see Amato and Laubach (2004) and Leith, Moldovan, and Rossi (2012).
The process for technology is nonstationary,
\[\ln A_t = \ln \gamma + \ln A_{t-1} + \ln q_t, \]
\[\ln q_t = \rho \ln q_{t-1} + \sigma q_t e_{q,t}. \]

Households choose the composition of the consumption basket to minimize expenditure, so demand for individual good \(i \) is
\[C^k_{it} = \left(\frac{P_i}{P_t} \right)^{-\eta} C^k_i, \]
where \(P_i \) is the price of good \(i \), and \(P_t = (\int_0^1 (P_i)^{1-\eta} di)^{1-\eta} \) is the CES aggregate price index associated with the composite good consumed by households. Aggregating across households, we obtain the overall demand for good \(i \) as
\[C_{it} = \int_0^1 C^k_{it} dk = \left(\frac{P_i}{P_t} \right)^{-\eta} C_t. \tag{2} \]

Households choose the habit-adjusted consumption aggregate, \(X^k_t \), hours worked, \(N^k_t \), and the portfolio allocation, \(B^S_{kt} \) and \(B^M_{kt} \), to maximize expected lifetime utility (1), subject to the budget constraint
\[\int_0^1 P_i C^k_{it} di + P^S_i B^S_{kt} + P^M_i B^M_{kt} = B^S_{t-1} + (1 + \rho B^M_{t-1}) + W_t N^k_t + \Gamma_t + P_t Z_t \]
and a no-Ponzi scheme condition. Period \(t \) income includes: wage income from providing labor services to goods producing firms, \(W_t N^k_t \), a lump-sum transfer from the government, \(Z_t \), dividends from the monopolistically competitive firms, \(/ \Gamma^t_t \), and payoffs from the portfolio of assets, \(B^S_{kt} \) and \(B^M_{kt} \). Households hold two forms of government bonds. The first is the familiar one-period debt, \(B^S_t \), whose price equals the inverse of the gross nominal interest rate, \(P^S_t = R_t^{-1} \). The second type of bond is actually a portfolio of many bonds, which pays a declining premium of \(\rho^j \), \(j \) periods after being issued where \(0 < \rho < \beta^{-1} \) (Woodford (2001)). The duration of the bond is \(1 - \beta \rho \), which means that \(\rho \) can be changed to capture alternative maturity structures of debt. With this structure, we need to price only a single bond, since any existing bond issued \(j \) periods ago is worth \(\rho^j \) new bonds. When \(\rho = 1 \), these bonds become infinitely lived consols.

The first-order condition for labor is
\[\frac{W_t}{P_t A_t} = N^k_t X^k_t. \]

Household optimization yields the optimal allocation of consumption across time, based on the pricing of one-period bonds
\[1 = \beta E_t \left[\left(\frac{X^k_{t+1} e_{t+1}}{X^k_t \xi_t} \right)^{-\sigma} \frac{A_t P_t}{A_{t+1} P_{t+1}} \right] R_t \]
\[= E_t Q_{t,t+1} R_t, \]
where we have defined the stochastic discount factor as
\[Q_{t,t+s} = \beta \left(\frac{X^{k}_{t+t+s} \xi_{t+t+s}}{X^{k}_{t} \xi_{t}} \right)^{-\sigma} \frac{A_{t}}{A_{t+s}} \frac{P_{t}}{P_{t+s}} \]
and the geometrically declining consols
\[P_{M}^k = \beta E_t \left[\left(\frac{X^{k}_{t+1} \xi_{t+1}}{X^{k}_{t} \xi_{t}} \right)^{-\sigma} \frac{A_{t}}{A_{t+1}} \frac{P_{t}}{P_{t+1}} \left(1 + \rho P_{M}^t \right) \right] = E_t Q_{t,t+1} \left(1 + \rho P_{M}^t \right). \]
When all bonds have one-period duration, \(\rho = 0 \), the price of these bonds is \(P_{M}^t = R_{t}^{-1} \).
Outside of this special case, the longer term bonds introduce a term structure of interest rates.

There is an associated transversality condition. Define household financial wealth in period \(t \) as
\[D^k_t = (1 + \rho P_{M}^t) B_{M,t}^k + B_{S,t}^k \]
and impose the no-arbitrage conditions to rewrite the budget constraint as
\[\int_{0}^{1} P_{it} C_{it}^k \, di + E_t Q_{t,t+1} D^k_{t+1} = D^k_t + W_i N^k_t + \Gamma_t + P_t Z_t. \]
Household optimization implies a transversality condition that combined with the no-Ponzi condition yields
\[\lim_{T \to \infty} E_t Q_{t,T} D^k_{T} = 0. \]

2.2 Firms

Individual goods producers are subject to the constraints of Calvo (1983) contracts. Each period a firm can reset its price with probability \(1 - \alpha \), while it retains the previous period price with probability \(\alpha \). That previous price is indexed to the steady-state rate of inflation, following Yun (1996). When a firm can choose a new price, it can do so either to maximize the present discounted value of after-tax profits, \(E_t \sum_{s=0}^{\infty} \alpha^s Q_{t,s} \Gamma_{i,s} \), or to follow a simple rule of thumb as in Galí and Gertler (1999). Profits are discounted by the \(s \)-step ahead stochastic discount factor \(Q_{t,s} \) and by the probability of not being able to set prices in future periods. The firm's revenues are taxed at rate, \(\tau_t \), which in aggregate, is equivalent to the ratio of taxes to GDP, which can be easily mapped to the data. This greatly simplifies the complexities of the tax system, but allows us to adopt a simple measure of distortionary taxation rather than the common assumption in rule-based estimations that taxes are lump-sum (Bianchi (2012) and Bianchi and Ilut (2017)).

Even before considering the nature of policy, the introduction of distortionary taxation, which affects the Phillips curve, will imply that inflation is always influenced by fiscal policy.
good, equation (2), and the condition that all demand must be satisfied at the chosen price. An autocorrelated shock affects the desired markup, \(\ln \mu_t = \rho \mu_{t-1} + \sigma \varepsilon_{\mu,t} \).

Firm \(i \)'s optimization problem is

\[
\max_{(P_{it}, Y_{it})} E_t \sum_{s=0}^{\infty} \alpha^s Q_{t,t+s} \left[\left((1 - \tau_{t+s}) P_{it} \pi^s - \mu_{t+s} MC_{t+s} \right) Y_{it+s} \right]
\]

subject to the demand curve

\[
Y_{it+s} = \left(\frac{P_{it} \pi^s}{P_{t+s}} \right)^{-\eta} Y_{t+s}.
\]

Optimizing firms that are able to reset price choose \(P_t^f \), whose relative price satisfies

\[
P_t^f = \frac{P_t}{P_t^*} = \left(\frac{\eta}{\eta - 1} \right) \frac{E_t \sum_{s=0}^{\infty} (\alpha^s (X_{t+s} \xi_{t+s}) - \alpha \mu_{t+s} mc_{t+s} \left(\frac{P_{t+s} \pi^{-s}}{P_t} \right)^{\eta} Y_{t+s}}{A_{t+s}}}{E_t \sum_{s=0}^{\infty} (\alpha^s (X_{t+s} \xi_{t+s}) - \alpha (1 - \tau_{t+s}) \left(\frac{P_{t+s} \pi^{-s}}{P_t} \right)^{\eta-1} Y_{t+s}}{A_{t+s}}}
\]

where \(mc_t = \frac{MC_t}{P_t^*} = \frac{W_t}{P_t A_t} \) is the real marginal cost, given the linear production function, \(Y_{it} = A_t N_{it} \). Under flexible prices, \(mc_t = (1 - \tau_t) \frac{\pi^{-1}}{\eta} \).

Inflation is inertial. Some firms use rules of thumb. When those firms are permitted to post a new price, they choose \(P_t^b \) to obey

\[
P_t^b = P_{t-1}^* \pi_{t-1}
\]

so they update their price using last period's rate of inflation rather than steady-state inflation. \(P_{t-1}^* \) denotes an index of the reset prices, defined by

\[
\ln P_{t-1}^* = (1 - \zeta) \ln P_{t-1}^f + \zeta P_{t-1}^b,
\]

where \(\zeta \) is the proportion of firms keeping last period’s price (but indexed to steady-state inflation) and \(1 - \alpha \) share of firms setting a new price, the law of motion of the aggregate price index is

\[
(P_t)^{1-\eta} = \alpha (P_{t-1} \pi)^{1-\eta} + (1 - \alpha)(P_t^*)^{1-\eta}.
\]

The setup delivers a hybrid New Keynesian Phillips curve, as Leith and Malley (2005) detail. Combine the rule-of-thumb pricing with the optimal price setting to produce

\[
\hat{\pi}_t = \chi_f E_t \hat{\pi}_{t+1} + \chi_b \hat{\pi}_{t-1} + \kappa_c \left(\hat{mc}_t + \frac{\tau}{1 - \tau} \hat{\tau}_t + \hat{\mu}_t \right)
\]

\[
\hat{\pi}_t = \ln(P_t) - \ln(P_{t-1}) - \ln(\pi) \text{ is the deviation of inflation from its steady-state value,}
\]

\[
\hat{mc}_t + \frac{\tau}{1 - \tau} \hat{\tau}_t = \ln\left(\frac{W_t}{P_t^*} \right) - \ln A_t + \frac{\tau}{1 - \tau} \hat{\tau}_t - \ln((\eta - 1)/\eta) + \ln(1 - \pi), \text{ are log-linearized real marginal costs adjusted for the impact of the sales revenue tax, and the reduced-form parameters are defined as}
\]

\[
\chi_f \equiv \frac{a}{\Delta}, \chi_b \equiv \frac{\xi}{\Delta}, \kappa_c \equiv \frac{(1 - \alpha)(1 - \zeta)(1 - \eta \beta)}{\Delta}, \text{ with } \Delta \equiv \alpha(1 + \beta \xi) + (1 - \alpha) \xi.
\]
2.3 The government

Government choices satisfy the flow budget identity:

$$P_{t}^{M}B_{t}^{M} = (1 + \rho P_{t}^{M})B_{t-1}^{M} - P_{t}Y_{t} + P_{t}G_{t} + P_{t}Z_{t} + P_{t}Y_{t}\xi_{t,ip,t}.$$

We assume short bonds are in zero net supply, so $B_{t}^{S} \equiv 0$. $P_{t}^{M}B_{t}^{M}$ is the market value of debt, $P_{t}G_{t}$ and $P_{t}Z_{t}$ are government spending and transfers and $P_{t}Y_{t}\xi_{t,ip,t}$ is an i.i.d. shock to the budget identity that arises from random fluctuations in the debt maturity structure.\(^6\) Government can use distorting taxes to service government debt and to stabilize the economy. We deliberately reduce the complexity of the tax system to a single measure of distortionary taxation. With a sufficiently wide array of fiscal instruments, the policy maker could address the limited set of distortions that the model contains, in a manner actual policy maker can achieve.\(^7\) Divide through by nominal GDP, $P_{t}Y_{t}$, to rewrite the budget identity in terms of the ratio $b_{t}^{M} = \frac{P_{t}^{M}B_{t}^{M}}{P_{t}Y_{t}}$,

$$b_{t}^{M} = \frac{(1 + \rho P_{t}^{M}) Y_{t-1}b_{t-1}^{M}}{P_{t-1}^{M}} - \tau_{t} + g_{t} + z_{t} + \xi_{t,ip,t},$$

where $\xi_{t,ip,t} = \sigma_{t,ip}e_{t,ip,t}$ and we assume that the government spending-GDP ratio, g_{t}, evolves according to

$$\ln g_{t} = (1 - \rho_{g}) \ln g + \rho_{g} \ln g_{t-1} + \sigma_{g}e_{g,t}$$

and the transfers-GDP ratio, z_{t}, follows a similar process:

$$\ln z_{t} = (1 - \rho_{z}) \ln z + \rho_{z} \ln z_{t-1} + \sigma_{z}e_{z,t}.$$

The fiscal shocks, $e_{t,ip,t}$, $e_{g,t}$, and $e_{z,t}$ are all standard normally distributed.

2.4 The complete model

The complete system of nonlinear equations that describe the equilibrium appear in Appendix A (Chen, Leeper, and Leith (2022)): System of nonlinear equations. After log-linearizing around the deterministic steady state, the model is\(^8\)

Labor supply: \(\sigma\tilde{X}_{t} + \varphi\tilde{N}_{t} = \tilde{w}_{t},\)

Euler equation: \(\tilde{X}_{t} = E_{t}\tilde{X}_{t+1} - \frac{1}{\sigma}(\tilde{R}_{t} - E_{t}\tilde{\pi}_{t+1} - E_{t}\tilde{q}_{t+1}) - \tilde{\xi}_{t} + E_{t}\tilde{\xi}_{t+1},\)

\(^6\)This shock breaks a singularity that arises when all the other elements of the budget identity are observables in estimation.

\(^7\)For example, in a simple New Keynesian model optimal use of multiple tax instruments can replicate the first best allocation in the same way lump-sum taxes and a production subsidy can (Correia, Nicolini, and Teles (2008)). This would render our policy problem trivial.

\(^8\)The fiscal variables are normalized with respect to GDP, so \tilde{b}_{t}^{M}, $\tilde{\tau}_{t}$, \tilde{g}_{t}, and \tilde{z}_{t} are defined as linear deviations from their steady states. Other variables are expressed as percentage deviations from steady state. Before linearizing, output, consumption, and real wages are rendered stationary by scaling by technology, A_{t}.

Bond prices: \[\hat{P}^M_t = \rho \beta E_t \hat{P}^M_{t+1} - \hat{R}_t, \]

Resource constraint: \[\tilde{y}_t = \tilde{N}_t = \hat{c}_t + \frac{1}{1-g} \tilde{g}_t, \]

Consumption habits: \[\tilde{X}_t = (1-\theta)^{-1}(\hat{c}_t - \theta \hat{c}_{t-1}), \]

Phillips curve: \[\hat{\pi}_t = \chi f \beta E_t \hat{\pi}_{t+1} + \chi_b \hat{\pi}_{t-1} + \kappa c \left(\hat{w}_t + \frac{1}{1-\tau} \tilde{\tau}_t + \hat{\mu}_t \right), \]

Govt. budget: \[\tilde{b}^M_t = \frac{1}{\beta} \tilde{b}_{t-1} + \frac{b^M}{\beta} \left(\frac{\rho \beta}{\gamma \pi} \hat{P}^M_t - \hat{P}^M_{t-1} + \tilde{y}_t - \tilde{\pi}_t - \hat{q}_t \right) - \tilde{\tau}_t + \tilde{g}_t + \tilde{z}_t + \sigma_{b,}\epsilon_{b,t}, \]

Govt. spending: \[\tilde{g}_t = \rho_g \tilde{g}_{t-1} + \sigma_g e_{g,t}, \]

Transfers: \[\tilde{z}_t = \rho_z \tilde{z}_{t-1} + \sigma_z e_{z,t}, \]

Technology: \[\tilde{q}_t = \rho_q \tilde{q}_{t-1} + \sigma_q e_{q,t}, \]

Cost-push/markup: \[\tilde{\mu}_t = \rho_{\mu} \tilde{\mu}_{t-1} + \sigma_{\mu} e_{\mu,t}, \]

Preference: \[\tilde{\xi}_t = \rho_{\xi} \tilde{\xi}_{t-1} + \sigma_{\xi} e_{\xi,t}. \]

To close the model, we specify monetary and tax policy behavior.

3. Policy making

Policy makers follow targeting rules obtained by minimizing an objective function. We contrast the fit to data of this description of policy to a version of the model in which policy obeys the kinds of simple instrument rules in existing literature. That rules-based benchmark appears in the Online Supplementary Material in Appendix C: Rules-based estimation (Chen, Leeper, and Leith (2021)).

3.1 Targeting rules

Now we describe our targeting rule specifications. Chen, Kirsanova, and Leith (2017) estimate monetary policy models of the U.S. economy to find that monetary policy is best described as a time-consistent targeting rule. The fit of that description dominates both instrument-rules-based and Ramsey monetary policy. Extending this analysis to fiscal policy raises several considerations. First, monetary and fiscal authorities are independent policy makers with potentially different policy objectives. This leads us to model strategic interactions between the two policy makers: they play a game where either authority may be the Stackelberg leader—making policy decisions anticipating the reaction of the other—or a Nash equilibrium where each policy maker takes the other’s policies as given when formulating their own plans. Beetsma and Debrun (2004) argue that fiscal leadership is the best description of the interactions between monetary and fiscal authorities because in practice the monetary authority’s response to shocks is well
articulated and can be anticipated by the fiscal authorities. Monetary policy is more nimble, able to react swiftly to news about economic conditions, including fiscal actions. We adopt this timing assumption in what follows. But we also estimated our model under the alternative assumptions of monetary leadership and the Nash solution in Appendix G: Alternative leadership regimes. This does not materially affect the fit of the model, parameter estimates, or timing of regime switches.

Second, while Chen, Kirsanova, and Leith(2017) find strong evidence that monetary policy has been conducted with reference to an objective function, albeit with switches in the degree of conservatism within that objective over time, it is not obvious that fiscal policy has been similarly optimizing. This leads us to posit that monetary policy follows a targeting rule—with changes in degree of conservatism—while fiscal policy switches between instrument-rules and time-consistent targeting rules, as fit to data dictates. We compare this description of policy with simple instrument rules in Section 4.4.1 below.

An obvious approach to defining policy objectives would be to use the microfounded welfare function based on the utility of the households that populate the economy. But estimation with microfounded weights is problematic. Because the microfounded weights are functions of structural parameters, they place very tight cross-equation restrictions on the model, which are likely to deteriorate fit to data. With standard estimates of the degree of price stickiness, for example, the microfounded weight attached to inflation can be over 100 times that attached to output [Woodford (2003, Chapter 6)]. Targeting rules based on such a strong antiinflation objective would be wildly inconsistent with observed inflation volatility. Instead, we follow Chen, Kirsanova, and Leith (2017) and adopt a form of the objective function for each policy maker which is consistent with the representative agents’ utility, but we freely estimate the weights within that objective function. Using the terminology of Svensson (2003) this objective function constitutes a general targeting rule, which then implies a specific targeting rule after optimization subject to the constraints implied by the decentralized equilibrium and the nature of the strategic interactions with the other policy maker. The objective function for the monetary authority is

\[
\Gamma^M_0 = E_0 \sum_{t=0}^{\infty} \beta^t \left\{ \omega_1 (\tilde{X}_t + \tilde{\xi}_t)^2 + \omega_2 \left(\tilde{y}_t - \frac{\sigma}{\varphi} \tilde{\xi}_t \right)^2 + \omega_3 (\tilde{\pi}_t - \tilde{\pi}_{t-1})^2 + \omega_M^* \tilde{\pi}_t^2 + \omega_R \left(\Delta \hat{R}_t \right)^2 \right\}.
\]

(3)

Under the monetary policy specification, we consider potential switches in the weight attached to inflation stabilization, ω_M^*. That normalized weight can switch between

\[9\text{Fiscal leadership is not fiscal dominance and does not imply that the fiscal authority forces the central bank to accommodate its actions. Leadership means that the central bank takes fiscal policy as given and it has a well-known reaction to the state of the economy, which the fiscal authority takes into account when setting policy. For example, the fiscal authority might anticipate that the central bank will act to stabilize inflation in the face of a fiscal stimulus.}

\[10\text{Or if it has involved a formal optimization, this may reflect political objectives/frictions as in, Song, Storesletten, and Zilibotti (2012) rather than those contained in a conventional general targeting rule.}

\[11\text{See Appendix B: Derivation of objective functional form for the microfounded welfare function.}

\(\omega_{M,S_t=1} = 1 \) in the More-Conservative (MC) regime and \(0 < \omega_{M,S_t=2} < 1 \) in the Less-Conservative (LC) regime. The monetary authority also values smooth interest rates.

Fiscal policy minimizes

\[
\Gamma_0^F = E_0 \sum_{t=0}^{\infty} \beta^t \left\{ \omega_1 (\hat{X}_t + \hat{\xi}_t)^2 + \omega_2 \left(\hat{y}_t - \frac{\sigma_t}{\varphi} \hat{\xi}_t \right)^2 + \omega_3 (\hat{\pi}_t - \hat{\pi}_{t-1})^2 + \omega_F^2 \bar{\pi}_t^2 + \omega_\tau (\Delta \tau_t)^2 \right\}.
\]

(4)

The objective of the fiscal authority can differ from that of the monetary authority only in the weight attached to inflation, \(\omega_F^\pi \), the presence of a tax rate-smoothing term, and the absence of interest-rate smoothing. In essence, the two policy makers share the same conception of social welfare, but the government may appoint a monetary authority with an aversion to inflation that differs from that of society, to reflect Rogoff (1985)'s arguments.

Habits externalities introduce the preference shock, \(\hat{\xi}_t \), into the objective functions. Habits confront policy makers with a trade off. When \(\hat{\xi}_t \) is high, utility of consumption and disutility of work are low. Policy makers will want to induce more labor, but any higher consumption from that labor produces a lower utility gain.

3.2 Instrument rules

The Fiscal Targeting Rule (TF) regime corresponds to \(s_t = 1 \). But fiscal behavior need not optimize at all times. When fiscal policy is not following a targeting rule—when it is not minimizing (4)—it obeys the tax instrument rule:

\[
\tau_t = \rho_{r,s_t} \tau_{t-1} + (1 - \rho_{r,s_t}) \left(\delta_{r,s_t} \hat{b}_{t-1}^M + \delta_\gamma \hat{y}_t \right) + \sigma_\tau \epsilon_{r,t}
\]

(5)

The coefficient on debt, \(\delta_{r,s_t} \), and the persistence of the tax rate, \(\rho_{r,s_t} \), are subject to regime switching with \(s_t = 2 \) the Passive Fiscal (PF) regime and \(s_t = 3 \) the Active Fiscal (AF) regime. The value of the coefficient on debt determines fiscal regime, with \(\delta_{r,s_t=2} > \frac{1}{\beta} - 1 \) in the PF regime and \(\delta_{r,s_t=3} = 0 \) in the AF regime. These simple instrument rules are intended to capture fiscal behavior when policy is not obviously geared toward attaining conventional macroeconomic policy objectives, perhaps due to political considerations, but where we can still classify policy as being consistent with debt stabilization, or not.

Transition matrices for monetary and fiscal policy regimes are

\[
\Phi = \begin{bmatrix} \phi_{11} & 1 - \phi_{22} \\ 1 - \phi_{11} & \phi_{22} \end{bmatrix},
\]

\[
\Psi = \begin{bmatrix} \psi_{11} & 1 - \psi_{22} - \psi_{23} & \psi_{31} \\ \psi_{12} & \psi_{22} & 1 - \psi_{31} - \psi_{33} \\ 1 - \psi_{11} - \psi_{12} & \psi_{23} & \psi_{33} \end{bmatrix},
\]

where \(\phi_{ii} = Pr[S_t = i | S_{t-1} = i] \) and \(\psi_{ii} = Pr[S_t = i | S_{t-1} = i] \).
We also permit fundamental shock volatilities to change, a feature of existing explanations of the Great Moderation. Failure to do so can bias the identification of shifts in policy (Sims and Zha (2006)). Standard deviations of technology (σ_{q, k_t}), preference (σ_{ξ, k_t}), and cost-push (σ_{μ, k_t}) shocks may switch independently, with $k_t = 1$ the low volatility regime and $k_t = 2$ the high volatility regime. The transition matrix for the shock volatilities is

\[
H = \begin{bmatrix}
h_{11} & 1 - h_{22} \\
1 - h_{11} & h_{22}
\end{bmatrix},
\]

where $h_{ii} = \Pr[k_t = i | k_{t-1} = i].^{12}$

To solve the targeting rule problem, we develop a new algorithm with two policy makers under different structures of strategic interaction: when one policy maker can act as a Stackelberg leader in the policy game and when policy makers move simultaneously as part of a Nash equilibrium. Our algorithm incorporates potential changes in policy makers’ preferences over time (see Appendices D: Leadership equilibria under discretion and E: Nash equilibrium under discretion).

4. Estimation

The empirical analysis uses seven U.S. time series on real output growth (ΔGDP_t), annualized domestic inflation (INF_t), the federal funds rate (FFR_t), the annualized debt-GDP ratio (B_t/GDP_t), government spending ratio (G_t/GDP_t), transfers ratio (Z_t/GDP_t), and federal tax revenue ratio (T_t/GDP_t) from 1955Q1 to 2008Q3. All data are seasonally adjusted and at quarterly frequencies. Output growth is the log difference of real GDP, multiplied by 100. Inflation is the log difference of the GDP deflator, scaled by 400. The four fiscal variables—debt, government spending, transfers, and taxes—are normalized with respect to GDP and multiplied by 100. Appendix F: Data appendix describes the dataset in detail.

The data are linked to the law of motion of states through the measurement equation:

\[
\begin{bmatrix}
\Delta GDP_t \\
INF_t \\
FFR_t \\
G_t/GDP_t \\
T_t/GDP_t \\
Z_t/GDP_t \\
B_t/GDP_t
\end{bmatrix} = \begin{bmatrix}
\gamma^Q + \Delta \hat{y}_t + \tilde{q}_t \\
\pi^A + 4\bar{\pi}_t \\
r^A + \pi^A + 4\gamma^Q + 4\tilde{R}_t \\
100g + \tilde{g}_t \\
100\tau + \tilde{\tau}_t \\
100z + \tilde{z}_t \\
\frac{100}{4}b^M + \frac{1}{4}\tilde{b}^M_t
\end{bmatrix},
\]

where parameters, $\gamma^Q, \pi^A, r^A, g, \tau, z$, and b^M represent the steady-state values of output growth, inflation, real interest rates the government spending-GDP ratio, transfers-GDP ratio, the tax rate, and debt-GDP on a quarterly basis.

12The joint transition matrix governing the monetary-fiscal-shock regime is $\Phi \otimes \Psi \otimes H$, to yield 12 regimes under time-consistent targeting rules.
Steady-state values of fiscal variables and output growth are fixed at their means over the sample period. The government spending-GDP ratio \((g)\) is 8\%, transfers \((z)\) is 9.19\%, the federal tax revenues to GDP ratio \((\tau)\) is 17.5\%, the federal debt to annualized output ratio \((b^M)\) is 31\%, and quarterly output growth \((\gamma^Q)\) is 0.46\%. The steady-state real interest rate \((r^A)\) is 1.8\% and the inflation target \((\pi^A)\) is 2\%. The average real interest rate, \(r^A\), is linked to the discount factor, \(\beta = (1 + r^A/400)^{-1}\). Average maturity of outstanding government debt is 5 years (Leeper and Zhou (2021, Table 2)). The inverse of Frisch elasticity of labor supply, \(\varphi\), is set to 2.\(^{13}\)

We approximate the likelihood function using Kim’s (1994) filter, and then combine it with the prior distribution to obtain the posterior distribution. A random walk Metropolis–Hastings algorithm generates four chains of 540,000 draws each, after discarding the first 240,000 draws, and saving 1 in every 100 draws. Brooks–Gelman–Rubin potential reduction scale factors, reported in Appendix H: Convergence, are all below the 1.1 upper bound for convergence.

4.1 Prior distributions

Table 1 reports the priors of the targeting rule model, which consists of priors that are common to the instrument-rules-based estimation in Appendix C: Rules-based estimation, as well as those for parameters specific to the targeting rules, such as the weights on the objective function. Priors for most of the parameters are relatively loose and broadly consistent with the literature that estimates New Keynesian models. We choose the normal distribution for the inverse of the intertemporal elasticity of substitution, \(\sigma\), with a prior mean of 2.5. Habits formation, indexation, and the AR(1) parameters of the technology, cost-push, taste, transfers, government spending shocks follow a beta distribution with a mean of 0.5 and a standard deviation of 0.15. The Calvo parameter for the probability of no price change, \(\alpha\), is set so that the average length of the contract is around one year with a fairly tight prior around that value. A looser prior on this parameter tends to yield implausibly high estimates of the degree of price stickiness.

The parameters specific to targeting rules include the relative weights attached to the output \((\omega_1\) and \(\omega_2\)), changes in inflation \((\omega_3)\), and interest rate smoothing \((\omega_R)\) in the monetary policy objective function. We normalize to 1 the weight on inflation stabilization in the MC regime, \(\omega^M_{\pi,S_t=1}\). The microfounded objective function implies that the relative weights on other objectives should be very small. Small values for the remaining freely estimated weights are consistent with the Fed’s antiinflation stance.\(^{14}\)

We assume a fairly loose beta distribution with a mean of 0.5 for those weights. In the LC regime, \(S_t = 2\), we retain the weights estimated in the MC regime, but allow \(\omega^M_{\pi,S_t=2} < 1\) to permit the Fed to relax its inflation stance during the 1970s. \(\omega^M_{\pi,S_t=2}\) also obeys a beta distribution with mean 0.5. \(\Phi\) is the \(2 \times 2\) transition matrix for monetary policy where

\(^{13}\)It can be difficult to estimate the inverse of Frisch elasticity without using labor market data. The value \(\varphi = 2\) is consistent with the estimate of Smets and Wouters (2007). This value is in line with microeconomic estimates using household level data as in Macurdy (1981).

\(^{14}\)This is also in line with empirical findings of Favero and Rovelli (2003) and Ozlale (2003) who also estimated policy objective functions for the Federal Reserve.
TABLE 1. Targeting rules. Under targeting rules, we have six policy permutations: MC/TF, MC/PF, MC/AF, LC/TF, LC/PF, LC/AF. For monetary policy switches, $S_t = 1$ is the MC regime and $S_t = 2$ is the LC regime. For fiscal policy, the TF policy regime corresponds to $s_t = 1$, while the PF and AF regimes correspond to $s_t = 2$ and $s_t = 3$, respectively. Weights $\omega_1, \omega_2, \omega_3$ are constant across monetary and fiscal policy regimes.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Targeting policy parameters</th>
<th>Posterior</th>
<th>Prior</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mode</td>
<td>Mean</td>
<td>[5%, 95%]</td>
</tr>
<tr>
<td>ω_1, $\hat{X}_t - \hat{\xi}_t$,</td>
<td>0.221</td>
<td>0.208</td>
<td>[0.135, 0.280]</td>
</tr>
<tr>
<td>ω_2, $\hat{y}_t - \sigma \hat{\xi}_t$,</td>
<td>0.256</td>
<td>0.247</td>
<td>[0.177, 0.318]</td>
</tr>
<tr>
<td>ω_3, change in inflation</td>
<td>0.422</td>
<td>0.420</td>
<td>[0.271, 0.588]</td>
</tr>
<tr>
<td>$\omega_{M_{S_t=1}}$, inflation</td>
<td>1.00</td>
<td>1.00</td>
<td>–</td>
</tr>
<tr>
<td>$\omega_{M_{S_t=2}}$, inflation</td>
<td>0.611</td>
<td>0.601</td>
<td>[0.484, 0.722]</td>
</tr>
<tr>
<td>$\omega_{F_{S_t=1}}$, inflation</td>
<td>0.739</td>
<td>0.724</td>
<td>[0.568, 0.882]</td>
</tr>
<tr>
<td>$\omega_{F_{S_t=2}}$, inflation</td>
<td>0.298</td>
<td>0.316</td>
<td>[0.193, 0.433]</td>
</tr>
<tr>
<td>$\omega_{R_{S_t=1}}$, change in tax</td>
<td>0.699</td>
<td>0.659</td>
<td>[0.491, 0.812]</td>
</tr>
<tr>
<td>$\rho_{r_{S_t=2}}$, lagged tax rate</td>
<td>0.964</td>
<td>0.950</td>
<td>[0.924, 0.971]</td>
</tr>
<tr>
<td>$\rho_{r_{S_t=3}}$, lagged tax rate</td>
<td>0.932</td>
<td>0.935</td>
<td>[0.914, 0.960]</td>
</tr>
<tr>
<td>$\delta_{r_{S_t=2}}$, tax resp. to debt</td>
<td>0.045</td>
<td>0.050</td>
<td>[0.037, 0.062]</td>
</tr>
<tr>
<td>$\delta_{r_{S_t=3}}$, tax resp. to debt</td>
<td>0.00</td>
<td>0.00</td>
<td>–</td>
</tr>
<tr>
<td>δ_{y_F}, tax resp. to output</td>
<td>0.001</td>
<td>0.032</td>
<td>[0.000, 0.073]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Deep parameters</th>
<th>Posterior</th>
<th>Prior</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ, Inverse of intertemp</td>
<td>3.102</td>
<td>3.208</td>
</tr>
<tr>
<td>α, Calvo</td>
<td>0.780</td>
<td>0.774</td>
</tr>
<tr>
<td>ζ, inflation inertia</td>
<td>0.353</td>
<td>0.366</td>
</tr>
<tr>
<td>θ, habit persistence</td>
<td>0.802</td>
<td>0.810</td>
</tr>
<tr>
<td>ϕ, Inverse of Frisch</td>
<td>2.00</td>
<td>2.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Serial correlation of shocks</th>
<th>Posterior</th>
<th>Prior</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\rho_{t_{S_t=2}}$, taste</td>
<td>0.938</td>
<td>0.942</td>
</tr>
<tr>
<td>$\rho_{t_{S_t=3}}$, cost-push</td>
<td>0.938</td>
<td>0.931</td>
</tr>
<tr>
<td>$\rho_{q_{S_t=2}}$, productivity</td>
<td>0.274</td>
<td>0.280</td>
</tr>
<tr>
<td>$\rho_{t_{S_t=3}}$, transfers</td>
<td>0.968</td>
<td>0.971</td>
</tr>
<tr>
<td>$\rho_{g_{S_t=2}}$, government</td>
<td>0.986</td>
<td>0.984</td>
</tr>
</tbody>
</table>

A beta distribution is used for its diagonal elements, ϕ_{ii}, with a prior mean of 0.95 and a standard deviation of 0.05. This prior implies that the average duration for each monetary regime is about 20 quarters, and values can vary between 6.6 and 100 quarters within the 90% confidence interval.

Unlike monetary policy, the fiscal policy maker may not always minimize its loss function. Fiscal behavior may switch among two tax instrument rules and a time-consistent targeting rule. Priors over the passive and active fiscal rules are set to be broadly consistent with the literature that estimates fiscal rules (Bianchi and Ilut (2017) and Leeper, Traum, and Walker (2017)). In the TF regime, fiscal objectives parallel monetary objectives, but allow the fiscal authority’s weight on inflation stabilization, $\omega_{F_{\pi}}$, to differ from the monetary authority’s. We do not presume that the fiscal authority will be either more or less inflation-conservative than the central bank, so $\omega_{F_{\pi}}$ follows a gamma
Table 1. Targeting rules (continued). For volatility, $k_t = 1$ is the low volatility regime and $k_t = 2$ is the high volatility regime.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Posterior</th>
<th>Mean</th>
<th>[5%, 95%]</th>
<th>Prior</th>
<th>Mean</th>
<th>[5%, 95%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard deviation of shocks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\sigma_{\xi,k_t=1}$, taste</td>
<td>0.804</td>
<td>0.874</td>
<td>[0.608, 1.126]</td>
<td>IG</td>
<td>0.50</td>
<td>[0.11, 1.49]</td>
</tr>
<tr>
<td>$\sigma_{\xi,k_t=2}$, taste</td>
<td>2.318</td>
<td>2.309</td>
<td>[1.539, 3.075]</td>
<td>IG</td>
<td>0.50</td>
<td>[0.11, 1.49]</td>
</tr>
<tr>
<td>$\sigma_{\mu,k_t=1}$, cost-push</td>
<td>0.545</td>
<td>0.617</td>
<td>[0.487, 0.740]</td>
<td>IG</td>
<td>0.50</td>
<td>[0.11, 1.49]</td>
</tr>
<tr>
<td>$\sigma_{\mu,k_t=2}$, cost-push</td>
<td>1.660</td>
<td>2.001</td>
<td>[1.401, 2.580]</td>
<td>IG</td>
<td>0.50</td>
<td>[0.11, 1.49]</td>
</tr>
<tr>
<td>$\sigma_{q,k_t=1}$, productivity</td>
<td>0.684</td>
<td>0.680</td>
<td>[0.605, 0.759]</td>
<td>IG</td>
<td>0.50</td>
<td>[0.11, 1.49]</td>
</tr>
<tr>
<td>$\sigma_{q,k_t=2}$, productivity</td>
<td>1.218</td>
<td>1.286</td>
<td>[1.055, 1.507]</td>
<td>IG</td>
<td>0.50</td>
<td>[0.11, 1.49]</td>
</tr>
<tr>
<td>σ_{τ}, term premium</td>
<td>2.558</td>
<td>2.587</td>
<td>[2.332, 2.839]</td>
<td>IG</td>
<td>2.00</td>
<td>[0.63, 4.89]</td>
</tr>
<tr>
<td>σ_{τ}, government</td>
<td>0.161</td>
<td>0.163</td>
<td>[0.150, 0.176]</td>
<td>IG</td>
<td>0.50</td>
<td>[0.11, 1.49]</td>
</tr>
<tr>
<td>σ_{τ}, transfer</td>
<td>0.303</td>
<td>0.305</td>
<td>[0.281, 0.330]</td>
<td>IG</td>
<td>0.50</td>
<td>[0.11, 1.49]</td>
</tr>
<tr>
<td>σ_{τ}, tax rate</td>
<td>0.234</td>
<td>0.243</td>
<td>[0.217, 0.268]</td>
<td>IG</td>
<td>0.50</td>
<td>[0.11, 1.49]</td>
</tr>
</tbody>
</table>

Transition probabilities						
ϕ_{11}, remaining mc	0.962	0.962	[0.942, 0.983]	B	0.95	[0.848, 0.998]
ϕ_{22}, remaining lc	0.956	0.889	[0.859, 0.922]	B	0.95	[0.848, 0.998]
ϕ_{11}, remaining targeting	0.875	0.873	[0.844, 0.902]	D	0.90	[0.807, 0.967]
ψ_{11}, targeting to passive	0.004	0.008	[0.000, 0.016]	D	0.05	[0.002, 0.151]
ψ_{22}, remaining passive	0.966	0.949	[0.920, 0.978]	D	0.90	[0.807, 0.967]
ψ_{23}, passive to active	0.007	0.013	[0.000, 0.025]	D	0.05	[0.002, 0.151]
ψ_{33}, remaining active	0.916	0.912	[0.889, 0.936]	D	0.90	[0.807, 0.967]
ψ_{13}, active to targeting	0.001	0.005	[0.000, 0.010]	D	0.05	[0.002, 0.151]
h_{11}, remaining lv	0.965	0.952	[0.925, 0.982]	B	0.90	[0.807, 0.967]
h_{22}, remaining hv	0.894	0.943	[0.906, 0.979]	B	0.90	[0.807, 0.967]

distribution with prior mean of 1 and values below 1 receive around 57% of the a priori probability. We also replace interest rate smoothing with a tax rate smoothing term, ω_{τ}, to reflect the possibility that the fiscal authority wants to avoid large variations in tax rates. The prior distribution over ω_{τ} is beta. With a total of three fiscal regimes, the elements estimated in the 3×3 fiscal transition matrix, Ψ, follow a Dirichlet distribution. Election cycles may give fiscal regimes shorter duration than monetary regimes. This is reflected in the prior distribution of diagonal elements, ψ_{ii}, in Ψ that corresponds to an average duration of 10 quarters for each fiscal regime with values ranging between 5 and 25 quarters in the 90% confidence bands.

Finally, we allow high- and low-volatility states for technology, preference, and cost-push shocks. Priors on the standard deviations of shocks are symmetric across regimes and are quite loose. h_{ii} are diagonal elements on the 2×2 transition matrix for shock volatilities that follow a beta distribution with prior belief that each shock regime lasts for 10 quarters.

We consciously specify priors for the transition probabilities that favor neither one policy permutation over another, nor the nature of transitions between regimes. This contrasts to Bianchi (2012) and Bianchi and Ilut (2017) who only consider three possi-
ble policy permutations, omitting the pairing of PM/PF. Those papers also restrict the movement between policy regimes and limited how long the AM/AF regime may last.

4.2 Posterior estimates

Table 1 presents posterior parameter estimates. These include when the monetary authority implements a targeting rule, taking fiscal policies as given, while the monetary authority’s objective function may switch in its inflation aversion over time—between More or Less Conservative. The fiscal authority acts as a Stackelberg leader in the game with the monetary authority, so the fiscal authority conducts policy anticipating the response of the Fed. Fiscal policy may switch between this leadership role (TF) and simple passive or active fiscal rules, labeled PF and AF. Joint monetary-fiscal behavior produces six regimes: MC/TF, MC/PF, MC/AF, LC/TF, LC/PF, and LC/AF.

Monetary policy always follows a time-consistent targeting rule. It attaches the weight $\omega^M_\pi = 0.61$ to inflation stabilization in the LC regime (relative to 1 in the MC regime). Data are highly informative about the fiscal authority’s aversion to inflation. The posterior estimate under TF is $\omega^F_\pi = 0.32$. Fiscal authorities are substantially less averse to inflation than is the central bank, even when monetary policy is Less Conservative. These estimates are consistent with Rogoff (1985)’s idea that the government should appoint a conservative central banker with a stronger dislike of inflation than the government. The optimal degree of inflation conservatism for a delegated central bank is 1.4, well above the normalized weight of 1 under the MC regime. Additional gains from conservatism, however, come from reducing inflation volatility below levels observed in data.

Estimates of the deep model parameters are similar to those under rules-based policy—see Appendix C: Rules-based estimation—with a modest rise in the intertemporal elasticity of substitution, σ, to 3.2, indexation, ζ, to 0.37, and the degree of habits, θ, to 0.81. The other significant difference is that the estimated degree of persistence of the cost-push shock process, ρ_μ, rises from 0.21 to 0.93 as we move from the rules-based estimation to the targeting rule estimation, while the variance of i.i.d. innovations to the cost-push shock fall dramatically. The combined effect of these differences is that the standard deviation of the cost-push shock process is actually lower under the targeting rule estimation. Although cost-push shocks generate a meaningful trade off for policy makers by raising inflation and reducing output, they do not rise to implausible levels in explaining the data when policy minimizes a loss function. Appendix I: Model identification reports results from the Komunjer and Ng (2011) identification test, along with plots of the prior and posterior densities.

15Bianchi and Ilut (2017) include the PM/PF regime and drop restrictions on the transition matrix in a robustness section and conclude it does not affect their results.

16The unconditional standard deviation of the cost-push shock process under the rules-based estimation is 4.9% (13%) in the low (high) volatility regimes, but is only 1.5% (4.2%) under the targeting rule estimation. This compares to an unconditional standard deviation of the cost-push process in Smets and Wouters (2007) of 14.7%.
Table 2. Model comparison. The intermediate model treats monetary policy as time-consistent targeting rule with changes in the degree of inflation conservatism, while fiscal policy switches between the PF and AF regimes. The targeting rule model adds to the intermediate model the possibility that fiscal policy may switch to an additional TF regime.

<table>
<thead>
<tr>
<th>Model</th>
<th>Log Marginal Data Density</th>
<th>Geweke</th>
<th>Sims, Waggoner, Zha</th>
</tr>
</thead>
<tbody>
<tr>
<td>Targeting Rules</td>
<td>−1410.254</td>
<td>−1410.561</td>
<td></td>
</tr>
<tr>
<td>Intermediate Model</td>
<td>−1416.304</td>
<td>−1416.392</td>
<td></td>
</tr>
<tr>
<td>Rules-Based Policy</td>
<td>−1418.116</td>
<td>−1418.541</td>
<td></td>
</tr>
</tbody>
</table>

4.3 Model comparison

Does modeling strategic interactions between policy makers in the form of targeting rules deliver a reasonable statistical fit to data? Table 2 reports the log marginal likelihood values for models with instrument rules and strategic targeting rule policies to provide a basis for comparison. We compute Geweke’s (1999) modified harmonic mean estimator and the statistic that Sims, Waggoner, and Zha (2008) propose to draw similar conclusions. The latter method is designed for models with time-varying parameters, where the posterior density may be non-Gaussian. The two models fit data equally well.

We also present the marginal likelihood associated with an intermediate case in which we allow monetary policy to be time-consistent with switches in the degree of conservatism, while fiscal policy switches between active and passive rules, without the possibility of the fiscal authority following a targeting rule.¹⁷ The targeting rule model’s fit is also comparable to the intermediate model’s: episodes of fiscal Stackelberg leadership can help explain the data, even when those episodes occur relatively infrequently. Fiscal leadership is consistent with specific policy episodes. Fiscal leadership also affects fit because of the impact it has on other policy regimes through expectations. We discuss this issue below.

Model comparisons lead to a key finding that speaks to the bulk of the literature that estimates policy rules. Targeting rules fit data at least as well as instrument rules or a combination of monetary targeting rules policy and fiscal instrument rules. This is a surprising outcome in light of the additional restrictions that this form of policy imposes.

4.4 Regime switching

We model monetary policy as fluctuating between the more (MC) and less (LC) conservative targeting rules. Fiscal policy can move among a targeting rule (TF), a passive instrument rule (PF), and an active instrument rule (AF). Figure 2 reports probabilities of each policy/volatility regime over the sample and Table 3 details the long-run probabilities of being in each policy regime. Before connecting these estimated policy

¹⁷Parameter estimates of this intermediate model are available upon request.
shifts to narrative descriptions of the evolution of monetary and fiscal policies, we compare the estimated model’s behavior with targeting rules to conventional pairings of active/passive rules.

Table 3. Long-run regime probabilities. The table reflects the ergodic probabilities of being in each permutation of monetary and fiscal policy regime given the estimated transition probabilities in Table 1.

<table>
<thead>
<tr>
<th>Regimes</th>
<th>Less Conservative</th>
<th>More Conservative</th>
<th>Sum Columns</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active Fiscal</td>
<td>0.11</td>
<td>0.13</td>
<td>0.25</td>
</tr>
<tr>
<td>Passive Fiscal</td>
<td>0.29</td>
<td>0.33</td>
<td>0.62</td>
</tr>
<tr>
<td>Fiscal Targeting</td>
<td>0.06</td>
<td>0.07</td>
<td>0.13</td>
</tr>
<tr>
<td>Sum Rows</td>
<td>0.46</td>
<td>0.54</td>
<td>1.00</td>
</tr>
</tbody>
</table>
4.4.1 Understanding policy behavior

Figure 3 plots the response to a 10% fiscal transfers shock under the three descriptions of fiscal policy we use—passive rule, active rule, and time-consistent targeting rule. These are paired with either the more or less conservative monetary targeting rule or an active/passive Taylor rule from the instrument-rule estimation in Appendix C: Rules-based estimation. Responses in the figure come from turning off the probability of switching to an alternative policy regime. Making regimes permanent highlights the basic properties of the different descriptions of policy.

In column one, fiscal policy passively adjusts the tax rate to ensure fiscal solvency. Debt-GDP ratio rises to finance higher transfers, but higher debt is gradually unwound by a sustained increase in taxation. When paired with an active monetary policy rule, this conventional policy stabilizes debt with minimal impact on inflation (solid line). Under a monetary policy targeting rule inflation rises; it rises more when monetary policy is less conservative (dash-dotted vs. dotted lines). A targeting rule enhances the inflationary impact due to the debt-stabilization bias that Leeper and Leith (2017) and Leeper, Leith, and Liu (2021) discuss. This bias reflects the policy makers’ desire to return debt to steady state, which would not be the case if they were pure tax smoothers acting under commitment. The debt stabilization bias is driven by the fact that higher debt creates an inflationary bias problem as the monetary authority is tempted to raise inflation to reduce the real value of government debt. Returning debt to steady state mitigates the associated inflationary bias. This mechanism, linking debt and inflation, is absent in instrument rule-based descriptions of policy.

In column 2, fiscal policy is active, failing to adjust taxes to stabilize debt. This fiscal behavior requires inflation surprises to revalue debt, as in the FTPL. With the estimated passive monetary policy rule, fiscal expansion produces an initial burst of inflation (solid line). When we assume a targeting rule for monetary policy, the path for inflation is largely the same regardless of how conservative the policy maker is (dash-dotted and dotted lines). This is because the magnitude of the required inflation surprise is determined by the size of the fiscal shock. It is important to stress just how large the inflationary impact of the fiscal shock is when there is no prospect of the fiscal authority acting to stabilize debt.

The third column of Figure 3 reports impacts of higher transfers under a time-consistent fiscal targeting rule. As in the first column, inflation rises modestly, particularly when the central bank is conservative. Fiscal leadership combined with a conservative central bank allows the policy makers to resist the debt stabilization bias and to pursue a near tax-smoothing policy without generating significant inflation. A less conservative central bank tolerates higher inflation, which prompts the fiscal authority to stabilize debt more aggressively to remove the inflationary bias problem that elevated debt generates.

In summary, the implications of the monetary policy targeting rule depend on the fiscal regime with which it is paired. When fiscal policy is active, the monetary authority

18The prolonged increase in inflation is because the passive monetary policy is both inertial and close to satisfying the Taylor principle. A more passive rule would avoid the sustained increase in inflation beyond the maturity of the debt stock (Leeper and Leith (2017)).
Figure 3. Impulse response to a 10% transfers shock under different policy permutations. All plots assume that there is no expectation of policy switching. Column 1 combines a passive fiscal rule with a more- or less-conservative monetary targeting rule or an active monetary rule estimated in Appendix C: Rules-Based Estimation. Column 2 combines the active fiscal rule with a more- or less-conservative monetary targeting rule or the passive monetary rule estimated in Appendix C: Rules-Based Estimation. Column 3 combines the fiscal targeting rule with a more- or less-conservative monetary targeting rule.
has to generate the inflation surprises necessary to stabilize debt, regardless of the authority's inflation aversion. This is akin to the PM/AF regime in Leeper (1991). But when fiscal policy is either passive or following a targeting rule, the same monetary targeting rules produce more modest inflation because fiscal policy carries most of the burden of stabilizing debt. The size of the burden depends on the central bank's inflation aversion. This has similarities to the AM/PF regime, although the debt stabilization bias creates a link between debt and inflation that would not, otherwise, be present.

It is tempting to infer from the results that episodes of high inflation, like the 1970s, likely stem from the absence of debt-stabilizing fiscal policy. This is not necessarily the case. Figure 4 plots responses to the same transfers shock under the same policy permutations, except that the estimated probabilities of switching to other policy regimes are reinstated. Agents use those probabilities to form expectations about future policies. We find that results under the first column are similar to those in Figure 3. But column 2 no longer exhibits a large burst of inflation to stabilize debt. Instead, both debt and inflation trend upwards when the central bank implements a targeting rule, particularly when the monetary authority is less conservative. Differences between the two figures stem from what Leeper and Zha (2003) call "expectations formation effects." As shown in Table 3, estimates imply that the fiscal authority will eventually stabilize debt by reverting to a passive fiscal rule with the ergodic probability 0.62. Until it does so, debt rises to generate a modest increase in inflation due to the debt stabilization bias. By breaking the association between high inflation and active fiscal policy, under our estimates the Volcker disinflation does not require a prompt switch to a passive fiscal rule to explain why both the level and volatility of inflation fell.

In the third column of Figure 4, the nature of the cross-regime expectation effects is different. If regimes were permanent, the fiscal authority would allow debt to rise for a sustained period. With switching in place, the fiscal authority anticipates that policy will revert to the passive rule and that this will involve an increase in tax rates to unwind any increase in debt that the transfers shock produced. Given the forward-looking nature of the Phillips curve, the anticipated rise in distortionary taxation fuels current inflation. Fiscal policy cuts taxes today to mitigate the rise in inflation, especially when the central bank is not strongly inflation averse. This tax cut means that fiscal policy is not stabilizing debt while this regime is in place. But when the regime switches to passive fiscal behavior and tax increases come, those increases will be greater. This leads to a further cut in taxes and a spiral of rising debt and inflation. Although the fiscal targeting regime cannot last forever, the behavior is consistent with observed data, particularly during periods when the shocks imply a decline in debt, alongside a gradual decrease in inflation.

In our setting, the level of debt and the fiscal consequences of shocks will always impact on inflation. The magnitude of that impact depends crucially on agents' long term expectations regarding the nature of debt stabilization. If agents expect fiscal policy will eventually switch to stabilize debt, the inflation impacts can be modest, even if

19In combination with the other estimated policy parameters, this is sufficient to ensure the model does not exhibit the kinds of equilibria associated with the FTPL even during episodes where fiscal policy is active.
Figure 4. Impulse response to a 10% transfers shock under different policy permutations (no credibility). All plots assume that there is the expectation of switching to alternative policy regimes in line with the estimates. Column 1 combines a passive fiscal rule with a more- or less-conservative monetary targeting rule or an active monetary rule estimated in Appendix C: Rules-Based Estimation. Column 2 combines the active fiscal rule with a more- or less-conservative monetary targeting rule or the passive monetary rule estimated in Appendix C: Rules-Based Estimation. Column 3 combines the fiscal targeting rule with a more- or less-conservative monetary targeting rule.
the prevailing fiscal regime is not stabilizing. In contrast, when agents do not expect fiscal policy to ultimately stabilize government debt, as in Bianchi and Ilut (2017), low and stable inflation requires passive fiscal behavior. By using a model with lump-sum taxes and simple policy rules, Bianchi and Ilut omit two mechanisms that link debt and inflation in our setup: (i) the debt-stabilization bias, which connects a rising inflation bias to rising debt, and (ii) with passive fiscal policy, rising debt raises expected distorting taxes, which fuel current inflation. These mechanisms give fiscal policy a central role in our interpretations of data, even though the move to more conservative monetary policy is also important, as standard monetary interpretations of the Volcker era assert.

4.4.2 Monetary policy regimes Looking at monetary policy alone, periods of the LC regime capture all those identified as passive in the rules-based estimation (Appendix C: Rules-based estimation). But there are other periods in which monetary policy remains less conservative. Figure 2 shows that the late 1950s gave way to fluctuations in conservatism throughout the first half of the 1960s. Debate surrounds the antiinflation stance of monetary policy in the 1950s: Romer and Romer (2002) argue that policy makers appeared to recognize the need to fight inflation with monetary tightening, while Friedman’s (1960) concern was that the policy of targeting free reserves implied a less conservative regime. Our switches in monetary policy regime in the late 1950s and early 1960s mirror this debate: relatively benign macroeconomic outcomes can be described as a mixture of more or less conservative monetary policy in this period.

By the mid 1960s, Romer and Romer (2002) find that monetary policy makers believed that, although buoyant output drove higher inflation, inflation itself would soon stabilize without requiring a significant recession. This is consistent with the switch to the less conservative regime that we see in the mid 1960s.

The Romers suggest that policy makers internalized the Friedman–Phelps accelerationist Phillips curve in the 1970s, but with an initially overoptimistic assessment of the natural rate of unemployment. That optimism morphed into a pessimistic view of the output costs of fighting inflation. This explains the loss of inflation conservatism throughout the 1970s.

The Volcker disinflation did not really take hold until 1982 (Chen, Kirsanova, and Leith (2017)). The switch to high conservatism in 1982 occurred once monetary policy makers acknowledged the costs of inflation (Romer and Romer (2002)). That switch also corresponds with Volcker’s assessment of when his deflation had finally become credible. 20 Finally, the temporary loss of conservatism in 1987 reflects the operation of the “Greenspan put,” as monetary policy responded to the Black Monday stock market crash of that year (Bornstein and Lorenzoni (2018)).

Our estimates of the movements between periods of more- or less-conservative monetary policy display some subtlety in dating the loss of conservatism in the 1960s/1970s, but are broadly in line with other monetary-policy-only analyses of the Great Moderation using either targeting rules (Chen, Kirsanova, and Leith (2017)) or active/passive instrument rules (Sims and Zha (2006)). We do not deviate far from the precision of the

20Silber (2012, Chapters 11–13) details Volcker’s belief that fiscal policy appeared to be beginning to pull in the same direction as monetary policy when the Reagan administration partially reversed their tax cuts in 1982 prompting him to write to the President suggesting that “we are turning the corner.”
standard narrative in this respect, although observed outcomes depend crucially on the associated fiscal regime as we now document.

4.4.3 Fiscal policy regimes Romer and Romer (2009, 2010) extensively analyze post-war tax changes. They distinguish among tax policies designed to reduce the budget deficit, attempts to affect aggregate demand, actions intended to pay for specific spending initiatives, and tax reforms aimed at enhancing long-run growth.

Throughout the 1950s and 1960s, fiscal authorities ran either fiscal surpluses or small deficits, so the debt-GDP ratio gradually declined (Figure 1). In the brief period in the 1950s, which our estimates identify as the application of the fiscal targeting rule, Romer and Romer (2010) do not find any significant tax changes other than as a response to changes in spending. The relative stability of taxes, falling debt levels, and low, but slightly falling inflation observed in this period are all consistent with the targeting fiscal rule. In the next decade, there are some limited tax measures designed to match additional spending commitments like the expansion of highways and social security. The slower pace of debt reduction and rising inflation suggest that policy is no longer following a targeting rule, switching to passive.

By the end of 1960s, the debt-GDP ratio has fallen below the implicit steady state and the Romers do not find instances of tax cuts designed to return debt back to steady state. Tax cuts at the time aimed to boost aggregate demand and reduce unemployment. Those cuts were relatively small and were unable to overcome the fiscal drag generated by high inflation and a progressive tax system with nonindexed tax brackets. The upward trend in the tax burden, at a time of high inflation and low debt, explains why the estimates find that fiscal policy is predominantly active in the 1970s. Instances of nonactive fiscal policy in this period are associated with the more sizeable tax cuts. The Nixon administration’s tax reforms of 1970 appear as a passive policy, which then turned to a targeting rule as fiscal policy was further loosened before the 1972 election. Policy was optimizing in the sense that reducing tax revenues as a share of GDP reduced the inflationary impact of distortionary taxation at a time when inflation was rising sharply, but debt levels were low. Ford’s tax rebate in 1975 appears as a fleetingly passive fiscal policy when the debt-GDP ratio had fallen below its steady-state value.

The relatively low debt-GDP ratio in the 1970s and the fact that fiscal policy is expected to turn passive in the long-run mean that the high inflation of that period cannot be attributed to the Fed generating inflation to reduce the real value of government debt. Nevertheless, we shall show below that a different fiscal regime could have offset the inflation of that era just as effectively as a switch to a more conservative monetary policy. In this sense, the inflationary outcomes of the 1970s are as much a fiscal as monetary phenomenon.

The reason fiscal policy is identified as active in the 1970s differs from the reason in the 1980s to the mid-1990s. The former was a decade when fiscal authorities failed to cut taxes despite debt falling below steady state; in the latter period government did not generate sufficient tax revenues to prevent debt from rising rapidly. President Reagan introduced measures to mitigate the increase in the deficit in 1982 and enhance the sustainability of Social Security in 1983. But these were dominated by the tax cuts contained

21 the Tax Equity and Fiscal Responsibility Act of 1982 and Social Security Amendments of 1983
in the earlier Economic Recovery Tax Act of 1981, which were phased in over three steps between 1982 and 1984. The Reagan administration also significantly reduced the progressivity of the tax system by eliminating tax brackets and indexing remaining brackets to inflation. The tax burden fell significantly and the debt-GDP ratio rose. There was no attempt to reduce the deficit under President George H. W. Bush either, until he broke his “no new taxes” pledge in budget negotiations with Congress in 1991. Dominance of large exogenous tax cuts over deficit targeting in the 1980s is consistent with active fiscal policy, but is hard to reconcile with explanations of the Great Moderation, which rely on a near simultaneous shift to a passive fiscal policy.

Only with the Omnibus Budget Reconciliation Act of 1993 under President Clinton does fiscal policy emerge from the active regime to enter a sustained period of targeting or passive policy regimes. As in the 1950s, which our estimates label as a targeting regime, the second half of the 1990s is also marked by low and gradually falling inflation and debt. Although our fiscal targeting rule is destabilizing if not expected to be permanent, in periods of favorable fiscal shocks these features are identified by our model as constituting fiscal policy under a targeting rule. Targeting fiscal behavior gives fiscal policy a prominent role in producing the observed low rates of inflation. Instrument-rules-based studies credit monetary policy fully with delivering those favorable inflation outcomes. In those studies, fiscal policy passively adjusts (lump-sum) taxes to stabilize debt, but plays no role in determining inflation.

Active fiscal behavior reemerges around President G. W. Bush’s cuts taxes in 2001 and 2003, partly to promote long-term growth and partly to offset the macroeconomic shock associated with the 9/11 terrorist attacks. The ultimate switch to passive policy after 2005 is not obviously due to any observed discrete policy changes, but likely reflects the increase in revenues generated by the booming economy leading up to the financial crisis that began in 2007.

In their dating of fiscal regimes, our estimation differs most clearly from the narrative in Bianchi and Ilut (2017). We do not find that debt levels or fiscal shocks drove the inflation of the 1970s, nor that fiscal policy switched decisively to a passive regime in the early 1980s. Instead, our estimates suggest that the fiscal policies of Reagan and the first George Bush did not avert the rising debt levels seen in this period. We obtain different inferences because our specification permits modest inflation to coexist temporarily without tax backing for government debt. These outcomes can coexist because economic agents anticipate that debt will be stabilized through fiscal policy eventually. Bianchi and Ilut’s (2017) setup implies the opposite belief, under which the fiscal repercussions of the shocks of the 1980s would generate too much inflation, relative to the data, if fiscal policy were to remain active in that period.

4.5 Welfare gaps

To gain further insight into which features of the data drive the identification of the various policy regimes, we examine the welfare-relevant “gaps” policy makers aim to close. We consider four gaps: inflation, output, taxes, and debt, where inflation and debt gaps measure the deviation of the variable from its steady state or target value. The output gap, $\hat{y}_t - \hat{y}^*$, computes the deviation of output from the level of output that would be
chosen by the social planner, \tilde{y}^*_{t} (Appendix J: Alternative social planner’s allocation). This gap reflects the extent to which the policy maker is unable to achieve the desired level of output due to nominal inertia, the habits externality, fiscal constraints, and time-consistency problems. It measures the trade-offs between inflation and the real economy embedded in the estimated objective function, but reduces those to a single measure. The tax gap, $\tilde{\tau}_t - \tilde{\tau}^*_{t}$, is the difference between the actual tax rate, $\tilde{\tau}_t$, and the rate that a policy maker could choose to eliminate cost-push shocks, $\tilde{\tau}^*_{t} = -(1 - \tau)\tilde{\mu}_t$. This reflects the fact that distortionary taxation acts like a cost-push shock in the Phillips curve, so that tax cuts can offset realized cost-push shocks driven by variations in the desired markup. Inflation and tax gaps are often, to some extent, mirror images of each other, as both are influenced by the estimated cost-push shocks.

The top two panels of Figure 5 plot the inflation and output gaps alongside the probability that monetary policy is in the LC regime. Less-conservative monetary pol-

![Figure 5](https://example.com/figure5.png)

Figure 5. Output, inflation, tax, debt and policy regimes. The output gap measures the difference between output and what would be chosen by a social planner given the estimated objective function as a percentage, as Appendix J: Alternative social planner’s allocation describes. Inflation and debt gaps measure the deviation from steady-state and the tax gap is the difference between the percentage tax rate and the tax rate that would perfectly offset the inflationary impact of cost push shocks. All gaps are measured on the left scale and the probability of policy regimes on the right scale.
icy arises when for a given output gap, inflation is unusually high. Although there is a
sizeable negative output gap in the early 1970s, this was not as large relative to the levels
of excess inflation found during the Volcker disinflation. This is why the Volcker period
shows up as a switch to more conservative monetary policy. Similarly, a more conserva-
tive policy maker would not have permitted the modest rise in inflation that was associ-
ated with the loosening of monetary policy after the stock market crash of 1987.

The bottom two panels of Figure 5 plot the tax and debt gaps, alongside the proba-
bilities of being in the TF and PF fiscal regimes. Realizations of the targeting rule fiscal
regime in the 1950s and in 1995 correspond to periods when the tax, output, and in-
flation gaps are modest, with debt returning to steady state and inflation falling slowly.
Passive fiscal policy is associated with debt-stabilizing movements in taxation predomi-
nantly in the 1960s. Exit from the passive fiscal regime in the late 1960s corresponds to a
period of rising tax gap that was not consistent with the negative debt gap in the 1970s;
these gaps are then reversed from the 1980s to the mid 1990s. Seen in this way, the pro-
longed periods of active fiscal behavior—throughout the 1970s and then the 1980s until
1995—are due to tax policies that fail to stabilize debt in both directions.

We now turn to reexamine the role fiscal policy played in the inflation of the 1970s,
before considering the inflationary risks posed by the currently high levels of debt seen
in the U.S.

5. Avoiding the great inflation with fiscal leadership

Because our estimates find no decisive shift in fiscal behavior to support Volcker’s mon-
etary policy, it is tempting to conclude that the disinflation was largely a monetary phe-
omenon. Does that mean the inflation of the 1970s could have been avoided had Paul
Volcker been appointed earlier? Or that fiscal policy played no part in the inflation of the
1970s? Figure 6 plots the rate of inflation observed in the 1970s alongside counterfactual
outcomes had the shocks been the same, but the policy regime differed. The first com-
parison is what would have happened had the Fed been more conservative throughout
the sample, even although fiscal policy remained active (but with the expectation that,
ultimately, policy would have switched to other regimes in line with estimated transi-
tion probabilities). Here, we see a sizeable drop in inflation in the 1970s had the Fed
been more conservative, falling from an average of 6.4% to 4.6%.

But it is possible to explore how much fiscal policy could have reduced the 1970s
inflation. Had monetary policy remained less conservative throughout the 1970s, but
the fiscal authorities had adopted a targeting rule then, even though the policy is not
expected to be permanent, inflation would have fallen even further to 4.2%. Since the
fiscal targeting rule uses distortionary taxation to offset cost-push shocks, which were
prevalent in the period, this can improve inflation outcomes more than the adoption
of a more conservative monetary policy. Still better inflation outcomes arise by com-
bining a conservative central bank with a targeting rule fiscal authority: inflation would
have averaged 3.55% (or 3.35% if the policy were considered permanent). Although the
Volcker disinflation was achieved without contemporaneous fiscal support, similar or
better inflation performance could have been achieved by the fiscal authority adopting
a targeting rule, even if that policy was not expected to last.
6. HIGH DEBT AND INFLATION RISKS

Two powerful global shocks in quick succession—the financial crisis of 2008 and the Covid-19 pandemic of 2020—dramatically raised government debt levels. Do elevated debt levels increase inflation risks? We use the estimated model to assess these risks.

Imagine that the American economy has emerged from the pandemic recession to return to steady state except for the debt-GDP ratio. That ratio stands at 82.6%, compared to the calibrated steady state value of 31%. We conduct 100,000 stochastic simulations of the model, allowing policy regimes to evolve randomly, but shutting down the other economic shocks.

We consider two scenarios for how monetary and fiscal policies evolve from the high-debt initial condition: (1) policies follow historic norms; (2) with small probability, historic norms are overthrown and policy enters an absorbing active fiscal state. In both scenarios, monetary policy fluctuates between MC and LC regimes, obeying estimated transition probabilities.

\[^{22}\text{As of April 2021, the market value of debt held by the public was 82.6%, according to the Dallas Fed, https://www.dallasfed.org/research/econdata/govdebt.}\]
Figure 7. Model simulated 100,000 times for 400 periods. Economy in steady-state initially, except the debt-GDP ratio is 82.6%. Initial policy regime drawn randomly. Policy regimes can switch in line with estimated transition probabilities.

6.1 Maintain policy norms

To maintain historic norms, policy behavior evolves according to the estimated transition probabilities that Table 1 reports. We randomly select the initial policy regime using the ergodic distribution in Table 3. Figure 7 plots the median—black solid line—and shaded fanchart percentiles for debt and inflation over 400 periods. There is a significant, but not overwhelming, increase in inflation which mirrors the projected paths of government debt. High initial debt levels worsen the inflationary bias problem that stems from the policy makers’ incentives to induce inflation surprises that reduce the real value of debt. The median path quickly rises to 5%, which corresponds to the rate of CPI inflation in the US in May 2021. Inflation rises further in the short term as the inertial inflation process evolves and debt levels rise further under many scenarios. Debt-GDP overshoots steady state along the median path because the fiscal policy makers’ objective function penalizes rapid adjustments in tax rates. This penalty extends fiscal consolidation over many decades.

This simulation assumes that in the long run debt returns to its postwar mean. Because stabilization occurs only gradually, inflation remains away from its long-run target throughout that process. In this scenario, very long-term inflation expectations are anchored firmly on target inflation. But expected inflation, as measured by the median of realizations, can deviate significantly and persistently from target.

6.2 Erosion of policy norms

One can imagine many ways in which policy norms could change, with each possibility generating different inflation implications from high debt. We consider a minimal deviation from norms to underscore how sensitive model predictions are to seemingly minor changes in beliefs about policy behavior. A critical feature of beliefs based on historic norms is that in the long run fiscal policy adjusts tax rates to stabilize debt. We perturb the norm by introducing a small probability of transitioning from the temporary active fiscal regime to an absorbing state in which fiscal policy does not adjust taxes to stabilize debt.

With the additional permanent active fiscal regime, transition probabilities are given by

$$\Psi = \begin{bmatrix}
\psi_{11} & 1 - \psi_{22} - \psi_{23} & \psi_{31} & 0 \\
\psi_{12} & \psi_{22} & 1 - \psi_{31} - \psi_{33} & 0 \\
1 - \psi_{11} - \psi_{12} & \psi_{23} & \psi_{33} - q & 0 \\
0 & 0 & q & 1
\end{bmatrix},$$

where the ψ_{ij}'s are estimated values reported in Table 1 and q is the probability of entering the permanent active fiscal regime.

We repeat the exercise in Section 6.1 with this modified transition matrix. When q is small—we use $q = 0.001$ and $q = 0.005$—remaining probabilities in Ψ are only little affected, but with large impacts on the inflationary potential of high debt.

In the top panel of Figure 8, with probability $q = 0.001$ the economy will never leave the active fiscal regime once it enters. Even this small risk that policy makers will abandon the norm that eventually fiscal policy stabilizes debt raises median inflation by one percentage point in the short-to-medium runs. Other simulated inflation paths display similar upward shifts with the best short-term inflation outcomes now over 6%. The lower panels of Figure 8 increase the transition probability to $q = 0.005$. Now inflation rises dramatically: in initial periods, all simulated paths lie above 10%; for the first 50 periods, all inflation realizations exceed 5%.

Two effects drive the worsening inflation outcomes: the occurrence of entering the absorbing state and the expectations formation effects that the risk of doing so generates. If fiscal policy turns permanently active when debt is above steady state, inflation jumps to return debt to steady state, as column 2 of Figure 3 depicts. Higher levels of debt when fiscal policy turns permanently active amplify the jump in inflation. As in column 2 of Figure 3 the inflation surprise lasts only as long as the maturity structure of the outstanding debt stock, so debt is quickly stabilized. Effects of surprise inflation on debt explain the kinks in the median path for debt around its steady state; debt return to steady state 20 periods after the economy enters the permanently active regime.

Even if the economy does not enter the permanent active fiscal regime during a given simulation, the risk of doing so creates expectational spillover effects. Expectational effects arise from the anticipation of a jump in inflation, should the permanent active fiscal regime occur in the future. Higher expected inflation shifts the Phillips curve to raise

24By symmetry, if debt is below steady state when the absorbing fiscal regime is realized, there is a deflationary jump, explaining the risk of deflation in the lower panel of Figure 8.
Figure 8. Model simulated 100,000 times for 400 periods. Economy in steady state initially, except the debt-GDP ratio is 82.6%. Initial policy regime drawn randomly. Policy regimes can switch in line with estimated transition probabilities, adjusted to include a risk, q, of the active fiscal regime becoming permanent.
current inflation. These effects augment the inflationary bias associated with a given level of debt which was already present, to exacerbate the debt stabilization bias. The higher inflation in Figure 8 is a mixture of higher inflation from transitioning to the permanent active fiscal regime and the worsening of the debt stabilization bias. Even if the economy does not enter the permanently active regime in the near future, a small likelihood of doing so can dramatically increase inflation outcomes as long as debt remains high by historical standards.

Maintaining the norm that fiscal authorities will eventually, as they have in the past, take the actions necessary to stabilize debt is essential to avoid a large increase in inflation. Tightness of the inflation distribution around the median underscores that the nature of the regime at any point in time matters far less than beliefs about the nature of debt stabilization in the long-run. The fact that we see inflationary pressures rising in current data, but not dramatically, suggests that belief in stabilizing fiscal policy remains.

7. Conclusions

There has been much debate on the extent to which the Great Moderation was due to good luck or good (monetary) policy. There has been less emphasis on the role that fiscal policy plays in the improved economic outcomes. Work that examines this issue reaches contradictory conclusions: Bianchi (2012) finds that fiscal policy did not begin to stabilize debt until the early 1990s, although economic agents did expect that the fiscal authorities would eventually act to stabilize debt; Bianchi and Ilut (2017) find the opposite—fiscal policy turned passive in the early 1980s and this switch was crucial to enabling the active monetary policy to reduce inflation. We generalize these results by considering a richer description of policy involving a mixture of instrument and targeting rules, with potential shifts in the conservatism of the central bank, the introduction of distortionary taxation, and by broadening the nature of the transitions between monetary and fiscal policy regimes.

In this environment, inflationary outcomes are always the joint outcome of both monetary and fiscal policy, offering fresh interpretations of monetary and fiscal policy interactions. We do not find that the inflation of the 1970s was driven by either the level of debt or the fiscal consequences of shocks. The narrative that the switch in monetary policy at the time of the Volcker disinflation was associated with a similar switch in fiscal policy making from a regime where the fiscal authorities did not act to stabilize debt to one where they did, does not fit time series data. Instead, we find that the Volcker disinflation occurred around 1982, but fiscal policy did not abandon its active policy until 1995; even then this policy was subject to further revisions. There are numerous switches between the various permutations of policies, with a passive fiscal policy still not clearly supporting the post-Volcker monetary conservatism observed in the data.

Although the Great Moderation was largely driven by a shift in monetary policy, counterfactuals suggest that adopting a fiscal targeting rule could have reduced the 1970s inflation just as dramatically. The key to finding that the Volcker disinflation did not require an immediate fiscal response is that economic agents anticipated that fiscal authorities would eventually act to stabilize debt. Stochastic simulations show that
if that implicit promise to maintain historic fiscal norms were ever in doubt, elevated
debt-GDP from the Covid-19 pandemic could raise inflation dramatically. If the norms
are expected to be maintained, higher debt should drive a more modest rise in inflation.

References

Amato, Jeffery D. and Thomas Laubach (2004), “Implications of habit formation for op-
timal monetary policy.” *Journal of Monetary Economics*, 51 (2), 305–332. [596]

An, Sungbae and Frank Schorfheide (2007), “Bayesian analysis of DSGE models.” *Econo-
meteric Reviews*, 26 (2–4), 113–172. [596]

and fiscal policies in a monetary union: A review of recent literature.” In *Fiscal Policies,
Monetary Policies and Labour Markets. Key Aspects of European Macroeconomic Polic-
cymaking After Monetary Unification* (R. M. W. J. Beetsma, C. Favero, V. Muscatelli, A.

624]

Bianchi, Francesco and Cosmin Ilut (2017), "Monetary/fiscal policy mix and agents' be-
liefs." *Review of Economic Dynamics*, 26, 113–139. [594, 595, 598, 606, 607, 608, 615, 617,
624]

case of the greenspan put.” *IMF Economic Review*, 66 (2), 251–286. [615]

of Monetary Economics*, 12 (3), 383–398. [598]

monetary policy?” *Journal of Monetary Economics*, 92, 96–111. [595, 601, 602, 615]

Chen, Xiaoshan, Eric M. Leeper, and Campbell Leith (2022), “Supplement to ‘Strategic
interactions in U.S. monetary and fiscal policies’.” *Quantitative Economics Supplemental
Material*, 13, https://doi.org/10.3982/QE1678. [600]

Christiano, Lawrence J., Martin Eichenbaum, and Charles L. Evans (2005), "Nominal
rigidities and the dynamic effects of a shock to monetary policy.” *Journal of Political
Economy*, 113 (1), 1–45. [596]

Davig, Troy (2004), “Regime-switching debt and taxation.” *Journal of Monetary Eco-
nomics*, 51 (4), 837–859. [594]

In *NBER Macroeconomics Annual 2006*, Vol. 21 (Daron Acemoglu, Kenneth Rogoff, and

Friedman, Milton (1960), A Program for Monetary Stability. Fordham University Press, New York. [615]

Geweke, John (1999), “Using simulation methods for Bayesian econometric models: Inference, development, and communication.” Econometric Reviews, 18, 1–73. [609]

Leeper, Eric M. and Xuan Zhou (2021), “Inflation's role in optimal monetary-fiscal policy.” Manuscript, University of Virginia. [605]

Co-editor Tao Zha handled this manuscript.

Manuscript received 8 June, 2020; final version accepted 21 August, 2021; available online 28 September, 2021.